From 40e5144d53a8e2558870a00450acc2a66457b204 Mon Sep 17 00:00:00 2001 From: MadhuraWani803 <103093329+MadhuraWani803@users.noreply.github.com> Date: Sat, 25 Nov 2023 14:04:34 -0700 Subject: [PATCH] Delete Phase 3/phase3_task0a.ipynb --- Phase 3/phase3_task0a.ipynb | 124 ------------------------------------ 1 file changed, 124 deletions(-) delete mode 100644 Phase 3/phase3_task0a.ipynb diff --git a/Phase 3/phase3_task0a.ipynb b/Phase 3/phase3_task0a.ipynb deleted file mode 100644 index f6e4ca2..0000000 --- a/Phase 3/phase3_task0a.ipynb +++ /dev/null @@ -1,124 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from utils import *\n", - "warnings.filterwarnings('ignore')\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "def pca_inherent_dimensionality(data, threshold):\n", - "\n", - " # Calculate the mean of the data\n", - " mean = np.mean(data, axis=0)\n", - " # Center the data by subtracting the mean\n", - " centered_data = data - mean\n", - " # Normalize the data\n", - " normalized_data = centered_data / np.std(centered_data, axis=0)\n", - "\n", - " # Reshape the centered data to ensure compatible dimensions\n", - " if(len(normalized_data.shape)==3):\n", - " reshaped_normalized_data = normalized_data.reshape(normalized_data.shape[0], normalized_data.shape[2])\n", - " else:\n", - " reshaped_normalized_data=normalized_data\n", - "\n", - " # Calculate the covariance matrix\n", - " #covariance_matrix = np.dot(reshaped_normalized_data.T, reshaped_normalized_data)\n", - " covariance_matrix = np.dot(reshaped_normalized_data.T, reshaped_normalized_data) / (reshaped_normalized_data.shape[0] - 1) #to bring the values in the range of 0 to 1\n", - "\n", - " # Compute the eigenvalues and eigenvectors of the covariance matrix\n", - " eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)\n", - " # Sort the eigenvalues in descending order\n", - " #sorted_indices = np.argsort(eigenvalues)[::-1]\n", - " # Sort the eigenvectors accordingly\n", - " #sorted_eigenvectors = eigenvectors[:, sorted_indices]\n", - " #print(sorted_eigenvectors)\n", - " #print(sorted_indices)\n", - "\n", - " # Calculate the mean of each subarray- the sorted_eigenvectors are in the form of subarrays, while computing the inherent dimensionality, each value is compared with \n", - " #the threshold, hence mean of each subarray is computed and then it is compared with the threshold value (I am not sure if we can do this?)\n", - " #means = np.mean(sorted_eigenvectors, axis=1)\n", - " \n", - " # Determine the number of eigenvalues greater than the threshold\n", - " #inherent_dimensionality = np.sum(means>threshold)\n", - " #inherent_dimensionality = len(significant_eigenvalues)\n", - " significant_eigenvalues = eigenvalues[eigenvalues > threshold]\n", - " inherent_dimensionality = len(significant_eigenvalues)\n", - " #significant_eigenvalues = sorted_eigenvectors[sorted_indices][eigenvalues > threshold]\n", - "\n", - " return inherent_dimensionality" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Inherent dimensionality associated with the even numbered images: 260\n" - ] - } - ], - "source": [ - "# Retrieve all feature spaces from the database\n", - "data = []\n", - "for document in fd_collection.find():\n", - " feature_space = document[\"fc_fd\"]\n", - " data.append(feature_space)\n", - "\n", - "threshold=0.5\n", - "print(\"Inherent dimensionality associated with the even numbered images: \", pca_inherent_dimensionality(data, threshold))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.11" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}