mirror of
https://github.com/20kaushik02/CSE515_MWDB_Project.git
synced 2025-12-06 07:54:07 +00:00
init
This commit is contained in:
parent
011a0a0b34
commit
4492dc6677
@ -432,7 +432,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
9791
Phase 3/task_3.ipynb
Normal file
9791
Phase 3/task_3.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
285
Phase 3/utils.py
Normal file
285
Phase 3/utils.py
Normal file
@ -0,0 +1,285 @@
|
||||
# All imports
|
||||
# Math
|
||||
import math
|
||||
import random
|
||||
import cv2
|
||||
import numpy as np
|
||||
from scipy.stats import pearsonr
|
||||
|
||||
# from scipy.sparse.linalg import svds
|
||||
# from sklearn.decomposition import NMF
|
||||
from sklearn.decomposition import LatentDirichletAllocation
|
||||
|
||||
# from sklearn.cluster import KMeans
|
||||
|
||||
# Torch
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
from torchvision.datasets import Caltech101
|
||||
from torchvision.models import resnet50, ResNet50_Weights
|
||||
|
||||
import tensorly as tl
|
||||
|
||||
# OS and env
|
||||
import json
|
||||
import os
|
||||
from os import getenv
|
||||
from dotenv import load_dotenv
|
||||
import warnings
|
||||
from joblib import dump, load
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# MongoDB
|
||||
from pymongo import MongoClient
|
||||
|
||||
# Visualizing
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class GridPartition:
|
||||
"""Class transform to partition image into (rows, cols) grid"""
|
||||
|
||||
def __init__(self, rows, cols):
|
||||
self.rows = rows
|
||||
self.cols = cols
|
||||
|
||||
def __call__(self, img):
|
||||
# img is in (C,(H,W)) format, so first element is channel
|
||||
img_width, img_height = img.size()[1:]
|
||||
cell_width = img_width // self.cols
|
||||
cell_height = img_height // self.rows
|
||||
|
||||
grids = []
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
left = j * cell_width
|
||||
right = left + cell_width
|
||||
|
||||
top = i * cell_height
|
||||
bottom = top + cell_height
|
||||
|
||||
# Slice out
|
||||
grid = img[:, left:right, top:bottom]
|
||||
grids.append(grid)
|
||||
|
||||
return grids
|
||||
|
||||
|
||||
|
||||
def compute_gradient_histogram(grid_cell):
|
||||
"""Compute HOG using [-1,0,1] masks for gradient"""
|
||||
histograms = []
|
||||
|
||||
# Convert grid cell to NumPy array
|
||||
grid_array = np.array(grid_cell, dtype=np.float32)
|
||||
grid_array = grid_array.reshape(
|
||||
grid_array.shape[1], grid_array.shape[2]
|
||||
) # ignore extra dimension
|
||||
|
||||
# Compute the gradient using first-order central differences
|
||||
dx = cv2.Sobel(
|
||||
grid_array, cv2.CV_32F, dx=1, dy=0, ksize=1
|
||||
) # first order x derivative = [-1, 0, 1]
|
||||
dy = cv2.Sobel(
|
||||
grid_array, cv2.CV_32F, dx=0, dy=1, ksize=1
|
||||
) # first order y derivative = [-1, 0, 1]^T
|
||||
|
||||
# Compute magnitude and direction of gradients
|
||||
magnitude = np.sqrt(dx**2 + dy**2)
|
||||
direction = np.arctan2(dy, dx) * 180 / np.pi # in degrees
|
||||
|
||||
# Compute HOG - 9 bins, counted across the range of -180 to 180 degrees, weighted by gradient magnitude
|
||||
histogram, _ = np.histogram(direction, bins=9, range=(-180, 180), weights=magnitude)
|
||||
|
||||
histograms.append(histogram)
|
||||
|
||||
return histograms
|
||||
|
||||
|
||||
def compute_histograms_for_grid(grid):
|
||||
histograms = [compute_gradient_histogram(grid_cell) for grid_cell in grid]
|
||||
return np.array(histograms).flatten()
|
||||
|
||||
|
||||
def combine_histograms(grid_histograms):
|
||||
return torch.Tensor(grid_histograms).view(10, 10, 9)
|
||||
|
||||
HOG_transform = transforms.Compose(
|
||||
[
|
||||
transforms.Grayscale(num_output_channels=1), # grayscale transform
|
||||
transforms.Resize((100, 300)), # resize to H:W=100:300
|
||||
GridPartition(
|
||||
rows=10, cols=10
|
||||
), # partition into grid of 10 rows, 10 columns as a list
|
||||
compute_histograms_for_grid,
|
||||
combine_histograms,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def getCollection(db, collection):
|
||||
"""Load feature descriptor collection from MongoDB"""
|
||||
client = MongoClient("mongodb://localhost:27017")
|
||||
return client[db][collection]
|
||||
|
||||
|
||||
def datasetTransform(image):
|
||||
"""Transform while loading dataset as scaled tensors of shape (channels, (img_shape))"""
|
||||
return transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor() # ToTensor by default scales to [0,1] range, the input range for ResNet
|
||||
]
|
||||
)(image)
|
||||
|
||||
|
||||
def loadDataset(dataset):
|
||||
"""Load TorchVision dataset with the defined transform"""
|
||||
return dataset(
|
||||
root=getenv("DATASET_PATH"),
|
||||
download=False, # True if you wish to download for first time
|
||||
transform=datasetTransform,
|
||||
)
|
||||
|
||||
|
||||
|
||||
dataset = loadDataset(Caltech101)
|
||||
NUM_LABELS = 101
|
||||
NUM_IMAGES = 4339
|
||||
|
||||
|
||||
def euclidean_distance_measure(img_1_fd, img_2_fd):
|
||||
img_1_fd_reshaped = img_1_fd.flatten()
|
||||
img_2_fd_reshaped = img_2_fd.flatten()
|
||||
|
||||
# Calculate Euclidean distance
|
||||
return math.dist(img_1_fd_reshaped, img_2_fd_reshaped)
|
||||
|
||||
|
||||
def loadResnet():
|
||||
"""Load ResNet50 pre-trained model with default weights"""
|
||||
# Load model
|
||||
model = resnet50(weights=ResNet50_Weights.DEFAULT)
|
||||
|
||||
# try to use Nvidia GPU
|
||||
if torch.cuda.is_available():
|
||||
dev = torch.device("cuda")
|
||||
torch.cuda.empty_cache()
|
||||
else:
|
||||
dev = torch.device("cpu")
|
||||
|
||||
model = model.to(dev)
|
||||
model.eval() # switch to inference mode - important! since we're using pre-trained model
|
||||
return model, dev
|
||||
|
||||
|
||||
model, dev = loadResnet()
|
||||
|
||||
class FeatureExtractor(torch.nn.Module):
|
||||
"""Feature extractor module for all layers at once"""
|
||||
|
||||
def __init__(self, model, layers):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.layers = layers
|
||||
self._features = {layer: None for layer in layers} # store layer outputs here
|
||||
|
||||
# Create hooks for all specified layers at once
|
||||
for layer_id in layers:
|
||||
layer = dict(self.model.named_modules())[
|
||||
layer_id
|
||||
] # get actual layer in the model
|
||||
layer.register_forward_hook(
|
||||
self.save_outputs_hook(layer_id)
|
||||
) # register feature extractor hook on layer
|
||||
|
||||
# Hook to save output of layer
|
||||
def save_outputs_hook(self, layer_id):
|
||||
def fn(_module, _input, output):
|
||||
self._features[layer_id] = output
|
||||
|
||||
return fn
|
||||
|
||||
# Forward pass returns extracted features
|
||||
def forward(self, input):
|
||||
_ = self.model(input)
|
||||
return self._features
|
||||
|
||||
|
||||
|
||||
def resnet_extractor(image):
|
||||
"""Extract image features from avgpool, layer3 and fc layers of ResNet50"""
|
||||
resized_image = (
|
||||
torch.Tensor(np.array(transforms.Resize((224, 224))(image)).flatten())
|
||||
.view(1, 3, 224, 224)
|
||||
.to(dev)
|
||||
)
|
||||
|
||||
# Attach all hooks on model and extract features
|
||||
resnet_features = FeatureExtractor(model=model, layers=["avgpool", "layer3", "fc"])
|
||||
features = resnet_features(resized_image)
|
||||
|
||||
avgpool_2048 = features["avgpool"]
|
||||
# Reshape the vector into row pairs of elements and average across rows
|
||||
avgpool_1024_fd = torch.mean(avgpool_2048.view(-1, 2), axis=1)
|
||||
|
||||
layer3_1024_14_14 = features["layer3"]
|
||||
# Reshape the vector into 1024 rows of 196 elements and average across rows
|
||||
layer3_1024_fd = torch.mean(layer3_1024_14_14.view(1024, -1), axis=1)
|
||||
|
||||
fc_1000_fd = features["fc"].view(1000)
|
||||
|
||||
return (
|
||||
avgpool_1024_fd.detach().cpu().tolist(),
|
||||
layer3_1024_fd.detach().cpu().tolist(),
|
||||
fc_1000_fd.detach().cpu().tolist(),
|
||||
)
|
||||
|
||||
|
||||
def resnet_output(image):
|
||||
"""Get image features from ResNet50 (full execution) and apply a softmax layer"""
|
||||
resized_image = (
|
||||
torch.Tensor(np.array(transforms.Resize((224, 224))(image)).flatten())
|
||||
.view(1, 3, 224, 224)
|
||||
.to(dev)
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
features = model(resized_image)
|
||||
features = torch.nn.Softmax()(features)
|
||||
|
||||
return features.detach().cpu().tolist()
|
||||
|
||||
valid_feature_models = {
|
||||
"cm": "cm_fd",
|
||||
"hog": "hog_fd",
|
||||
"avgpool": "avgpool_fd",
|
||||
"layer3": "layer3_fd",
|
||||
"fc": "fc_fd",
|
||||
"resnet": "resnet_fd",
|
||||
}
|
||||
|
||||
def predict_m_nn_classifier(fd_collection, m, feature_model, selected_image_fd):
|
||||
"""
|
||||
Create the m-NN classifier from the selected feature space
|
||||
"""
|
||||
|
||||
assert (
|
||||
feature_model in valid_feature_models.values()
|
||||
), "feature_moel should be one of " + str(list(valid_feature_models.keys()))
|
||||
|
||||
all_images = list(fd_collection.find())
|
||||
feature_ids = [img["image_id"] for img in all_images]
|
||||
|
||||
feature_vectors = np.array(
|
||||
[np.array(img[feature_model]).flatten() for img in all_images]
|
||||
)
|
||||
|
||||
distances = []
|
||||
|
||||
for fd, id in zip(feature_vectors, feature_ids):
|
||||
distances.append({"image_id": id, "distance": euclidean_distance_measure(selected_image_fd, fd)})
|
||||
|
||||
distances = sorted(distances, key=lambda x: x["distance"])
|
||||
|
||||
return distances[:10]
|
||||
Loading…
x
Reference in New Issue
Block a user