diff --git a/Phase 3/requirements.txt b/Phase 3/requirements.txt new file mode 100644 index 0000000..4eac0c9 --- /dev/null +++ b/Phase 3/requirements.txt @@ -0,0 +1,15 @@ +numpy +scipy +scikit-learn +scikit-image +opencv-python +matplotlib +torch +torchvision +pymongo[srv] +ipython +notebook +ipykernel +python-dotenv +tensorly +ipympl \ No newline at end of file diff --git a/Phase 3/task2.ipynb b/Phase 3/task2.ipynb new file mode 100644 index 0000000..15edd45 --- /dev/null +++ b/Phase 3/task2.ipynb @@ -0,0 +1,606 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from task2_utils import *\n", + "warnings.filterwarnings('ignore')\n", + "# interactive plot\n", + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_image_similarity(data, distance_measure):\n", + " \"\"\"Object-object similarity with given distance measure\"\"\"\n", + " n = data.shape[0]\n", + " image_sim_matrix = np.zeros((n, n))\n", + " for i in range(n):\n", + " for j in range(i + 1, n):\n", + " image_sim_matrix[i][j] = image_sim_matrix[j][i] = distance_measure(\n", + " np.array(data[i]), np.array(data[j])\n", + " )\n", + " return image_sim_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def mds_projection(data_sim_matrix, n_components=2):\n", + " \"\"\"MDS projection to n-D space\"\"\"\n", + " n = data_sim_matrix.shape[0]\n", + " # Centering matrix\n", + " C = np.eye(n) - np.ones((n, n)) / n\n", + " # B = -1/2 * C * D^2 * C\n", + " B = -0.5 * C @ (data_sim_matrix**2) @ C\n", + " # Eigen decomposition\n", + " eigvals, eigvecs = np.linalg.eigh(B)\n", + "\n", + " # Sort eigenvalues and corresponding eigenvectors\n", + " indices = np.argsort(eigvals)[::-1]\n", + " eigvals = eigvals[indices]\n", + " eigvecs = eigvecs[:, indices]\n", + "\n", + " # Take the first n_components eigenvectors\n", + " components = eigvecs[:, :n_components]\n", + "\n", + " return components" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def avgandmin_knn_distance(data_sim_matrix, k):\n", + " \"\"\"Get avg. and minimum k-th nearest neighbor distance\"\"\"\n", + "\t# Sort each row of the distance matrix and extract the kth-nearest neighbor distance\n", + " kth_neighbor_distances = np.sort(data_sim_matrix, axis=1)[:, k-1]\n", + "\n", + " # Understanding KNN distribution to figure out strategy to find epsilon range\n", + " # plt.plot(np.sort(kth_neighbor_distances))\n", + " # plt.show()\n", + " \n", + " # Calculate the average and minimum distance of the kth-nearest neighbor\n", + " average_distance = np.mean(kth_neighbor_distances)\n", + " minimum_distance = np.min(kth_neighbor_distances)\n", + "\n", + " return average_distance, minimum_distance\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def display_cluster_stats(clusters):\n", + " \"\"\"Display cluster counts and noise point count\"\"\"\n", + " cluster_counts = np.unique(clusters, return_counts=True)\n", + " cluster_counts_dict = dict(\n", + " (unique_label, unique_count)\n", + " for unique_label, unique_count in zip(cluster_counts[0], cluster_counts[1])\n", + " )\n", + " print(\"Clusters:\", cluster_counts_dict)\n", + " print(\"No. of clusters:\", len(cluster_counts_dict.keys() - {-1}))\n", + " if -1 in cluster_counts_dict:\n", + " print(\"Noise points:\", cluster_counts_dict[-1])\n", + " else:\n", + " print(\"No noise points\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "class DBSCAN:\n", + " def __init__(self, data, distance_measure, eps, min_samples, data_sim_matrix=None):\n", + " self.eps = eps\n", + " self.min_samples = min_samples\n", + "\n", + " self.data = data\n", + " self.distance_measure = distance_measure\n", + " self.num_images = data.shape[0]\n", + "\n", + " self.image_sim_matrix = np.zeros((self.num_images, self.num_images))\n", + " if data_sim_matrix is not None:\n", + " self.image_sim_matrix = data_sim_matrix\n", + " self.clusters = np.zeros(self.num_images) # 0 represents unclassified points\n", + "\n", + " def dbscan(self):\n", + " \"\"\"DBSCAN algorithm\"\"\"\n", + " # if similarities not provided/calculated already\n", + " if np.array_equal(\n", + " self.image_sim_matrix, np.zeros((self.num_images, self.num_images))\n", + " ):\n", + " calculate_image_similarity(self.data, self.distance_measure)\n", + "\n", + " cluster_id = 0\n", + " for i in range(self.num_images):\n", + " if self.clusters[i] != 0:\n", + " continue # Skip already classified points\n", + "\n", + " neighbors = self.region_query(i)\n", + " if len(neighbors) < self.min_samples:\n", + " self.clusters[i] = -1 # Mark point as noise\n", + " else:\n", + " cluster_id += 1 # New cluster identified\n", + " self.clusters[i] = cluster_id\n", + " self.grow_cluster(neighbors, cluster_id)\n", + "\n", + " return self.clusters\n", + "\n", + " def region_query(self, center):\n", + " distances = self.image_sim_matrix[center]\n", + " return [i for i, dist in enumerate(distances) if dist < self.eps]\n", + "\n", + " def grow_cluster(self, neighbors, cluster_id):\n", + " i = 0\n", + " # check neighbors for connected components\n", + " while i < len(neighbors):\n", + " neighbor = neighbors[i]\n", + "\n", + " if self.clusters[neighbor] == -1:\n", + " self.clusters[neighbor] = cluster_id # Change noise to border point\n", + " elif self.clusters[neighbor] == 0:\n", + " self.clusters[neighbor] = cluster_id\n", + " new_neighbors = self.region_query(neighbor)\n", + " # If new point could be a core point\n", + " if len(new_neighbors) >= self.min_samples:\n", + " neighbors += new_neighbors # add its neighbors to list of neighbors to consider\n", + " i += 1\n", + "\n", + " def mds_scatter_clusters(self):\n", + " \"\"\"Visualize clusters as point clouds in 2-D space\"\"\"\n", + " # Perform MDS projection\n", + " mds_components = mds_projection(self.image_sim_matrix)\n", + "\n", + " # Plot clusters\n", + " plt.figure(figsize=(8, 6))\n", + " for label in set(self.clusters):\n", + " # to hide noise\n", + " # if label == -1:\n", + " # continue\n", + " cluster_points = mds_components[self.clusters == label]\n", + " plt.scatter(\n", + " cluster_points[:, 0],\n", + " cluster_points[:, 1],\n", + " label=f\"{(f'Cluster {int(label)}') if label != -1 else 'Noise points'}\",\n", + " )\n", + "\n", + " plt.title(\"DBSCAN clusters projected onto 2-D MDS space\")\n", + " plt.xlabel(\"MDS component 1\")\n", + " plt.ylabel(\"MDS component 2\")\n", + " plt.legend()\n", + " plt.show()\n", + "\n", + " def group_image_clusters(self, image_data):\n", + " # Perform MDS projection\n", + " mds_components = mds_projection(self.image_sim_matrix)\n", + " # Scaling up to fit images inside\n", + " mds_components = mds_components * 10000\n", + "\n", + " min_x_mds = np.min(mds_components[:, 0])\n", + " min_y_mds = np.min(mds_components[:, 1])\n", + " max_x_mds = np.max(mds_components[:, 0])\n", + " max_y_mds = np.max(mds_components[:, 1])\n", + "\n", + " img_width = (max_x_mds - min_x_mds) / 10\n", + " img_height = (max_y_mds - min_y_mds) / 10\n", + "\n", + " # Plot clusters\n", + " plt.figure(figsize=(8, 8))\n", + " for label in set(self.clusters):\n", + " cluster_points = mds_components[self.clusters == label]\n", + " plt.scatter(\n", + " cluster_points[:, 0],\n", + " cluster_points[:, 1],\n", + " label=f\"{(f'Cluster {int(label)}') if label != -1 else 'Noise points'}\",\n", + " zorder=1,\n", + " )\n", + "\n", + " # Display image thumbnails at cluster centroids\n", + " cluster_indices = np.where(self.clusters == label)[0]\n", + " cluster_center = np.mean(mds_components[cluster_indices], axis=0)\n", + " thumbnail_data = image_data[cluster_indices[0]].resize(\n", + " (int(np.ceil(img_width)), int(np.ceil(img_height)))\n", + " )\n", + " im = plt.imshow(\n", + " thumbnail_data,\n", + " extent=(\n", + " cluster_center[0] - 0.5 * img_width,\n", + " cluster_center[0] + 0.5 * img_width,\n", + " cluster_center[1] - 0.5 * img_height,\n", + " cluster_center[1] + 0.5 * img_height,\n", + " ),\n", + " interpolation=\"nearest\",\n", + " cmap=plt.cm.gray_r,\n", + " zorder=0,\n", + " )\n", + "\n", + " # Image border\n", + " x1, x2, y1, y2 = im.get_extent()\n", + " (im_border,) = plt.plot(\n", + " [x1, x2, x2, x1, x1],\n", + " [y1, y1, y2, y2, y1],\n", + " \"-\",\n", + " linewidth=2,\n", + " solid_capstyle=\"butt\",\n", + " zorder=0,\n", + " )\n", + "\n", + " # Click to bring to front\n", + " def region_click(event, region_area=im, region_border=im_border):\n", + " if region_area.contains(event)[0]:\n", + " region_border.set_zorder(2)\n", + " region_area.set_zorder(2)\n", + " else:\n", + " region_border.set_zorder(0)\n", + " region_area.set_zorder(0)\n", + "\n", + " im.figure.canvas.mpl_connect(\"button_press_event\", region_click)\n", + "\n", + " plt.title(\"DBSCAN clusters projected onto 2-D MDS space\")\n", + " plt.xlabel(\"MDS component 1\")\n", + " plt.ylabel(\"MDS component 2\")\n", + " plt.xlim(min_x_mds, max_x_mds)\n", + " plt.ylim(min_y_mds, max_y_mds)\n", + " plt.legend()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# selected_feature_model = valid_feature_models[\n", + "# str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n", + "# ]\n", + "selected_feature_model = valid_feature_models[\"avgpool\"]\n", + "selected_distance_measure = feature_distance_matches[selected_feature_model]\n", + "# selected_distance_measure = euclidean_distance_measure\n", + "selected_c = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label: 0\n", + "Epsilon: 0.10715872252338608 \tMinPts: 3\n", + "Clusters: {-1.0: 94, 1.0: 15, 2.0: 94, 3.0: 3, 4.0: 4, 5.0: 8}\n", + "No. of clusters: 5\n", + "Noise points: 94\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c248a05637e54077be7ebe0d3c03a337", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQDUlEQVR4nOzdeVhUZfsH8O8ZZJMd2ZQQATEFxV1yKXM3DV4LtzaX0spccqvUXnMX/blkLmlaqWW5m6+5oIaamluFmAoaGrgg4AoIJMjM+f0xzsgwCzMwG/D9XBeXcuaZc55BwHPP89z3LYiiKIKIiIiIiMgMJJaeABERERERVR8MQIiIiIiIyGwYgBARERERkdkwACEiIiIiIrNhAEJERERERGbDAISIiIiIiMyGAQgREREREZkNAxAiIiIiIjIbBiBERERERGQ2DECIiIiIiMhsGIAQEREREZHZMAAhIiIiIiKzYQBCRERERERmwwCEiIiIiIjMhgEIERERERGZDQMQIiIiIiIyGwYgRERERERkNgxAiIiIiIjIbBiAEBERERGR2TAAISIiIiIis2EAQkREREREZsMAhIiIiIiIzIYBCBERERERmQ0DECIiIiIiMhsGIEREREREZDYMQIiIiIiIyGwYgBARERERkdkwACEiIiIiIrNhAEJERERERGbDAISIiIiIiMyGAQgREREREZkNAxAiIiIiIjIbBiBERERERGQ2DECIiIiIiMhsGIAQEREREZHZMAAhIiIiIiKzYQBCRERERERmwwCEiIiIiIjMhgEIERERERGZDQMQIiIiIiIyGwYgRERERERkNgxAiIiIiIjIbBiAEBERERGR2TAAISIiIiIis2EAQkREREREZsMAhIiIiIiIzIYBCBERERERmQ0DECIiIiIiMhsGIEREREREZDYMQIjIaqWlpUEQBKxbt87SU6mypk+fDkEQLD2NcqlXrx6GDBli6WkQEZGBGIAQGdG6desgCILyw8HBAXXq1EGPHj2wdOlSPHz4UO05ihtAxYdEIkHt2rXx8ssv49SpU2rjz58/j759+yIwMBAODg7w9/dHt27dsGzZMrWxUqkUa9euxYsvvghPT0/Y29ujXr16GDp0KP744w+Nr+HLL7+EIAiIjIzU+joVc120aJHWr4G281uTpKQkTJ8+HWlpaZaeSpW1d+9eTJ8+3dLTMKoTJ05g+vTpyM7ONup54+Pj8fbbb6NBgwaoWbMmgoODMWzYMGRkZOh9jpK/S2rUqAFPT0+0bNkSH374IZKSkvQ+T7169SAIArp27arx8TVr1iivU/JnvfTvs5o1a6Ju3bqIiorC2rVrUVhYqPF8P//8Mzp27AgfHx/la+/fvz/i4uL0njMRVR4MQIhMYObMmfj++++xcuVKjB49GgAwduxYNGnSBH/99ZfG56xcuRLff/891q1bh1GjRuHChQt44YUXkJiYqBxz4sQJtGrVCufOncPw4cOxfPlyDBs2DBKJBF988YXK+f7991+8/PLLePvttyGKIqZMmYKVK1di0KBBOHnyJNq0aYObN2+qzeOHH35AvXr1cObMGVy5ckXn61ywYAEKCgoM/OpYj6SkJMyYMaNaByD//e9/8e+//5rs/Hv37sWMGTNMdn5LOHHiBGbMmGH0AOSTTz7BkSNH8Morr2Dp0qUYOHAgtmzZgubNmyMzM1Pv83Tr1g3ff/891q5di5kzZ6JFixZYv349mjZtisWLF+t9HgcHBxw+fFjjtX/44Qc4ODhofa7i99myZcswbNgw3L9/H2+//TbatGmDGzduqIxduHAhoqOjIQgCJk+ejM8//xwxMTFISUnBpk2b9J4vEVUiIhEZzdq1a0UA4u+//672WHx8vOjo6CgGBgaKBQUFyuPTpk0TAYh37txRGX/hwgURgDhlyhTlsV69eone3t7igwcP1M6flZWl8vnIkSNFAOLnn3+uNra4uFhcsGCBeOPGDZXj//zzjwhA3LFjh+jt7S1Onz5d4+sEIDZr1kwEIC5atEjvr4GhUlNTRQDi2rVrK3wuTbZu3SoCEA8fPmzU8+bl5Rn1fIb4999/RalUarHrl6b4PjSFwMBAcfDgwSY5ty4LFiwQAYipqalGPe+vv/6q9m/366+/igDETz/9VK9zABBHjhypdvzu3bti27ZtRQDinj17yjxPYGCg2KVLF9HV1VVcsmSJymM3btwQJRKJGBMTo/azru33mSiK4oYNG0SJRCJGRkYqjz1+/Fh0dXUVu3XrpnEepX+vEVHVwBUQIjPp3Lkzpk6dimvXrmHDhg1ljvfz8wMA1KhRQ3ns6tWrCA8Ph7u7u9p4Hx8f5d9v3ryJr776Ct26dcPYsWPVxtrY2GDixIl45plnVI7/8MMP8PDwQO/evdG3b1/88MMPWufXvn17dO7cGf/3f/9X7nfQs7OzMW7cONSrVw/29vZ45plnMGjQINy9e1frc1588UW8+OKLaseHDBmCevXqqRzbtGkTWrZsCRcXF7i6uqJJkybKlaJ169ahX79+AIBOnTopt4wcOXJE+fx9+/bh+eefh5OTE1xcXNC7d29cvHhR7brOzs64evUqevXqBRcXF7zxxhsAgJSUFMTExMDPzw8ODg545plnMHDgQOTk5Oj8urz44oto3Lgx/vzzT7Rr1w6Ojo4ICgrCqlWrVMYdOXIEgiBg06ZN+O9//wt/f3/UrFkTubm5AICtW7eiZcuWcHR0hJeXF958802kp6ernENbDsiGDRuUz/X09MTAgQPV3rkGgNOnT6NXr17w8PCAk5MTIiIilF/jIUOGYMWKFQBUtwYpyGQyLFmyBOHh4XBwcICvry/ee+89PHjwQOUaoihi9uzZeOaZZ1CzZk106tRJ7d9Bl/z8fEyYMAEBAQGwt7fHs88+i4ULF0IURZVxgiBg1KhR2LlzJxo3bgx7e3uEh4erbAOaPn06PvroIwBAUFCQ8jUpVtGKi4sxa9YshISEKLc8TpkyRevWo5JeeOEFSCQStWOenp5ITk7W+/VqUqtWLWzatAk1atTAnDlz9HqOg4MDXn31Vfz4448qxzdu3AgPDw/06NHDoDm88cYbGDZsGE6fPo2DBw8CAO7evYvc3Fy0b99e43NK/l7T5uDBg+jQoQPc3d3h7OyMZ599FlOmTFE+rvg52bx5M6ZMmQI/Pz84OTkhOjpa7Xv62LFj6NevH+rWrQt7e3sEBARg3LhxGn/HXbp0Cf3794e3tzccHR3x7LPP4tNPP1UZk56ejrfffhu+vr7K76dvv/22zNdEVNXVKHsIERnLW2+9hSlTpuDAgQMYPny4ymP3798HIL8pS09Px6xZs+Dg4ID+/fsrxwQGBuLkyZO4cOECGjdurPU6+/btQ3FxMd566y2D5vfDDz/g1VdfhZ2dHV577TWsXLkSv//+O1q3bq1x/PTp0/HCCy9g5cqVGD9+vEHXysvLw/PPP4/k5GS8/fbbaNGiBe7evYtdu3bh5s2b8PLyMuh8pR08eBCvvfYaunTpgvnz5wMAkpOT8dtvv+HDDz/ECy+8gDFjxmDp0qWYMmUKGjVqBADKP7///nsMHjwYPXr0wPz581FQUICVK1eiQ4cOOHv2rEqwU1xcjB49eqBDhw5YuHAhatasiaKiIvTo0QOFhYUYPXo0/Pz8kJ6ejt27dyM7Oxtubm465//gwQP06tUL/fv3x2uvvYYtW7ZgxIgRsLOzw9tvv60ydtasWbCzs8PEiRNRWFgIOzs7rFu3DkOHDkXr1q0RGxuLrKwsfPHFF/jtt99w9uxZjUGswpw5czB16lT0798fw4YNw507d7Bs2TK88MILKs89ePAgXn75ZdSuXRsffvgh/Pz8kJycjN27d+PDDz/Ee++9h1u3buHgwYP4/vvv1a7z3nvvKec5ZswYpKamYvny5Th79ix+++032NraAgA+++wzzJ49G7169UKvXr2QkJCA7t27o6ioSOfXEJAHL9HR0Th8+DDeeecdNGvWDPv378dHH32E9PR0fP755yrjjx8/jh07duCDDz6Ai4sLli5dipiYGFy/fh21atXCq6++ir///hsbN27E559/rvw+9fb2BgAMGzYM69evR9++fTFhwgScPn0asbGxSE5Oxk8//VTmfEvLy8tDXl5ehX8eAKBu3bro2LEjDh8+jNzcXLi6upb5nNdffx3du3fH1atXERISAgD48ccf0bdvX+W/jyHeeustrF69GgcOHEC3bt3g4+MDR0dH/Pzzzxg9ejQ8PT0NOt/Fixfx8ssvIyIiAjNnzoS9vT2uXLmC3377TW3snDlzIAgCPvnkE9y+fRtLlixB165dkZiYCEdHRwDyoL2goAAjRoxArVq1cObMGSxbtgw3b97E1q1blef666+/8Pzzz8PW1hbvvvsu6tWrh6tXr+Lnn39WBnhZWVl47rnnlIGtt7c39u3bh3feeQe5ubka3xwiqjYsvAJDVKXos/3Izc1NbN68ufJzxZaF0h/u7u5iXFycynMPHDgg2tjYiDY2NmLbtm3Fjz/+WNy/f79YVFSkMm7cuHEiAPHs2bN6z/2PP/4QAYgHDx4URVEUZTKZ+Mwzz4gffvih2liU2ObRqVMn0c/PT7mtTN8tWJ999plyu1dpMplMFEXNW7A6duwoduzYUe05gwcPFgMDA5Wff/jhh6Krq6tYXFysdQ7atmA9fPhQdHd3F4cPH65yPDMzU3Rzc1M5PnjwYBGAOGnSJJWxZ8+eFQGIW7du1Xp9bTp27Ki2va2wsFBs1qyZ6OPjo/z3Pnz4sAhADA4OVtnWV1RUJPr4+IiNGzcW//33X+Xx3bt3iwDEzz77THlM8f2nkJaWJtrY2Ihz5sxRmdP58+fFGjVqKI8XFxeLQUFBYmBgoNqWQMW/nyhq34J17NgxEYD4ww8/qByPi4tTOX779m3Rzs5O7N27t8p5p0yZIgIocwvWzp07RQDi7NmzVY737dtXFARBvHLlivIYANHOzk7l2Llz50QA4rJly5THtG3BSkxMFAGIw4YNUzk+ceJEEYB46NAhnXPVZNasWSIAMT4+Xq/xJX82Nfnwww9FAOK5c+d0nicwMFDs3bu3WFxcLPr5+YmzZs0SRVEUk5KSRADir7/+qvFnXdcWLFEUxQcPHogAxFdeeUV5TPG7wMnJSXzppZfEOXPmiH/++ader/fzzz/XeT1RfPpz4u/vL+bm5iqPb9myRQQgfvHFF8pjJX+OFGJjY0VBEMRr164pj73wwguii4uLyjFRVP3ef+edd8TatWuLd+/eVRkzcOBA0c3NTeO1iKoLbsEiMjNnZ2eN1bC2b9+OgwcP4sCBA1i7di0aNGiAmJgYnDhxQjmmW7duOHnyJKKjo3Hu3Dn83//9H3r06AF/f3/s2rVLOU6xBcfFxUXvef3www/w9fVFp06dAMi3owwYMACbNm2CVCrV+rzp06cjMzNTbXtQWbZv346mTZvilVdeUXvMGGVh3d3dkZ+fr9zqYYiDBw8iOzsbr732Gu7evav8sLGxQWRkJA4fPqz2nBEjRqh8rljh2L9/f7kS9WvUqIH33ntP+bmdnR3ee+893L59G3/++afK2MGDByvfwQWAP/74A7dv38YHH3ygkijcu3dvNGzYEHv27NF63R07dkAmk6F///4qr93Pzw+hoaHK13727FmkpqZi7Nixaqsp+vz7bd26FW5ubujWrZvKdVq2bAlnZ2fldX755RcUFRVh9OjRKufV993jvXv3wsbGBmPGjFE5PmHCBIiiiH379qkc79q1q/KdfgCIiIiAq6sr/vnnH72uBUBtNXDChAkAoPPrrsnRo0cxY8YM9O/fH507dzboudo4OzsDgMbfQZrY2Nigf//+2LhxIwD574mAgAA8//zzRrv+jBkz8OOPP6J58+bYv38/Pv30U7Rs2RItWrQoc+uZ4nvvf//7H2Qymc6xgwYNUvmd2LdvX9SuXVv57wZA5ecoPz8fd+/eRbt27SCKIs6ePQsAuHPnDo4ePYq3334bdevWVbmG4ntUFEVs374dUVFREEVR5Xu8R48eyMnJQUJCgs75ElVlDECIzCwvL09jYPDCCy+ga9eu6NatG4YMGYL4+Hi4uLgoq2gptG7dGjt27MCDBw9w5swZTJ48GQ8fPkTfvn2VZTYVWyv0vcmQSqXYtGkTOnXqhNTUVFy5cgVXrlxBZGQksrKyEB8fr/W5L7zwAjp16mRwLsjVq1d1biOrqA8++AANGjTASy+9hGeeeQZvv/223iU9U1JSAMjzdry9vVU+Dhw4gNu3b6uMr1Gjhlo+TVBQEMaPH4+vv/4aXl5e6NGjB1asWFFm/odCnTp14OTkpHKsQYMGAKBWtSsoKEjl82vXrgEAnn32WbXzNmzYUPm4JikpKRBFEaGhoWqvPTk5Wfnar169CgDl/jdMSUlBTk4OfHx81K6Tl5envI5irqGhoSrP9/b2hoeHR5nXuXbtGurUqaP2M6fYalf6a1H6hhIAPDw81PJStF1LIpGgfv36Ksf9/Pzg7u6u8+te2qVLl/DKK6+gcePG+Prrr1Ueu3//PjIzM5Uf+n5PAfLfP4Bhb068/vrrSEpKwrlz5/Djjz9i4MCB5X6TQNv1X3vtNRw7dgwPHjzAgQMH8Prrr+Ps2bOIiorCo0ePtJ5vwIABaN++PYYNGwZfX19l5TBNwUjp7yFBEFC/fn2Vn6fr169jyJAh8PT0hLOzM7y9vdGxY0cAUH6dFcGoru/9O3fuIDs7G6tXr1b7/h46dCgAqP0eIapOmANCZEY3b95ETk6O2g2KJs7OzoiMjMT//vc/5Ofnq92M2tnZoXXr1mjdujUaNGiAoUOHYuvWrZg2bRoaNmwIQN4zpFmzZmVe69ChQ8jIyMCmTZs0lr384Ycf0L17d63PnzZtGl588UV89dVXOnMLjEEQBLXkYQBqqzQ+Pj5ITEzE/v37sW/fPuzbtw9r167FoEGDsH79ep3XUNy8fP/998piACWVLAwAAPb29mrJwwCwaNEiDBkyBP/73/9w4MABjBkzBrGxsTh16pRawFIRJd+1rSiZTAZBELBv3z7Y2NioPa54B9sY1/Hx8dFa6ECRU2Fuml4zAI3fc9pUdAXvxo0b6N69O9zc3LB37161m/VXX30Vv/76q/LzwYMH692s88KFC7CxsVELWnWJjIxESEgIxo4di9TUVLz++ut6P1fT9QFo/R3o6uqKbt26oVu3brC1tcX69etx+vRpZRBQmqOjI44ePYrDhw9jz549iIuLw+bNm9G5c2ccOHBA67+nJlKpFN26dcP9+/fxySefoGHDhnByckJ6ejqGDBlS5gpLSYqxb775JgYPHqxxTEREhN7nI6pqGIAQmZEiEVff6jHFxcUA5O8alg5ASmrVqhUAKBuWvfTSS7CxscGGDRv0SkT/4Ycf4OPjo6xYVNKOHTvw008/YdWqVVpvdDt27IgXX3wR8+fPx2effVbm9QAgJCREeTNiCA8PD43bYTS9u2xnZ4eoqChERUVBJpPhgw8+wFdffYWpU6eifv36Wm8UFVtwfHx8tDZi01eTJk3QpEkT/Pe//8WJEyfQvn17rFq1CrNnz9b5vFu3bqkFnn///TcAqFX7Ki0wMBAAcPnyZbWtO5cvX1Y+rklISAhEUURQUJByxUXbOEB+Q6nra6Tra/zLL7+gffv2OgMoxVxTUlIQHBysPH7nzh29ViUCAwPxyy+/4OHDhyo38pcuXVI5vyG0vabAwEDIZDKkpKQoV1gAeTJydna2Xte6d+8eunfvjsLCQsTHx6N27dpqYxYtWqTy2uvUqaPXvK9fv45ff/0Vbdu2NWgFBJCvUMyePRuNGjXS600NbQz5HdiqVSusX7++zEaMEokEXbp0QZcuXbB48WLMnTsXn376KQ4fPqzyvalY2VQQRRFXrlxRBgLnz5/H33//jfXr12PQoEHKcaW3cSq+D3X9/vL29oaLiwukUmmFf4cQVUXcgkVkJocOHcKsWbMQFBSkLNOqy/3793HixAn4+fkpS1EePnxY4zuxij3Mii03AQEBGD58OA4cOKCxQ7pMJsOiRYtw8+ZN/Pvvv9ixYwdefvll9O3bV+1j1KhRePjwoUqOiSaKXJDVq1eX+doAICYmBufOndNYGUjXu80hISG4dOkS7ty5ozx27tw5tao39+7dU/lcIpEobzQUJVEVN/elG8r16NEDrq6umDt3Lh4/fqw2h5LX1iY3N1cZQCo0adIEEolEr5KsxcXF+Oqrr5SfFxUV4auvvoK3tzdatmyp87mtWrWCj48PVq1apXKtffv2ITk5Gb1799b63FdffRU2NjaYMWOG2r+DKIrKr2uLFi0QFBSEJUuWqH39Sj5P29e4f//+kEqlmDVrlsbXrhjftWtX2NraYtmyZSrnXbJkidbXUFKvXr0glUqxfPlyleOff/45BEHASy+9pNd5StL2mnr16qVxbormf7q+7oA856BXr15IT0/H3r171bYMKbRs2RJdu3ZVfoSFhZU55/v37+O1116DVCpVKxWrj2HDhmHatGlYtGiRwc9V+PHHH/H111+jbdu26NKlCwCgoKAAJ0+e1DhekZ+jaSuhgqJ6YEmKAKn0z9l3332nsi1127ZtyMjIUH4PKFZLSn6fiaKo1uTV29sbL7zwAr799ltcv35d5THFc21sbBATE4Pt27drDFT0+R1CVJVxBYTIBPbt24dLly6huLgYWVlZOHToEA4ePIjAwEDs2rVLYwfhbdu2wdnZGaIo4tatW/jmm2/w4MEDrFq1SvmO6+jRo1FQUIBXXnkFDRs2RFFREU6cOIHNmzejXr16yr3FgPxd0qtXr2LMmDHKAMPDwwPXr1/H1q1bcenSJQwcOBC7du3Cw4cPER0drfG1PPfcc/D29sYPP/yAAQMGaH3NHTt2RMeOHVW2hujy0UcfYdu2bejXrx/efvtttGzZEvfv38euXbuwatUqNG3aVOPz3n77bSxevBg9evTAO++8g9u3b2PVqlUIDw9XJt8DUHZf7ty5M5555hlcu3YNy5YtQ7NmzZTvTjdr1gw2NjaYP38+cnJyYG9vj86dO8PHxwcrV67EW2+9hRYtWmDgwIHw9vbG9evXsWfPHrRv317thra0Q4cOYdSoUejXrx8aNGiA4uJifP/998obk7LUqVMH8+fPR1paGho0aIDNmzcjMTERq1evLrP8qa2tLebPn4+hQ4eiY8eOeO2115RleOvVq4dx48ZpfW5ISAhmz56NyZMnIy0tDX369IGLiwtSU1Px008/4d1338XEiRMhkUiwcuVKREVFoVmzZhg6dChq166NS5cu4eLFi9i/fz8AKIOlMWPGoEePHrCxscHAgQPRsWNHvPfee4iNjUViYiK6d+8OW1tbpKSkYOvWrfjiiy/Qt29feHt7Y+LEiYiNjcXLL7+MXr164ezZs9i3b59epWmjoqLQqVMnfPrpp0hLS0PTpk1x4MAB/O9//8PYsWNVEs71pXhNn376KQYOHAhbW1tERUWhadOmGDx4MFavXo3s7Gx07NgRZ86cwfr169GnTx9lgQdt3njjDZw5cwZvv/02kpOTVRKwnZ2d0adPH73m9/fff2PDhg0QRRG5ubk4d+4ctm7diry8PCxevBg9e/Y0+DUHBgZi+vTpeo9X/D4rKipCeno69u/fj99++w1NmzZVKWdbUFCAdu3a4bnnnkPPnj0REBCA7Oxs7Ny5E8eOHUOfPn3QvHlzrdeZOXMmjh49it69eyMwMBC3b9/Gl19+iWeeeQYdOnRQGevp6YkOHTpg6NChyMrKwpIlS1C/fn1lSfSGDRsiJCQEEydORHp6OlxdXbF9+3aNK21Lly5Fhw4d0KJFC7z77rsICgpCWloa9uzZg8TERADAvHnzcPjwYURGRmL48OEICwvD/fv3kZCQgF9++UVj8ERUbZi36BZR1aYoS6n4sLOzE/38/MRu3bqJX3zxhUoJSAVNZXidnJzEtm3bilu2bFEZu2/fPvHtt98WGzZsKDo7O4t2dnZi/fr1xdGjR2vsGFxcXCx+/fXX4vPPPy+6ubmJtra2YmBgoDh06FBlid6oqCjRwcFBzM/P1/q6hgwZItra2irLSUJLqU9FuUvo2Qn93r174qhRo0R/f3/Rzs5OfOaZZ8TBgwcrr6OtE/qGDRvE4OBg0c7OTmzWrJm4f/9+tTK827ZtE7t37y76+PiIdnZ2Yt26dcX33ntPzMjIUDnXmjVrxODgYNHGxkatJO/hw4fFHj16iG5ubqKDg4MYEhIiDhkyRPzjjz+UYwYPHiw6OTmpvbZ//vlHfPvtt8WQkBDRwcFB9PT0FDt16iT+8ssvZX5dOnbsKIaHh4t//PGH2LZtW9HBwUEMDAwUly9frjJO8fXWVup38+bNYvPmzUV7e3vR09NTfOONN8SbN2+qjCldhldh+/btYocOHUQnJyfRyclJbNiwoThy5Ejx8uXLKuOOHz8uduvWTXRxcRGdnJzEiIgIlZK1xcXF4ujRo0Vvb29REAS1a61evVps2bKl6OjoKLq4uIhNmjQRP/74Y/HWrVvKMVKpVJwxY4ZYu3Zt0dHRUXzxxRfFCxcu6N0J/eHDh+K4cePEOnXqiLa2tmJoaKi4YMEClZKpoqj9+1rTdWbNmiX6+/uLEolEpSTv48ePxRkzZohBQUGira2tGBAQIE6ePFl89OhRmfMMDAzUWJIbgMr3ti4lnyORSER3d3exefPm4ocffihevHhRr3Mo5tK7d2+dY3SV4VV8ODg4iM8884z48ssvi99++63a1+Hx48fimjVrxD59+oiBgYGivb29WLNmTbF58+biggULxMLCQp1ziI+PF//zn/+IderUEe3s7MQ6deqIr732mvj3338rxyh+TjZu3ChOnjxZ9PHxER0dHcXevXurldFNSkoSu3btKjo7O4teXl7i8OHDlaWYS/8eunDhgvjKK6+I7u7uooODg/jss8+KU6dOVRmTlZUljhw5UgwICBBtbW1FPz8/sUuXLuLq1at1vi6iqk4QRQMy64iIyORefPFF3L17t1w5MoaaOnUqYmNj1baLEVUVR44cQadOnbB161b07dvX0tMhIjAHhIioWsvIyDBKl20iIiJ9MQeEiKga+ueff/DTTz9h69atePnlly09HSIiqka4AkJEVA0pumx37NhRWaWJiIjIHJgDQkREREREZsMVECIiIiIiMhsGIEREREREZDbVOgl9xYoVWLBgATIzM9G0aVMsW7YMbdq00Th2zZo1+O6775RlMVu2bIm5c+eqjBdFEdOmTcOaNWuQnZ2N9u3bY+XKlVq72ZYmk8lw69YtuLi4KBvPEREREZH1EEURDx8+RJ06dSCR8L38crFkExJL2rRpk2hnZyd+++234sWLF8Xhw4eL7u7uGpu5iaIovv766+KKFSvEs2fPisnJyeKQIUNENzc3laZe8+bNE93c3MSdO3eK586dE6Ojo8WgoCDx33//1WtON27c0NqEih/84Ac/+MEPfvCDH9bzcePGDaPck1ZH1TYJPTIyEq1bt8by5csByFcfAgICMHr0aEyaNKnM50ulUnh4eGD58uUYNGgQRFFEnTp1MGHCBEycOBEAkJOTA19fX6xbtw4DBw4s85w5OTlwd3fHjRs34OrqWrEXSERERERGl5ubi4CAAGRnZ8PNzc3S06mUquUWrKKiIvz555+YPHmy8phEIkHXrl1x8uRJvc5RUFCAx48fw9PTEwCQmpqKzMxMdO3aVTnGzc0NkZGROHnypF4BiGLblaurKwMQIiIiIivG7fLlVy0DkLt370IqlcLX11fluK+vLy5duqTXOT755BPUqVNHGXBkZmYqz1H6nIrHSissLERhYaHy89zcXL1fAxERERFRZcTMmXKYN28eNm3ahJ9++gkODg7lPk9sbCzc3NyUHwEBAUacJRERERGR9amWAYiXlxdsbGyQlZWlcjwrKwt+fn46n7tw4ULMmzcPBw4cQEREhPK44nmGnHPy5MnIyclRfty4caM8L4eIiIiIqNKolluw7Ozs0LJlS8THx6NPnz4A5Eno8fHxGDVqlNbn/d///R/mzJmD/fv3o1WrViqPBQUFwc/PD/Hx8WjWrBkA+Zaq06dPY8SIERrPZ29vD3t7e6O8JiIiIiofmUyGoqIiS0+DrIStrS1sbGwsPY0qrVoGIAAwfvx4DB48GK1atUKbNm2wZMkS5OfnY+jQoQCAQYMGwd/fH7GxsQCA+fPn47PPPsOPP/6IevXqKfM6nJ2d4ezsDEEQMHbsWMyePRuhoaEICgrC1KlTUadOHWWQQ0RERNalqKgIqampkMlklp4KWRF3d3f4+fkx0dxEqm0AMmDAANy5cwefffYZMjMz0axZM8TFxSmTyK9fv67SXGblypUoKipC3759Vc4zbdo0TJ8+HQDw8ccfIz8/H++++y6ys7PRoUMHxMXFVShPhIiIiExDFEVkZGTAxsYGAQEBbCpHEEURBQUFuH37NgCgdu3aFp5R1VRt+4BYo9zcXLi5uSEnJ4dleImIiEzs8ePHuHLlCurUqcN+DqTi3r17uH37Nho0aKC2HYv3axXHUJ+IiIiqJalUCkCeG0pUUs2aNQHIg1QyPgYgREREVK1xnz+Vxu8J02IAQkREREREZsMAhIiIiKgKEgQBO3futPQ0iNQwACEiIiKqZDIzMzF69GgEBwfD3t4eAQEBiIqKQnx8vEmud+TIEQiCgOzsbJOcHwDmzJmDdu3aoWbNmnB3dzfZdcjyqm0ZXiIiIiJjkMpEnEm9j9sPH8HHxQFtgjxhIzFdDkFaWhrat28Pd3d3LFiwAE2aNMHjx4+xf/9+jBw5EpcuXTLZtStKFEVIpVLUqKF+C1pUVIR+/fqhbdu2+OabbywwOzIXroCQSchkUty4+BeSf/sVNy7+BZlMaukpERERGV3chQx0mH8Ir605hQ83JeK1NafQYf4hxF3IMNk1P/jgAwiCgDNnziAmJgYNGjRAeHg4xo8fj1OnTml8jqYVjMTERAiCgLS0NADAtWvXEBUVBQ8PDzg5OSE8PBx79+5FWloaOnXqBADw8PCAIAgYMmQIAHkX+djYWAQFBcHR0RFNmzbFtm3b1K67b98+tGzZEvb29jh+/LjGOc6YMQPjxo1DkyZNKv5FIqvGFRAyupTTJ3Bo3Wrk3b+rPObs6YXOQ95FaGQ7C86MiIjIeOIuZGDEhgSUbqiWmfMIIzYkYOWbLdCzsXEb2d2/fx9xcXGYM2cOnJyc1B6vyNalkSNHoqioCEePHoWTkxOSkpLg7OyMgIAAbN++HTExMbh8+TJcXV3h6OgIAIiNjcWGDRuwatUqhIaG4ujRo3jzzTfh7e2Njh07Ks89adIkLFy4EMHBwfDw8Cj3HKlqYABCRpVy+gR2LZ6rdjzv/l3sWjwX0eOnMAghIqJKTyoTMePnJLXgAwBEAAKAGT8noVuYn1G3Y125cgWiKKJhw4ZGO6fC9evXERMTo1yBCA4OVj7m6ekJAPDx8VEGOYWFhZg7dy5++eUXtG3bVvmc48eP46uvvlIJQGbOnIlu3boZfc5UOTEAIaORyaQ4tG61zjGH169GSOtISCQ2OscRERFZszOp95GR80jr4yKAjJxHOJN6H21DahntuqKoKeQxjjFjxmDEiBE4cOAAunbtipiYGERERGgdf+XKFRQUFKgFFkVFRWjevLnKsVatWplkzlQ5MQeEjCY9+aLKtitNHt67i/Tki2aaERERkWncfqg9+CjPOH2FhoZCEASDE80lEvktX8kApnSX72HDhuGff/7BW2+9hfPnz6NVq1ZYtmyZ1nPm5eUBAPbs2YPExETlR1JSkkoeCACN28Wo+mIAQkaTl/3AqOOIiIislY+Lg1HH6cvT0xM9evTAihUrkJ+fr/a4tjK53t7eAICMjKfJ8YmJiWrjAgIC8P7772PHjh2YMGEC1qxZAwCws7MDAEilT4vKhIWFwd7eHtevX0f9+vVVPgICAsr7EqkaYABCRuPsrl9Smb7jiIiIrFWbIE/UdnOAtuwOAUBtN3lJXmNbsWIFpFIp2rRpg+3btyMlJQXJyclYunSpMhejNEVQMH36dKSkpGDPnj1YtGiRypixY8di//79SE1NRUJCAg4fPoxGjRoBAAIDAyEIAnbv3o07d+4gLy8PLi4umDhxIsaNG4f169fj6tWrSEhIwLJly7B+/XqDX9f169eRmJiI69evQyqVKldUFCstVHUwACGj8W8UDmdPL51jXGp5wb9RuJlmREREZBo2EgHTosIAQC0IUXw+LSrMJP1AgoODkZCQgE6dOmHChAlo3LgxunXrhvj4eKxcuVLjc2xtbbFx40ZcunQJERERmD9/PmbPnq0yRiqVYuTIkWjUqBF69uyJBg0a4MsvvwQA+Pv7Y8aMGZg0aRJ8fX0xatQoAMCsWbMwdepUxMbGKp+3Z88eBAUFGfy6PvvsMzRv3hzTpk1DXl4emjdvjubNm+OPP/4w+Fxk3QTRlNlMZJDc3Fy4ubkhJycHrq6ulp5OuWirgqXAKlhERGQtHj16hNTUVAQFBcHBoXxbpeIuZGDGz0kqCem13RwwLSrM6CV4yXx0fW9Uhfs1S2MVLDKq0Mh2iB4/Ra0PiEstL3QazD4gRERUtfRsXBvdwvzM2gmdqLJjAEJGFxrZDiGtI+VVsbIfwNndA/6Nwll6l4iIqiQbiWDUUrtEVR0DEDIJicQGAeHaa4cTERERUfXEJHQiIiIiIjIbBiBERERERGQ2DECIiIiIiMhsGIAQEREREZHZMAAhIiIiIiKzYQBCREREVAUJgoCdO3daehpEahiAEBEREVUymZmZGD16NIKDg2Fvb4+AgABERUUhPj7eJNc7cuQIBEFAdna2Sc6flpaGd955B0FBQXB0dERISAimTZuGoqIik1yPLIt9QIiIiIgqkbS0NLRv3x7u7u5YsGABmjRpgsePH2P//v0YOXIkLl26ZOkpaiWKIqRSKWrUUL0FvXTpEmQyGb766ivUr18fFy5cwPDhw5Gfn4+FCxdaaLZkKlwBISIiIqoImRRIPQac3yb/UyY16eU++OADCIKAM2fOICYmBg0aNEB4eDjGjx+PU6dOaXyOphWMxMRECIKAtLQ0AMC1a9cQFRUFDw8PODk5ITw8HHv37kVaWho6deoEAPDw8IAgCBgyZAgAQCaTITY2Vrly0bRpU2zbtk3tuvv27UPLli1hb2+P48ePq82vZ8+eWLt2Lbp3747g4GBER0dj4sSJ2LFjh3G+aGRVuAJCREREVF5Ju4C4T4DcW0+PudYBes4HwqKNfrn79+8jLi4Oc+bMgZOTk9rj7u7u5T73yJEjUVRUhKNHj8LJyQlJSUlwdnZGQEAAtm/fjpiYGFy+fBmurq5wdHQEAMTGxmLDhg1YtWoVQkNDcfToUbz55pvw9vZGx44dleeeNGkSFi5ciODgYHh4eOg1n5ycHHh6epb79ZD1YgBCREREVB5Ju4AtgwCIqsdzM+TH+39n9CDkypUrEEURDRs2NOp5AeD69euIiYlBkyZNAADBwcHKxxSBgI+PjzLIKSwsxNy5c/HLL7+gbdu2yuccP34cX331lUoAMnPmTHTr1k3vuVy5cgXLli3j9qsqigEIERERkaFkUvnKR+ngA3hyTADiJgENewMSG6NdVhQ1Xc84xowZgxEjRuDAgQPo2rUrYmJiEBERoXX8lStXUFBQoBZYFBUVoXnz5irHWrVqpfc80tPT0bNnT/Tr1w/Dhw837EVQpcAcECIiIiJDXTuhuu1KjQjkpsvHGVFoaCgEQTA40Vwikd/ylQxgHj9+rDJm2LBh+Oeff/DWW2/h/PnzaNWqFZYtW6b1nHl5eQCAPXv2IDExUfmRlJSkkgcCQON2MU1u3bqFTp06oV27dli9erVez6HKhwEIERERkaHysow7Tk+enp7o0aMHVqxYgfz8fLXHtZXJ9fb2BgBkZGQojyUmJqqNCwgIwPvvv48dO3ZgwoQJWLNmDQDAzs4OACCVPk2wDwsLg729Pa5fv4769eurfAQEBBj82tLT0/Hiiy+iZcuWWLt2rTJooqqH/7JEREREhnL2Ne44A6xYsQJSqRRt2rTB9u3bkZKSguTkZCxdulSZi1GaIiiYPn06UlJSsGfPHixatEhlzNixY7F//36kpqYiISEBhw8fRqNGjQAAgYGBEAQBu3fvxp07d5CXlwcXFxdMnDgR48aNw/r163H16lUkJCRg2bJlWL9+vUGvSRF81K1bFwsXLsSdO3eQmZmJzMzM8n2RyKoxB4SIiIjIUIHt5NWucjOgOQ9EkD8e2M7olw4ODkZCQgLmzJmDCRMmICMjA97e3mjZsiVWrlyp8Tm2trbYuHEjRowYgYiICLRu3RqzZ89Gv379lGOkUilGjhyJmzdvwtXVFT179sTnn38OAPD398eMGTMwadIkDB06FIMGDcK6deswa9YseHt7IzY2Fv/88w/c3d3RokULTJkyxaDXdPDgQVy5cgVXrlzBM888o/KYKfNeyDIEkf+qViM3Nxdubm7IycmBq6urpadDRERUpT169AipqakICgqCg4OD4SdQVsECVIMQQf6HCapgkXno+t7g/VrFcQsWERERUXmERcuDDNfaqsdd6zD4INKBW7CIiIiIyissWl5q99oJecK5s69825URS+8SVTUMQIiIiIgqQmIDBD1v6VkQVRrcgkVERERERGbDAISIiIiIiMyGAQgREREREZkNAxAiIiIiIjIbBiBERERERGQ2DECIiIiIiMhsGIAQERERVUGCIGDnzp2WngaRGgYgZBoyKZB6DDi/Tf6nTGrpGREREVUZmZmZGD16NIKDg2Fvb4+AgABERUUhPj7eJNc7cuQIBEFAdna2Sc4PANHR0ahbty4cHBxQu3ZtvPXWW7h165bJrkeWw0aEZHxJu4C4T4DcEr80XOsAPefLO8YSERFRuaWlpaF9+/Zwd3fHggUL0KRJEzx+/Bj79+/HyJEjcenSJUtPUStRFCGVSlGjhvotaKdOnTBlyhTUrl0b6enpmDhxIvr27YsTJ05YYKZkSlwBIeNK2gVsGaQafABAbob8eNIuy8yLiIjIRKQyKX7P/B17/9mL3zN/h9TEq/4ffPABBEHAmTNnEBMTgwYNGiA8PBzjx4/HqVOnND5H0wpGYmIiBEFAWloaAODatWuIioqCh4cHnJycEB4ejr179yItLQ2dOnUCAHh4eEAQBAwZMgQAIJPJEBsbi6CgIDg6OqJp06bYtm2b2nX37duHli1bwt7eHsePH9c4x3HjxuG5555DYGAg2rVrh0mTJuHUqVN4/Phxxb9oZFW4AkLGI5PKVz4ganhQBCAAcZOAhr0BiY2ZJ0dERGR8v1z7BfPOzENWQZbymG9NX0xqMwldA7sa/Xr3799HXFwc5syZAycnJ7XH3d3dy33ukSNHoqioCEePHoWTkxOSkpLg7OyMgIAAbN++HTExMbh8+TJcXV3h6OgIAIiNjcWGDRuwatUqhIaG4ujRo3jzzTfh7e2Njh07Ks89adIkLFy4EMHBwfDw8NDrdf7www9o164dbG1ty/2ayDoxACHjuXZCfeVDhQjkpsvHBT1vtmkRERGZwi/XfsH4I+Mhlnrj7XbBbYw/Mh6LX1xs9CDkypUrEEURDRs2NOp5AeD69euIiYlBkyZNAADBwcHKxzw9PQEAPj4+yiCnsLAQc+fOxS+//IK2bdsqn3P8+HF89dVXKgHIzJkz0a1btzLn8Mknn2D58uUoKCjAc889h927dxvr5ZEV4RYsMp68rLLHGDKOiIjISkllUsw7M08t+ACgPDb/zHyjb8cSRU27DIxjzJgxmD17Ntq3b49p06bhr7/+0jn+ypUrKCgoQLdu3eDs7Kz8+O6773D16lWVsa1atdJrDh999BHOnj2LAwcOwMbGBoMGDTLpaybL4AoIGY+zr3HHERERWamE2wkq265KEyEisyATCbcT0NqvtdGuGxoaCkEQDE40l0jk7zmXvJkvnVsxbNgw9OjRA3v27MGBAwcQGxuLRYsWYfTo0RrPmZeXBwDYs2cP/P39VR6zt7dX+VzTdjFNvLy84OXlhQYNGqBRo0YICAjAqVOnlCssVDVU2xWQFStWoF69enBwcEBkZCTOnDmjdezFixcRExODevXqQRAELFmyRG3M9OnTIQiCyocplketWmA7ebUrCFoGCICrv3wcERFRJXan4I5Rx+nL09MTPXr0wIoVK5Cfn6/2uLYyud7e3gCAjIwM5bHExES1cQEBAXj//fexY8cOTJgwAWvWrAEA2NnZAQCk0qcrOmFhYbC3t8f169dRv359lY+AgIDyvkQlmUwGQL7Vi6qWahmAbN68GePHj8e0adOQkJCApk2bokePHrh9+7bG8QUFBQgODsa8efPg5+en9bzh4eHIyMhQfmir8lBlSWzkpXYBqAchTz7vOY8J6EREVOl51/Q26jhDrFixAlKpFG3atMH27duRkpKC5ORkLF26VOtKgSIomD59OlJSUrBnzx4sWrRIZczYsWOxf/9+pKamIiEhAYcPH0ajRo0AAIGBgRAEAbt378adO3eQl5cHFxcXTJw4EePGjcP69etx9epVJCQkYNmyZVi/fr1Br+n06dNYvnw5EhMTce3aNRw6dAivvfYaQkJCuPpRBVXLAGTx4sUYPnw4hg4dirCwMKxatQo1a9bEt99+q3F869atsWDBAgwcOFBtSbGkGjVqwM/PT/nh5eVlqpdgvcKigf7fAa61VY+71pEfZx8QIiKqAlr4tIBvTV8IWlb9BQjwq+mHFj4tjH7t4OBgJCQkoFOnTpgwYQIaN26Mbt26IT4+HitXrtT4HFtbW2zcuBGXLl1CREQE5s+fj9mzZ6uMkUqlGDlyJBo1aoSePXuiQYMG+PLLLwEA/v7+mDFjBiZNmgRfX1+MGjUKADBr1ixMnToVsbGxyuft2bMHQUFBBr2mmjVrYseOHejSpQueffZZvPPOO4iIiMCvv/6q896LKidBrGaZPUVFRahZsya2bduGPn36KI8PHjwY2dnZ+N///qfz+fXq1cPYsWMxduxYlePTp0/HggUL4ObmBgcHB7Rt2xaxsbGoW7eu1nMVFhaqLCvm5uYiICAAOTk5cHV1LdfrsxoyqbzaVV6WPOcjsB1XPoiIyKo8evQIqampCAoKgoODg8HPV1TBAqCSjK4ISkxRBYvMQ9f3Rm5uLtzc3KrG/ZqFVLsVkLt370IqlcLXVzUR2tfXF5mZmeU+b2RkJNatW4e4uDisXLkSqampeP755/Hw4UOtz4mNjYWbm5vywxj7Ja2GxEZeardJX/mfDD6IiKiK6RrYFYtfXAyfmj4qx31r+jL4INKBVbCM5KWXXlL+PSIiApGRkQgMDMSWLVvwzjvvaHzO5MmTMX78eOXnihUQIiIiqhy6BnZFp4BOSLidgDsFd+Bd0xstfFrAhm+8EWlV7QIQLy8v2NjYICtLtXReVlaWzgRzQ7m7u6NBgwa4cuWK1jH29vbc10hERFTJ2UhsjFpql6iqq3ZbsOzs7NCyZUvEx8crj8lkMsTHxxu1ykJeXh6uXr2K2rVrlz2YiIiIiKiaqHYrIAAwfvx4DB48GK1atUKbNm2wZMkS5OfnY+jQoQCAQYMGwd/fH7GxsQDkietJSUnKv6enpyMxMRHOzs6oX78+AGDixImIiopCYGAgbt26hWnTpsHGxgavvfaaZV4kEREREZEVqpYByIABA3Dnzh189tlnyMzMRLNmzRAXF6dMTL9+/bqyYygA3Lp1C82bN1d+vnDhQixcuBAdO3bEkSNHAAA3b97Ea6+9hnv37sHb2xsdOnTAqVOnlI1/iIiIiIioGpbhtWYs60ZERGQ+FS3DS1UXy/CaVrXLASEiIiIiIsthAEJERERERGbDAISIiIioChIEATt37rT0NIjUMACh6ksmBVKPAee3yf+USS09IyIiIr1kZmZi9OjRCA4Ohr29PQICAhAVFaXSZsCYjhw5AkEQkJ2dbZLzl1RYWIhmzZpBEAQkJiaa/HpkftWyChYRknYBcZ8AubeeHnOtA/ScD4RFW25eREREZUhLS0P79u3h7u6OBQsWoEmTJnj8+DH279+PkSNH4tKlS5aeolaiKEIqlaJGDe23oB9//DHq1KmDc+fOmXFmZE5cAaHqJ2kXsGWQavABALkZ8uNJuywzLyIiqpREqRT5p88gZ/ce5J8+A1Fq2hX1Dz74AIIg4MyZM4iJiUGDBg0QHh6O8ePH49SpUxqfo2kFIzExEYIgIC0tDQBw7do1REVFwcPDA05OTggPD8fevXuRlpaGTp06AQA8PDwgCAKGDBkCQN7MOTY2FkFBQXB0dETTpk2xbds2tevu27cPLVu2hL29PY4fP671te3btw8HDhzAwoULK/ZFIqvGFRCqXmRS+coHNFWfFgEIQNwkoGFvQGJj5skREVFlk3vgALLmxqI4M1N5rIafH3ynTIZr9+5Gv979+/cRFxeHOXPmwMnJSe1xd3f3cp975MiRKCoqwtGjR+Hk5ISkpCQ4OzsjICAA27dvR0xMDC5fvgxXV1c4OjoCAGJjY7FhwwasWrUKoaGhOHr0KN588014e3ujY8eOynNPmjQJCxcuRHBwMDw8PDRePysrC8OHD8fOnTtRs2bNcr8Osn4MQKh6uXZCfeVDhQjkpsvHBT1vtmkREVHlk3vgANI/HAuUaqlWnJUlP/7FEqMHIVeuXIEoimjYsKFRzwvIGzHHxMSgSZMmAIDg4GDlY56engAAHx8fZZBTWFiIuXPn4pdffkHbtm2Vzzl+/Di++uorlQBk5syZ6Natm9Zri6KIIUOG4P3330erVq2UqzJUNTEAoeolL8u444iIqFoSpVJkzY1VCz7kD4qAICBrbixcunSBYGO8FXVT9o8eM2YMRowYgQMHDqBr166IiYlBRESE1vFXrlxBQUGBWmBRVFSE5s2bqxxr1aqVzmsvW7YMDx8+xOTJk8v/AqjSYA4IVS/OvsYdR0RE1VLBH3+qbLtSI4oozsxEwR9/GvW6oaGhEATB4ERziUTyZFpPA5jHjx+rjBk2bBj++ecfvPXWWzh//jxatWqFZcuWaT1nXl4eAGDPnj1ITExUfiQlJankgQDQuF2spEOHDuHkyZOwt7dHjRo1UL9+fQDywGXw4MH6v1CqFBiAkHFUlpK2ge3k1a4gaBkgAK7+8nFERERaFN+5Y9Rx+vL09ESPHj2wYsUK5Ofnqz2urUyut7c3ACAjI0N5TFOJ24CAALz//vvYsWMHJkyYgDVr1gAA7OzsAADSEgn2YWFhsLe3x/Xr11G/fn2Vj4CAAINe19KlS3Hu3DllELN3714AwObNmzFnzhyDzkXWj1uwqOIqU0lbiY18XlsGQR6ElFzKfhKU9JzHBHQiItKpxpMbemONM8SKFSvQvn17tGnTBjNnzkRERASKi4tx8OBBrFy5EsnJyWrPUQQF06dPx5w5c/D3339j0aJFKmPGjh2Ll156CQ0aNMCDBw9w+PBhNGrUCAAQGBgIQRCwe/du9OrVC46OjnBxccHEiRMxbtw4yGQydOjQATk5Ofjtt9/g6upq0MpF3bp1VT53dnYGAISEhOCZZ54x9EtEVo4rIFQxlbGkbVg00P87wLW26nHXOvLj1hY0ERGR1anZqiVq+PkBgpYVdUFADT8/1GzV0ujXDg4ORkJCAjp16oQJEyagcePG6NatG+Lj47Fy5UqNz7G1tcXGjRtx6dIlREREYP78+Zg9e7bKGKlUipEjR6JRo0bo2bMnGjRogC+//BIA4O/vjxkzZmDSpEnw9fXFqFGjAACzZs3C1KlTERsbq3zenj17EBQUZPTXTVWHIJoym4kMkpubCzc3N+Tk5MDV1dXS01Enk8qrQ+VlyXMkAiKBpU11VJUS5Df1Y89b54pC6dcT2M4650lERCbx6NEjpKamIigoCA4ODgY/X1kFC1BNRn8SlPiboAoWmYeu7w2rv1+rBLgFi/SjaZtVTS+g4K6OJ1l5SVuJjXXOi4iIKgXX7t2BL5ao9wHx9TVZHxCiqoABCJVNsc2qdPM+ncFHCSxpS0REVZRr9+5w6dJFXhXrzh3U8PZGzVYtjVp6l6iqYQBCuunsHK6nylLSlluyiIioHAQbGzhFtrH0NIgqDQYgpFuZncN1eZIDUhlK2lamSl5ERERElRirYJFu5d4+VYlK2lbGSl5ERERElRQDENJN3+1TNWupfm6BkrYymRQ3Lv6F5N9+xY2Lf0GmTzNEnVvMnhyLm2S9jRWJiIiIKhluwSLdFJ3DczOg+Sb9yTarMYnAjdMWy59IOX0Ch9atRt79p4nxzp5e6DzkXYRG6tgCVuYWMyuv5EVERERUyXAFhHRTdA4HoNxWpVRim1UNO/kNepO+8j/NHHzsWjxXJfgAgLz7d7Fr8VyknD6h/cn6bjFjJS8iIiIio2AAQmWz4s7hMpkUh9at1jnm8PrV2rdj6bvFrLJU8iIiIiKyctyCRfoJiwYa9ra6MrXpyRfVVj5Ke3jvLtKTLyIgPEL9QX23mFWGSl5EREQlCIKAn376CX369LH0VIhUcAWE9KfoHG6BbVba5GU/qNg4fbeYWcFrJSIiUsjMzMTo0aMRHBwMe3t7BAQEICoqCvHx8Sa53pEjRyAIArKzs01yfgCoV68eBEFQ+Zg3b57JrkeWwxUQqtSc3T0qPk6xxUxjH5B57ANCRERWJS0tDe3bt4e7uzsWLFiAJk2a4PHjx9i/fz9GjhyJS5cuWXqKWomiCKlUiho1NN+Czpw5E8OHD1d+7uLiYq6pkRlxBYQqNf9G4XD29NI5xqWWF/wbhes+UVg0MPYCMHg3EPON/M+x5xl8EBFRmWQyEemXH+Dv3zORfvkBZDJNW3qN54MPPoAgCDhz5gxiYmLQoEEDhIeHY/z48Th16pTG52hawUhMTIQgCEhLSwMAXLt2DVFRUfDw8ICTkxPCw8Oxd+9epKWloVOnTgAADw8PCIKAIUOGAABkMhliY2MRFBQER0dHNG3aFNu2bVO77r59+9CyZUvY29vj+PHjWl+bi4sL/Pz8lB9OTk4V+2KRVeIKCFVqEokNOg95F7sWz9U6ptPgdyHRZwuVYosZERGRnq6evY1jm1OQn12oPObkbo/nB4QipLmP0a93//59xMXFYc6cORpvzt3d3ct97pEjR6KoqAhHjx6Fk5MTkpKS4OzsjICAAGzfvh0xMTG4fPkyXF1d4ejoCACIjY3Fhg0bsGrVKoSGhuLo0aN488034e3tjY4dOyrPPWnSJCxcuBDBwcHw8NC+K2HevHmYNWsW6tati9dffx3jxo3TulpClRf/RanSC41sh+jxU9T6gLjU8kKnwWX0AaGnZFKrKzJARGTNrp69jbivLqgdz88uRNxXF9DzvcZGD0KuXLkCURTRsGFDo54XAK5fv46YmBg0adIEABAcHKx8zNPTEwDg4+OjDHIKCwsxd+5c/PLLL2jbtq3yOcePH8dXX32lEoDMnDkT3bp103n9MWPGoEWLFvD09MSJEycwefJkZGRkYPHixcZ8mWQFGIBQlRAa2Q4hrSPlVbGyH8DZ3QP+jcL1W/kgIGmXlhyY+dyGRkSkgUwm4tjmFJ1jjm9JQVBTb0gkpYuclJ8omm5715gxYzBixAgcOHAAXbt2RUxMDCIiNFSQfOLKlSsoKChQCyyKiorQvHlzlWOtWrUq8/rjx49X/j0iIgJ2dnZ47733EBsbC3t7ewNfDVkzBiBUZUgkNppL7VYWllqBSNoFbBkEtTLEuRny4xbu9UJEZI0yUrJVtl1pkvegEBkp2fB/Vr+CKfoIDQ2FIAgGJ5pLJPK035IBzOPHj1XGDBs2DD169MCePXtw4MABxMbGYtGiRRg9erTGc+bl5QEA9uzZA39/f5XHSgcM5cnliIyMRHFxMdLS0vDss88a/HyyXkxCJ7IGSbuAJY2B9S8D29+R/7mksfy4Kcmk8pUPjT1QnhyLmyQfR0RESvm5uoMPQ8fpy9PTEz169MCKFSuQn5+v9ri2Mrne3t4AgIyMDOWxxMREtXEBAQF4//33sWPHDkyYMAFr1qwBANjZ2QEApNKn/x+EhYXB3t4e169fR/369VU+AgICyvsSVeYnkUjg42P8XBqyLAYgRJamWIEouf0JeLoCYcog5NoJ9euqEIHcdPk4IiJScnLVb0uQvuMMsWLFCkilUrRp0wbbt29HSkoKkpOTsXTpUmUuRmmKoGD69OlISUnBnj17sGjRIpUxY8eOxf79+5GamoqEhAQcPnwYjRo1AgAEBgZCEATs3r0bd+7cQV5eHlxcXDBx4kSMGzcO69evx9WrV5GQkIBly5Zh/fr1Br2mkydPYsmSJTh37hz++ecf/PDDDxg3bhzefPNNnUnrVDkxACGyJEuvQORlGXccEVE1UTvUHU7uuoMLZw971A51N/q1g4ODkZCQgE6dOmHChAlo3LgxunXrhvj4eKxcuVLjc2xtbbFx40ZcunQJERERmD9/PmbPnq0yRiqVYuTIkWjUqBF69uyJBg0a4MsvvwQA+Pv7Y8aMGZg0aRJ8fX0xatQoAMCsWbMwdepUxMbGKp+3Z88eBAUFGfSa7O3tsWnTJnTs2BHh4eGYM2cOxo0bh9WrV5fjK0TWThBNmc1EBsnNzYWbmxtycnLg6upq6emQOaQek2+3Ksvg3aYpEWzp6xMRWdCjR4+QmpqKoKAgODg4GPx8bVWwFExRBYvMQ9f3Bu/XKo4rIESWZOkViMB28mpX0FahRQBc/eXjiIhIRUhzH/R8r7HaSoizhz2DDyIdWAWLyJKcfY07zlASG3mp3S2DIA9CSi6IPglKes5jPxAiIi1CmvsgqKm3vCpWbiGcXOXbroxZepeoquEKCJElWcMKRFi0vNSua23V4651WIKXiEgPEokA/2c90KC1H/yf9WDwQVQGroAQWZK1rECERQMNe7MTOhEREZkcAxAiS1OsQGjsRD7PfCsQEhsmmhMREZHJMQAhMhddnc65AkFERETVBAMQInNI2qVlhWP+0xUOrkAQERFRNcAkdCJTs2SncyIiIiIrwwCE6AmZTIobF/9C8m+/4sbFvyAzRvdxS3c6JyIiIrIy3IJFBCDl9AkcWrcaeffvKo85e3qh85B3ERpZgRK4106or3yoEIHcdPk4br8iIiIzq1evHsaOHYuxY8daeipaDRkyBNnZ2di5c6elp0JGwhUQqvZSTp/ArsVzVYIPAMi7fxe7Fs9FyukT5T+5qTqdy6RA6jHg/Db5n1xBISKqNoYMGQJBEDBv3jyV4zt37oQgGNaD5Pfff8e7775rzOkZ3RdffIF169YZ9BxBEBiwWDEGIFStyWRSHFq3WueYw+tXl387lik6nSftApY0Bta/DGx/R/7nksbMJSEiqkYcHBwwf/58PHjwoELn8fb2Rs2aNY00K9Nwc3ODu7u7padBRsQAhKq19OSLaisfpT28dxfpyRfLdwFjdzpnQrtRmSTvh4iqHUv8LunatSv8/PwQGxurc9z27dsRHh4Oe3t71KtXD4sWLVJ5vF69eliyZAkAQBRFTJ8+HXXr1oW9vT3q1KmDMWPGKMcWFhZi4sSJ8Pf3h5OTEyIjI3HkyBGd1xcEAStXrsRLL70ER0dHBAcHY9u2bSpjzp8/j86dO8PR0RG1atXCu+++i7y8POXjQ4YMQZ8+fZSfv/jiixgzZgw+/vhjeHp6ws/PD9OnT1d5TQDwyiuvQBAE5efnzp1Dp06d4OLiAldXV7Rs2RJ//PGHzvmTaTAHhKyaTCaVBwnZD+Ds7gH/RuGQGLE3Rl62fu8c6TtOjTE7nZeZ0C7IE9ob9mb/ED2YLO+HiKoVS/0usbGxwdy5c/H6669jzJgxeOaZZ9TG/Pnnn+jfvz+mT5+OAQMG4MSJE/jggw9Qq1YtDBkyRG389u3b8fnnn2PTpk0IDw9HZmYmzp07p3x81KhRSEpKwqZNm1CnTh389NNP6NmzJ86fP4/Q0FCtc506dSrmzZuHL774At9//z0GDhyI8+fPo1GjRsjPz0ePHj3Qtm1b/P7777h9+zaGDRuGUaNG6dx2tX79eowfPx6nT5/GyZMnMWTIELRv3x7dunXD77//Dh8fH6xduxY9e/aEjY38/8Q33ngDzZs3x8qVK2FjY4PExETY2trq/0Uno2EAQlbLHL/Und09jDpOI2N1OmdCu9Eo8n5KU+T9RI+fwiCEiMpk6d8lr7zyCpo1a4Zp06bhm2++UXt88eLF6NKlC6ZOnQoAaNCgAZKSkrBgwQKNAcj169fh5+eHrl27wtbWFnXr1kWbNm2Uj61duxbXr19HnTp1AAATJ05EXFwc1q5di7lz1b8OCv369cOwYcMAALNmzcLBgwexbNkyfPnll/jxxx/x6NEjfPfdd3BycgIALF++HFFRUZg/fz58fTVvUY6IiMC0adMAAKGhoVi+fDni4+PRrVs3eHt7AwDc3d3h5+en8vo++ugjNGzYUPk8sgxuwSKrZNLE8BL8G4XD2dNL5xiXWl7wbxResQuFRQNjLwCDdwMx38j/HHte/+ADMF1CezVj8rwfIqoWrOV3yfz587F+/XokJyerPZacnIz27durHGvfvj1SUlIglarPq1+/fvj3338RHByM4cOH46effkJxcTEA+TYpqVSKBg0awNnZWfnx66+/4urVqzrn2LZtW7XPFfNNTk5G06ZNlcGHYo4ymQyXL1/Wes6IiAiVz2vXro3bt2/rnMf48eMxbNgwdO3aFfPmzStz3mQ61TYAWbFiBerVqwcHBwdERkbizJkzWsdevHgRMTExqFevHgRBUO6VrMg5STtz/lKXSGzQeYju6h+dBr9rnG1fik7nTfrK/9R325Wi2pW+gYUhCe3VkMnzfoioWrCW3yUvvPACevTogcmTJ1f4XAEBAbh8+TK+/PJLODo64oMPPsALL7yAx48fIy8vDzY2Nvjzzz+RmJio/EhOTsYXX3xhhFdimNJbpwRBgEwm0/mc6dOn4+LFi+jduzcOHTqEsLAw/PTTT6acJmlRLQOQzZs3Y/z48Zg2bRoSEhLQtGlT9OjRQ2vkXFBQgODgYMybN09lKa8i57Q0a06+Nfcv9dDIdogeP0VtJcSllpdlt+KUrna1fwog6PqR1ZLQzpK9Kkye90NE1YI1/S6ZN28efv75Z5w8eVLleKNGjfDbb7+pHPvtt9/QoEEDZV5EaY6OjoiKisLSpUtx5MgRnDx5EufPn0fz5s0hlUpx+/Zt1K9fX+VD272RwqlTp9Q+b9SokXKO586dQ35+vsocJRIJnn32Wb2/BqXZ2tpqXOVp0KABxo0bhwMHDuDVV1/F2rVry30NKr9qmQOyePFiDB8+HEOHDgUArFq1Cnv27MG3336LSZMmqY1v3bo1WrduDQAaHy/POS3J2pNvLfFLPTSyHUJaR5o04d0gimpXpRPORW3v7mhJaE/apSX3ZL5h27+qELPk/RBRlWdNv0uaNGmCN954A0uXLlU5PmHCBLRu3RqzZs3CgAEDcPLkSSxfvhxffvmlxvOsW7cOUqkUkZGRqFmzJjZs2ABHR0cEBgaiVq1aeOONNzBo0CAsWrQIzZs3x507dxAfH4+IiAj07t1b6/y2bt2KVq1aoUOHDvjhhx9w5swZZc7KG2+8gWnTpmHw4MGYPn067ty5g9GjR+Ott97Smv+hj3r16iE+Ph7t27eHvb09HBwc8NFHH6Fv374ICgrCzZs38fvvvyMmJqbc16Dyq3YrIEVFRfjzzz/RtWtX5TGJRIKuXbuqvXNgyXOairlyKyrCUr/UJRIbBIRHoFH7jggIj7Bc8KGz2tUTpVdCXOvIE91LBhUs2auR2fJ+iKhKs7bfJTNnzlTbgtSiRQts2bIFmzZtQuPGjfHZZ59h5syZGhPQAXnS9po1a9C+fXtERETgl19+wc8//4xatWoBANauXYtBgwZhwoQJePbZZ9GnTx/8/vvvqFu3rs65zZgxA5s2bUJERAS+++47bNy4EWFhYQCAmjVrYv/+/bh//z5at26Nvn37okuXLli+fHmFvh6LFi3CwYMHERAQgObNm8PGxgb37t3DoEGD0KBBA/Tv3x8vvfQSZsyYUaHrUPlUuxWQu3fvQiqVqkXVvr6+uHTpklnPWVhYiMLCQuXnubm55bq+vvTNrQhpHWm5m288/aWuaxtWlb5BLLPaFeQrIT3myvM9nH3l265K/puxZK9WirwfTZVrFIyW90NEVZYlf5doKk9br149lXsKhZiYGJ3v8qelpSn/3qdPH5V+G6XZ2tpixowZBt+016lTBwcOHND6eJMmTXDo0CGtj5d+vZp6j5Tueh4VFYWoqCiVYxs3bixzrmQe1W4FxJrExsbCzc1N+REQEGDS61lLwlxZzJoYbo0MSTbXltBuSMneashq836IqFLh7xKi8ql2KyBeXl6wsbFBVpbqTV5WVlaZSVTGPufkyZMxfvx45ee5ubkmDUKsKWGuLIpf6qVzVVxqeaHTYOvIVdGlQg0U9a1ipWscS/aWyeryfoioUuLvEiLDVbsAxM7ODi1btkR8fLxymVEmkyE+Ph6jRo0y6znt7e1hb29frmuWhzUlzOmjsv5Sr3CSf2A7eU5HbgY0b6ES5I+XrnZVkjGCmGpAkfdDRFQR/F2inSjqyGekaqvaBSCAvBHN4MGD0apVK7Rp0wZLlixBfn6+soLVoEGD4O/vj9jYWADyJPOkpCTl39PT05GYmAhnZ2fUr19fr3Nag8qYW1HZfqkbpSuuxEZepWrLIMirW5X85a2l2lVpxghizKhCK0ZERERUqVTLAGTAgAG4c+cOPvvsM2RmZqJZs2aIi4tTJpFfv34dEsnT9Jhbt26hefPmys8XLlyIhQsXomPHjspEqLLOaQ2YfGtaRk3yD4uWV7XSWEJ3XtkldI0RxJiJtZeFJiIiIuMSRK6NWY3c3Fy4ubkhJycHrq6uJruOphu+ypJbYc1uXPwLW2ZOKXNc/8/m6r+qI5PKE8XzsjRXuyqLxj4g/voFMWagbcVIgUmcRGRKjx49QmpqKurVqwdHR0dLT4esyL///ou0tDQEBQXBwcFB5TFz3a9VZdVyBaS6q6y5FdbOJEn+Eht5lavyCouWl9qtSBBjIpWlLDQRVV2KbuBFRUUMQEhFQUEBAHnpYTI+BiDVVGXLragMrDbJv6JBjIkYUhaa36tEZAo1atRAzZo1cefOHdja2qpsv6bqSRRFFBQU4Pbt23B3d1cGqWRcDECIjEAmk0Imk8HB2RmP8vK0jrO2JH9LqkxloYmoahIEAbVr10ZqaiquXbtm6emQFXF3dy93ewYqGwMQogrSlFOjDZP8n7LaFSMiqlbs7OwQGhqKoqIiS0+FrIStrS1XPkyMAQhRBZSVRK3AJH91lbEsNBFVTRKJRC3RmDSTykScSb2P2w8fwcfFAW2CPGEjETgfMggDEKJy0ieJ2sHZBS+P+wQBYU248lEKy0ITEVUucRcyMOPnJGTkPFIeq+3mgGlRYejZuHa1nw/pj9lWROWkTxL1o7yHkAgS3kRrERrZDtHjp8DZ00vluEstL5bgJSKyInEXMjBiQ4LKzT4AZOY8wogNCYi7kFGt50OG4QoIlU9F+1NUAUyiNg6WhSYism5SmYgZPydBU+M4EfL2tjN+TkK3MD/l9idTbo0qz3zIujAAIcNpbG5XR9552wqa25kLk6iNh2WhiYis15nU+2orDSWJADJyHuFM6n20Dall8q1Rhs6HrA+3YJFhknYBWwapBh8AkJshP560yzLzsgBFErUuTKImIqLK7vZD7Tf7pceZY2uUIfMh68QAhPQnk8pXPrQuegKImyQfVw0okqh1YRI1ERFVdj4u+lUI83Ky17k1CpBvjZLKNI0w/nz0HUfmxwCE9HfthPrKhwoRyE2Xj6smmERNRERVXZsgT9R2c4C2bAoB8i1WEKD31ihzzKdNkGeFrkOmwxwQ0l9elt7jZDJp1U4qLpGEH+rji5Blq5F++VLVfb2GYpECIqIqw0YiYFpUGEZsSIAA1X0QiiBgWlQY7uYV6nW+im6N0nc+TEC3XgxASH/OvnoNS0nLxqEv31EpUevs6YXOQ6pIIz4NSfgS1zoI6DkfaF99kvC1YpECIqIqp2fj2lj5Zgu15HK/EsnlJ6/e0+tciq1RFamUpc98yHoJoihWbCMeGU1ubi7c3NyQk5MDV1dXS09HnUwKLGksTzjXuMNTQEpxfexK8dN6ikq/LUmRhK/2+p/8wuz/XfW+yebXh4ioStMVNEhlIjrMP4TMnEda7hLkAcLxTzrjYFKmUSplWaITutXfr1UCDECsSKX4hlbeYAKlFz1lIrDmVg/k5eZrfbpLLS8MW/5N5dyepAzAtOXBCPJ3+seeN+52o8qynclSXx8iIrIaiipYgOatUSvfbAEAGLEhQdtbVVj5ZgurXsGoFPdrVo5J6GSYsGj5u9iupX4xuNZBeuQ8ncEHADy8dxfpyRdNOEF1MpkUNy7+heTffsWNi39BVt4qXZZIwk/aJb+pX/8ysP0d+Z9LGltnuWMWKSAiqvYUW6P83FQrUPm5OWDlmy3QLczPLJWyyLoxB4QMFxYNNOyt9q583snjAHaX+XRzdgZPOX0Ch9atNk4+igFJ+EahbTuToueKtW1nMvfXh4iIrFLPxrXRLcxP49aok1fvlauJoCW2WpHpMACh8pHYAEHPqxyyts7gKadPYNfiuWrH8+7fxa7Fcw3PR9EzCV/vcbqU2XNFkPdcadjberYzmfPrQ0REVs1GImjsQm5oE0GpTMTyQylY+1sasv99rHzcmJ3Vyfy4BYuMxpo6g8tkUhxat1rnmMPrVxu2HSuwnTyHQVflcVd/+biKqozbmcz59SEiokrJkCaCcRcy0HL2QXz+S4pK8AEYt7M6mR8DEDIaa+oMnp58UWXblSYG56NIbOSlZAGo32Q/+bznPOOsSFTG7Uzm/PoQEVGFSGUiTl69h/8lpuPk1Xtmy7nQt4ngg/xCjNiQgOyCxxrHMV+kcmMAQkZlLZ3B9c0zMTgfRUcSvlFzMirrdiZzfX2IqFIxWjEQMoq4CxnoMP8QXltzCh9uSsRra06hw/xDRllNKCuwUTQRBLS+VYWpvcMwa0+yxk3IJRmrszqZH3NAyOhCI9shpHWkRTuhmzQfRUsSvq539g3uDK/YzqSj5wpc65S5nckiHenL8fUhoqrLqMVAqMIUZXJL/8+i2NJUkRK4cRcy9OrtUVYTQTdHO52J6qVVtLM6mR8DEDIJicQGAeERFru+Ih9F1zasCuWjaEjC16Zc//kqtjNtGQT5e0IaqqmXsZ3Jov/pG/D1IaKqy+jFQKhCpDJRZwlcAfItTd3C/FSaC+pTfcrQwEZXpaz/JaYb9Lr0zSsh68EtWFQlWUs+iuI/39KBkOI/35TTOpLIK7CdqULXJSIyApMUA6EKOZN6X+8SuID+W7XKCmwAzbkaikpZ/2nmj7YhtZSBjSEBRW03eeBClQsDEKqyLJ2PYpT/fMOigbEXgMG7gZhv5H+OPa8z+OB/+kRkDUxSDIQqxJASuIoVjdIBi6bqU4YGNmUpK1G9pGlRYewHUglxCxZVaZbMRzHkP1+d29UM3M5ktOsSEVWAyYqBULnpu7Lg5WSPidvO6b1Vy9DeHmVRJKqP2JCgtglZwb2mLea92oR9QCopBiBU5VkqH8VS//nyP30isgbW1pyWnq4sZOY80lbeBH5uDoAAvVY01v2WCi8Xe9x9WKjX9Q3ZWqUtUd29pi2GtgvCqM71ufJRiTEAITIRg//zlUmNUjmK/+kTkTUweTEQMpiulQXFrfy0qDDczdMvoJi1J1n5d4kAaGvHoQhsDM3V0JWoTpUbAxAiEzHoP9+kXUDcJ6rdz13ryCthGdg7g//pE5E1UBQD0VQFS8FczWnpqbJK4PZsXBsnr94z+Ly6gg/AsFwNfStvUeUliKLI9pFWIjc3F25ubsjJyYGrq6ulp0NGoK0EpUL0+CkIdbn7pNxu6R/FJ79sy9HAT6/rsvQlEZmBppLgLrW80Gkw+4BYkq6bfKlMRIf5h7Ru1dKl9EqIpj4guujbS8SSeL9WcQxArAi/oasmnf/5to4EljRWXflQ8aTh4NjzBm/H4n/6RGQtLNIUlSpEUQUL0JwErsvU3o3g5WJv8OqFtl4iimdXpEmiMfF+reIYgFgRfkNXXVr/8009Bqx/uewTDN5drsZ+/E+fiIjKS9NqhD6+GNgM/2nmb9BzFKsu2q6lyCM5/klni2/H4v1axTEHhMgMtFbiysvS7wT6jtP3uhowWCGiqo6/5wxTOgn87sNClcRzbcrTmdyQXiJtQ2oZfH6yLhYLQGQyGSQS9T6IMpkMN2/eRN26dS0wK7JKRqoOZZXuXdVvnLOvSaehabuWs6cXOg/hdi0iqhr4e658FN3KAfkqxdfHU8ss41uezuTG7iVC1s3sndBzc3PRv39/ODk5wdfXF5999hmk0qcdme/cuYOgoCBzT4usVdIueY7E+peB7e/I/1zSWH68skvaBRyJLWOQALj6y4MuE1EkrJeumpV3/y52LZ6LlNMnTHZtIiJz4O8541CU8QWg1qW8PNWuStJ31aQ8qytkfcwegEydOhXnzp3D999/jzlz5uC7777Df/7zHxQVFSnHMC2FAMhv0LcMUk/Qzs2QH6+kQYhMJsWNC4lI3jALN/JdtZYulBOBnvNMtuIjk0lxaN1qnWMOr18NmUyqcwwRkbXi7znjUpTx9XNTDQT83BwqlCSuaJKoLXQRIK+GVZ7VFbI+Zt+CtXPnTqxfvx4vvvgiAKBPnz7o3bs3oqKisGuX/IZSEFjrudqTSeV9MTQu8ooABCBuEtCwd6XajqW6BcAXgC+caxSis+9VhLpqqLv+4hSDS/AaIj35os5+IQDw8N5dpCdftEg3eSKiiuLvOeMzRYNAfZskWjoBnYzD7Csgd+7cQWBgoPJzLy8v/PLLL3j48CF69eqFgoICc0+JrNG1EzpK0wKACOSmy8dVElq3ABTbYVd6I6TkakiqqxVi0jnlZT8w6jgiImvD33OmocgN+U8zf7QNqWWUwMBUqytkfcy+AlK3bl0kJyer5Hm4uLjgwIED6N69O1555RVzT4mskYmrQ5mb7i0A8vd6DmcFI8TlHlR+h5s4+dzZ3UOvcQXZD5D826+sGkNElY6+v+f0HUemZYrVFbI+Zg9AunfvjrVr16JXr14qx52dnbF//35069bN3FMia6TvjbeJb9DVGFqR68n49AuJZWwBEPCw2AHpBW4IcMqBsgGhCZPPAcC/UTicPb10zk0QJDjy3dfKz1k1hogqE31+z7nU8oJ/o3Azzop0KVl5i6oms2/BmjFjBqZPn67xMRcXFxw8eBCHDh0y76TI+gS2k9+A60pHM3F1KDWGVuQqMT7v0Bd6XSKv2A7K12zC5HMFicQGLw4epnOMKMpUPmfVGCKqTCQSG3Qe8q7OMZ0Gv8uVXSIzMnsA4uHhgfBw7e8yuLi4oGPHjmacEVkliQ3Qc/6TT7QU+zPDDbqSoRW5So13rlEEfTjXKJIHXv2/M2nyuULK6RM4sv5rjY8Jgu5fD6waQ0SVRWhkO0SPnwJnTy+V4y61vBA9fgpXdInMjJ3QyXqFRctvxOM+Ub3xd60jDz7McIMOQI+KXAB2jwMa9ARq2Gkc718zB841ClVXOEpxca0J//e/B4I6mCWwUiTFa1N65aM0Vo0hosokNLIdQlpHshM6kRVgAELWLSxaXmrXkp3Qy6zIBaDgLrC4IfDyEsDRQ228RAA6+17FrvRGUJYRLqXTsLGQhJjnXTh96uLrg1VjiKgykUhs+KaJEUllIpPFqVwYgJD1k9gAQc/L/25oErgx6Ftpq+CefNvVcyM0Phzqeg/RSMahrBDkFdsrj7vU8kKnweZN6tanLr4+WDWGiKh6iruQgRk/JyEj55HyWG03B0yLCmO5XCoTAxCqPJJ2admONd+027EMrbT11xatD4W63kOIyz2kF7ghr92ncG7Q1iJbAIyxcsGqMURE1VPchQyM2JCgtjE5I+cR3t+QgC9fb4FeEQxCSDuzJ6Er2NjY4Pbt22rH7927Bxsb7sekUgxNAjemMitylSTKt2PV9NI6XiIICKjtjEb/GYaA8AiL7D82xsoFq8YQEVU/UpmIGT8nacyKVBi1MQF7/ypj6zJVaxYLQERR87duYWEh7OzszDwbsmr6JIHHTZKPMwWVilx6iuj/5C9WUMFLA0VdfF1cannh5XGTWDWGiIiUzqTeV9l2pYlMBD748SziLmSYaVZU2Zh9C9bSpUsBAIIg4Ouvv4azs7PyMalUiqNHj6Jhw4bmnhZZszKTwEUgN10+TpErYmyKily7x8lXOMrybC+gblvI9n2C9Mx85BXbwblGEfz9nCF5qVQFr7LyWkyQ96Koi6+rCpYiLyW0TdtKWzVGJpNW2rkTEVmj2w91Bx8lzfg5Cd3C/JiYTmrMHoB8/vnnAOQrIKtWrVLZbmVnZ4d69eph1apV5p4WWTN9k8D1HVdeYdHyUruLG8oTzjV62sE85ffTOHSlDfLuPx3rnFcLnR96IVRxoKy8FlPkvTwJaEJrZiH6zT44tPeYyhxLJ8VX1qoxKadP4NC61SrJ9uziTkRUMT4uDnqPzch5hDOp99nVnNQIora9UCbWqVMn7NixAx4erKKjkJubCzc3N+Tk5MDV1dXS07EeqcfkXcfLMni36VZASlLkowBQ3Rb25B2e/t8h5aGXztWF6PFTEOpy98l5Sv8IPjlPu9HAiWXaHy9Ps0INAY3MpQ7SG32IPLdGVWaVoKweJ9xCRkRUPlKZiA7zD5W5DUvhi4HN8J9m/iaelXnxfq3iLJYDcvjwYYsHHytWrEC9evXg4OCAyMhInDlzRuf4rVu3omHDhnBwcECTJk2wd+9elceHDBkCQRBUPnr27GnKl1A9lJkELgCu/vJx5qDYjuVaqsLHkw7msoa9y+yxcXj9asj26cprEYGTy3U8DsPzXrQk8kseZiDgzCQ08sixWFK8MenT44Rd3ImIysdGImBaVJje4w1ZMaHqw2JleKVSKdatW4f4+Hjcvn0bMplq1+VDhw6Z9PqbN2/G+PHjsWrVKkRGRmLJkiXo0aMHLl++DB8fH7XxJ06cwGuvvYbY2Fi8/PLL+PHHH9GnTx8kJCSgcePGynE9e/bE2rVrlZ/b29urnYsMpEgC3zII8iBEw6qDuZO6dTRITL/4V5k9Nh7eu4t0p3wEOOkYpLMTuYF5L4Z2czcxmUxERko28nML4eRqj9qh7pAYaY+wPj1O2MWd6CnmSpGhejaujS9fb4FRGxMg07KPRgDg5yZvTkhUmsUCkA8//BDr1q1D79690bhxYwiCeROUFi9ejOHDh2Po0KEAgFWrVmHPnj349ttvMWnSJLXxX3zxBXr27ImPPvoIADBr1iwcPHgQy5cvV8lZsbe3h5+fn3leRHWiWHXQmA8xz7R9QLQp2SCxBH17bOQVG+FGX9+8F727uTcCXv7cpF/Pq2dv49jmFORnFyqPObnb4/kBoQhprh78G0rvrz+7uBMxV4rKrVdEbSxHc3zw41m1xxR3dNOiwpiAThpZLADZtGkTtmzZgl69epn92kVFRfjzzz8xefJk5TGJRIKuXbvi5MmTGp9z8uRJjB8/XuVYjx49sHPnTpVjR44cgY+PDzw8PNC5c2fMnj0btWppTr4qLCxEYeHTm7Dc3NxyvqJqQseqgzXRt8eGc40iI1xMzyaJendzf5KXUp78Ej1cPXsbcV9dUDuen12IuK8uoOd7jSschOj99WcXd6rmtOVK5d2/i12L5zJXisrUK6IOVkkEtY7ofuyITmWwWABiZ2eH+vXrW+Tad+/ehVQqha+v6s2br68vLl26pPE5mZmZGsdnZmYqP+/ZsydeffVVBAUF4erVq5gyZQpeeuklnDx5UmNzxdjYWMyYMcMIr6ga0bLqAFjPNgJFjw1d24BcannB388JeJgLzduiyvK02pZeDO3mHjdJHuxp+/qVozSwTCbi2OYUnWOOb0lBUFPvCm3H0vvrzy7uVI3pmysV0jqS27FIp56Na6NbmB/OpN7H7YeP4OMi33bFlQ/SxWIByIQJE/DFF19g+fLlZt9+ZSoDBw5U/r1JkyaIiIhASEgIjhw5gi5duqiNnzx5ssqqSm5uLgICAswy16rGmrYR6NtjQ+Lyqpa8lrKUI+9Fkcifm6HHtcrILylnaeCMlGyVbVea5D0oREZKNvyfLf/qhN5ff95UUTXGXCkyJhuJwFK7ZBCLVcE6fvw4fvjhB4SEhCAqKgqvvvqqyocpeXl5wcbGBllZqttSsrKytOZv+Pn5GTQeAIKDg+Hl5YUrV65ofNze3h6urq4qH2Q4xTaC0v+ZKrYRpJw+YfY5hUa2Q/T4Kbq7iGurplWWmrUM3yJVnm7umrZtaamkhdwM+fGkXVpPl5+rO/gwdJwuen39iaox5koRkSVZbAXE3d0dr7zyikWubWdnh5YtWyI+Ph59+vQBAMhkMsTHx2PUqFEan9O2bVvEx8dj7NixymMHDx5E27ZttV7n5s2buHfvHmrX5h5IU7HmbQShke0Q0jpS97awknktybsgO/01MooaIV/mASfJA9S2S4ZEKFUNq2ds+fIzlN3cx+popFhC6W1bZVbSEnRu3XJy1a8inL7jyqLX15+ommKuFFWUVCZy2xWVm8UCkJKlai1h/PjxGDx4MFq1aoU2bdpgyZIlyM/PV1bFGjRoEPz9/REbGwtAXrWrY8eOWLRoEXr37o1Nmzbhjz/+wOrV8pvfvLw8zJgxAzExMfDz88PVq1fx8ccfo379+ujRo4fFXmdVZ8g2Av9G4VpvRk2VP6JXF/EneS1XL8tw7E5r5MuevmvvJLmL512/QYjDqafjXSoQ0Cq7uTeSJ5xrpCW/pMxKWrq3btUOdYeTu73ObVjOHvKSvMZSWbu4E5kac6WoIuIuZKglntdm4jkZwGIBCAAUFxfjyJEjuHr1Kl5//XW4uLjg1q1bcHV1hbOzs0mvPWDAANy5cwefffYZMjMz0axZM8TFxSkTza9fvw6J5OkOtXbt2uHHH3/Ef//7X0yZMgWhoaHYuXOnsgeIjY0N/vrrL6xfvx7Z2dmoU6cOunfvjlmzZrEXiAnpuz3gyh+nsXf5Yo05IgAsnj9y9extxO2UAlDdQ5sv80Rc9sfo6f5/CHE4bVjiuTY17OSldnV1c9eUX6JvJa28LI1J6hKJDZ4fEKqxCpZCh/6hRusHQkTaMVeKyivuQgZGbEhQWwvPzHmEERsSsPLNFgxCqEyCKIrlKcFTYdeuXUPPnj1x/fp1FBYW4u+//0ZwcDA+/PBDFBYWqvTWqC5yc3Ph5uaGnJwc5oPo6cbFv7Bl5hSTnd8c+QIymYjvppzQsTIgg7PkHt7yHgHJgHXGK4+rMZncX3tfldRjwPqXyz7vi1OAhHVak9Q19QFx9rBHh/7G6QNCRPrTVMDDpZYXOg1mHxBSJ5WJ6DD/kMrKR0mK5oPHP+lcpbdj8X6t4izaiLBVq1Y4d+6cSp+MV155BcOHD7fUtKiS0WcbgSBIIOrsKq6dOfJHyq4OJUGezBsZ7b+Hf1hv413Y0L4qZVbSEgBHD+CIhndUFUnq/b9DSPNoBDX1NlkndCLSH3OlyBBnUu9rDT4A+f8MGTmPcCb1PqtikU4WC0COHTuGEydOwM5OtRt0vXr1kJ6ebqFZUWWjzzaC8gYfgHnKUOpdHcqjZdmDSm19kgVEIv3yJe03Fjr6qqhRVNLSWDpYETxoW1BVTVKXSGwqVGqXiIyHuVKkr9sPtQcf5RlH1ZfFAhCZTAapVKp2/ObNm3BxcbHAjKiyUpRc1bSNIDSyPRL2/q9C5zd1GUqjVYcqtaUqJbcWDt1pgLyipz/mGnNbDGkqqKikpakPSIvBmlc/lMroL0JERFbNx8XBqOOo+rJYANK9e3csWbJEWUVKEATk5eVh2rRp6NWrl6WmRZWUtm0E6ckXKxyAmLoMpVGqQyn6czxZgUjJrYVd6Y3Uhil6oyhzW8rTVFDb1q2LP+nxaqF/MjsREVmVNkGeqO3mgMycR9o24sLPTV6SV4HlekkTiwUgixYtQo8ePRAWFoZHjx7h9ddfR0pKCry8vLBx40ZLTYsqMU3bCPTJEdHFHGUoJRKhYtWhSvXnkInAoayQJw9qfs7hr5cgJP8oJEdj1R8ska+hNQjRtHWrdN8QbfQdR0REVsVGImBaVBhGbEjQuhF3WlSYMsBguV7SxmKd0J955hmcO3cOU6ZMwbhx49C8eXPMmzcPZ8+ehY8PK+GQcShyRMrLXGUoQ5r7oOd7jeHkrrrNytnDHj3fa6y7OlSp/hzpBW7IK7aHtuADAB7mFiB935daHn3yX0rcJHlwoy9FkrrW6wryKlsVLSNMREQW07Nxbax8swX83FS3Wfm5OaiU4FWU6y2dtK4o1xt3IcNscybrY7EyvKSOZd1MR1epSUC9D4ilylDKZKLh1aHObwO2v6P8NDnHG3tvNSzzWr3qXEIjtzu6Bw3ebVi+hnIrGKDxvTFdqyqVhKmaVhIRVSa6tlZV9XK9vF+rOIs2IkxJScHhw4dx+/ZtyGSqlYo+++wzC82KqqKySk1aSxlKiUQwvDpUqS1NzjWK9HuaPuNK5mvok6yuK0ldW3+RSkRTIGvuppVERNbARiJoLbXLcr1UFosFIGvWrMGIESPg5eUFPz8/CMLTCFgQBAYgZHS6Sk1W6jKUpfpz+NfMgXONQuQV20HzdigRLjUK4V8zp+xzK4IbQ5LVDe0vUkmknD6hsdyzWmI/EVE1x3K9VBaLBSCzZ8/GnDlz8Mknn1hqCkRVQ6n+HBJBRGffq0+qYD3pv6Ek3xbVyfcflLnqrcjXKFVhS0lXsroh/UUqAZlMikPrVuscY46mlURElQHL9VJZLJaE/uDBA/Tr189SlycyLZkUSD0mz89IPWZYMnd5KLY+ucqT/0Jd7yHaPxnOdqrXdalRiGj/ZIS63iv7nD3nyf8sUWFLVTmT1Suh9OSLZVZSUzStJCKq7hTlenWUJEHtUuV6qXqx2ApIv379cODAAbz//vuWmgKRaZSnt4YxlNr6FOrsi5CASKRfSkLej8Ph/Pg2/Gtml73yAQAvTpGfL/WY6utQUz2aC+rbjNLUTSuJiCoDQ8v1UvVjsQCkfv36mDp1Kk6dOoUmTZrA1tZW5fExY8ZYaGZEFVCe7UrGVGrrkwRAQONmwJtTlVu0NK9mlOBSB3hhovzv+jYNrOLNBfVtRmnqppVERJWFolxv6T4gfuwDQrBgGd6goCCtjwmCgH/++ceMs7EOLOtWycmkwJLGOlYMBPlKyNjzlknI1rQyo0JDqdzUY8D6l8s+t6HleisZmUyKNSPf0bkNy6WWF4Yt/4Y5INUQSzMTaVcVO6Hzfq3iLLYCkpqaaqlLE5lGqYaA6iy8XankFq3Le4G/NgMFJXJBNJXKLVVhS92ToKqKNxdUNLTUVAVLwVxNK8m6sDQzkW66yvVS9WUVjQgVUyhZirc6YkRdyZVqCKhVzDdAk76mn09ZSvb1cPIGRBEouKteNrcaNBfUl66GlrzZrH60lWZWYGlmoqqJ92sVZ9FGhN999x0WLFiAlJQUAECDBg3w0Ucf4a233rLktIjKp1RDwAqPMzVFvkjSLmDn+9qT5qt4c0FDlNXQkqoPlmYmIio/iwUgixcvxtSpUzFq1Ci0b98eAHD8+HG8//77uHv3LsaNG2epqRGVT2XcrqRv0nwVbS5YHpW6aSUZjSGlmfn9QkSkymIByLJly7By5UoMGjRIeSw6Ohrh4eGYPn06AxCqfEo1BNS4XannPMvftCu2Xj3MkPfw0NrjQ5A/3rC3fM5VrLmg0ZXc0laNA7TqgqWZiYjKz2IBSEZGBtq1U38nuF27dsjIyLDAjIiMwNq3K5VZCauk6tHjwygs1fuFLIalmYmIys+ifUC2bNmCKVOmqBzfvHkzQkNDLTQrIiOw1u1K2rZblaWK9/ioMEv3fiGL8G8UDmdPrzJLM/s3CjfjrIiIKgeLBSAzZszAgAEDcPToUWUOyG+//Yb4+Hhs2bLFUtMiMg5r264kk8rfoTc0+AAMTpqvVj0RdH5dNWxjoyqDpZmJiMrPYgFITEwMTp8+jc8//xw7d+4EADRq1AhnzpxB8+bNLTUtoqqpzB4lmhieNF/teiJYe+8XMqnQyHaIHj+FpZmJiAxk0TK8LVu2xIYNGyw5BaLqweBtVIYnzWvriZB3/y52LZ5b8Z4I1pjkre/XldvYqiyWZiYiMpxFAxCpVIqffvoJycnJAICwsDD85z//QY0aFp0WUdWjYRuVTATSC9yQV2wH5xpF8K+ZA4miF6iBSfMm74lgrUnela33C5kESzMTERnGYnf6Fy9eRHR0NDIzM/Hss88CAObPnw9vb2/8/PPPaNy4saWmRlT1lOpRkpJbC4eyQpBXbK8c4mz7GJ2juyK09XMGry6YtCeCNSd5V8beL0RERBYmsdSFhw0bhvDwcNy8eRMJCQlISEjAjRs3EBERgXfffddS0yKqmhQ9SgCk5HphV3oj5BXbqQzJe2yLXdt/RcptG4O3NpmsJ0KZSd6QJ3nLpIadtyJkUiD1GHB+m3xLWPfYJw8IpQZaUe8XIiIiK2KxFZDExET88ccf8PB4WiPdw8MDc+bMQevWrS01LaKqKywasr7rcGj+qicHSt8wy5Vnq5TJeiJYW5K3tq1g7UYDF7ZZZ+8XIiIiK2OxAKRBgwbIyspCeLhqjfTbt2+jfv36FpoVUdWWLgQjr0j3j31ZW6U0ldk1WU8Ea0ry1rUV7MQyoN86oGYt60qSJyIiskIWC0BiY2MxZswYTJ8+Hc899xwA4NSpU5g5cybmz5+P3Nxc5VhXV1dLTZOoUisdLDy8f0+v52nbKqWrzK5JeiJYS5K3Pv0+9k8Bxp5n0EFERFQGQRTFcnQmqziJ5Gn6iSDIt4IoplLyc0EQIJWacX+3BeXm5sLNzQ05OTkMuqjCNAULjq6u+LdEcK9N/8/mqq2AaCuzqxA9fgoAGLcngkwKLGmsI8kbgKMn8NEV0974px4D1r9c9rjBu9nvg4ioiuP9WsVZbAXk8OHDlro0UZWnLVjQJ/jQtFVK3zK7w5Z/Y3BPBJlMREZKNvJzC+Hkao/aoe6QKOoBK5Lnt7yl/cL/3gcu7TFtroU1bQUjIiKq5CwWgHTs2NFSlyaq0vQJFnTRtFXK0DK7+pbavXr2No5tTkF+dqHymJO7PZ4fEIqQ5j7yAw17y1c5/r2v5SyCvBJWw96mWwWxlq1gREREVYBFO/49evQIf/31F27fvg2ZTKbyWHQ0K8cQlYc+wQIA2DrWxON/C5Sf69oqZYoyu1fP3kbcVxfUjudnFyLuqwvo+V5jeRBy7YSO4AMwSyUs9vsgIiIyGosFIHFxcRg0aBDu3lW/UapOeR9ExqZvEFAy+HB0dUXHQcO05mkYu8yuTCbi2OYUnWOOb0lBUFNvSKxh+5NyK9ggyMsXlwxC2O+DiIjIEBZrRDh69Gj069cPGRkZkMlkKh8MPogMI5NJcePiX0j+7VcUGNrsD/LckN2fz0PK6RMaH1eU2dXFkDK7GSnZKtuuNMl7UIiMlGzAyVuvc5p8+1NYtLzrumtt1eOudSzbjZ2IiKiSsdgKSFZWFsaPHw9fX+6ZJqoITdWuBEECUZTpeJZm2poQSiQ2Ri2zm5+rO/hQjks6CfwzvoxRZtz+FBYtzzW5doL9PoiIiMrJYisgffv2xZEjRyx1eSLzkknlpVzPb5P/KTPOKp+i2lXpnI/yBB/A00RyTUIj2yF6/BS1lRCXWl6IHj/FoDK7Tq72+o07Mwd4mKFjhHm3P8lkUtxIvojkWzLckDRAcUCk/PPffsWNi39BZqR/VyIioqrMYisgy5cvR79+/XDs2DE0adIEtra2Ko+PGTPGQjMjMrKkXfImdrm3nh5zrSPPKajAth19ql2VZyVEVw5JaGQ7g8vsalI71B1O7vY6t2E517iP2nZJuk/kWkcefJhh+5M+K02Kpozl6nlCRERUTVgsANm4cSMOHDgABwcHHDlyRNl8EJAnoTMAoSohaZfmHha5t+TH+39f7ptnfapdiaIM4R274Oqfp/EoL0+v85aVSC6R2OhdZlf7OQQ8PyBUYxUshQ7OayARygie/vMlEPJiheaiD219VUoHd3n372LX4rkGrwgRERFVJxbbgvXpp59ixowZyMnJQVpaGlJTU5Uf//zzj6WmRWQ8Minw84e6x/z8Ybm3Y+lb7erir/F6Bx+GJJJXVEhzH/R8rzGc3FW3Yzl72KNnz4cIcThV9kkKyi43XFHl6atyeP1qbsciMqOShTi4HZLI+llsBaSoqAgDBgyARGKxGIjItNKOl9G/AvLH044DwYY35tS35K0hDEkkN4aQ5j4Iauqt3gn92nEgUY8TmKHxn759VUoq2ZSRKjeZTFrhLYdkWpq2R3I7JJF1s1gAMnjwYGzevBlTpkyx1BSITCv1mP7jyhGA+Iv/wLlGIfKK7aBMxi4nXU0ITU0iEeD/bKlgyooa/xnSXNEYzyPrwRtb66dte6Q5t0MySCUynMUCEKlUiv/7v//D/v37ERERoZaEvnjxYgvNjMhI9I0JyhM7yKSQHJiMzr6F2JXeCPKb9JInUty0l33y514dgLb9Xreu/zCtqPFfeVeaTLFCReZjDTe2VYkpbtL12R6prbS4sTBIJSofiwUg58+fR/PmzQEAFy6oJqKWTEgnqrQCOwBYoOc4A107AeTeQqgrEI1kHMoKQV7x01wKlxqFaOKeiRN365V5qrqNm1pX8KGgaPynsYKYeSpfAU+bMBqyDcucuTRkfNZwY1uVmOomXZ/tkabcDskglaj8LBaAHD582FKXJjKPoOcBRw/gXx1bcRw95eMMlZel/Guo6z2EuNxDeoEb8ort4FyjCP41cwAAfxWGIe9hgdbTWP2NshU0/tOnCWNp5s6lIeOy9I1tVWLKm3R9tzmaYjskg1SiirGKDPCbN2/i5s2blp4GkXFJbICopbrHRH1RvpvpUsnXEgEIcMpBI7c7CHDKgUSQH+v8n+46T1MpbpQlNvIgrUlf+Z8WmK+2JoyCoPortDxNGcn6WPLGtirR9ya9vBWr9N3maIrtkIYEqUSkzmIrIDKZDLNnz8aiRYuQ96REqIuLCyZMmIBPP/2U1bGoagiLlvf62PexakdvlzrASxVoRKhnknZo76GI9glT2/5gyaTzykpTE8bazzZExuVLTD6tYix5Y1uVmHolSZ/tkaZa5WWQSlQxFgtAPv30U3zzzTeYN28e2rdvDwA4fvw4pk+fjkePHmHOnDmWmhqRcRlpG5FaEmf3WEi2DUFZSdrG6l5OmpswcgtO1WPJG9uqxNQ36fpsjzTVKi+DVKKKsVgAsn79enz99deIjn76DnBERAT8/f3xwQcfMAChqkWxjaictCZxdp2B0GurykzSNkb3cqLqwpI3tlWJOW7SFdsjzb3KyyCVqGIsFoDcv38fDRs2VDvesGFD3L9fRvM2olKqch12nUmcWw4ietwahPqKFkvSJqqKLHVjW5WY6ybdEqu8DFKJKkYQRVHTBnKTi4yMRGRkJJYuVU3SHT16NH7//XecOnXK5HNYsWIFFixYgMzMTDRt2hTLli1DmzZttI7funUrpk6dirS0NISGhmL+/Pno1auX8nFRFDFt2jSsWbMG2dnZaN++PVauXInQ0FC95pObmws3Nzfk5OTA1dW1wq+vuqjKddhlMinWjHynzP/Ahy3/hv/REZlAVX5zwxy0vYGiUNmLNmj6/4dBatXH+7WKs1gA8uuvv6J3796oW7cu2rZtCwA4efIkbty4gb179+L558u/XUUfmzdvxqBBg7Bq1SpERkZiyZIl2Lp1Ky5fvgwfHx+18SdOnMALL7yA2NhYvPzyy/jxxx8xf/58JCQkoHHjxgCA+fPnIzY2FuvXr0dQUBCmTp2K8+fPIykpCQ4ODmXOid/Qhqvq/7nduPgXtsycUua4/p/N5RYrIrJKVf0mnUFq9cP7tYqzWAACAOnp6fjyyy9x6dIlAECjRo3wwQcfoE6dOia/dmRkJFq3bo3ly5cDkFflCggIwOjRozFp0iS18QMGDEB+fj52796tPPbcc8+hWbNmWLVqFURRRJ06dTBhwgRMnDgRAJCTkwNfX1+sW7cOAwcOLHNO/IY2THVYHUj+7VfsXVp2M8NeYz5Co/YdzTAjIiLD8SadqhLer1WcxXJAAMDf398iyeZFRUX4888/MXnyZOUxiUSCrl274uTJkxqfc/LkSYwfP17lWI8ePbBz504AQGpqKjIzM9G1a1fl425uboiMjMTJkyf1CkDIMNWhWRgrrVQyMqlFmyYSWSsWwiCikiwWgKxduxbOzs7o16+fyvGtW7eioKAAgwcPNtm17969C6lUCl9f1WZuvr6+ytWY0jIzMzWOz8zMVD6uOKZtTGmFhYUoLCxUfp6bm2vYC6nmqkMddlZaMaOKBg9Ju4C4TzRUJKtAvxciIqIqyGLd/mJjY+Hl5aV23MfHB3Pnat/TX5XExsbCzc1N+REQEGDpKVUq1WF1QFFpRZeqVGlFJhORfvkB/v49E+mXH0AmM9MO0aRdwJLGwPqXge3vyP9c0lh+XN/nbxmkGnwA8kaRWwbpfx4iIqJqwGIByPXr1xEUFKR2PDAwENevXzfptb28vGBjY4OsrCyV41lZWfDz89P4HD8/P53jFX8acs7JkycjJydH+XHjxo1yvZ7qSrE6oEtVWB1QlAMt/VpdanlV+iT7kq6evY3vppzAzs/P4uA3Sdj5+Vl8N+UErp69bdB5DA5iKho8yKTylQ+NHemfHIubJB9HREREltuC5ePjg7/++gv16tVTOX7u3DnUqlXLpNe2s7NDy5YtER8fjz59+gCQJ6HHx8dj1KhRGp/Ttm1bxMfHY+zYscpjBw8eVFbwCgoKgp+fH+Lj49GsWTMA8i1Vp0+fxogRIzSe097eHvb29kZ7XdVNdarDXtW7mV89extxX11QO56fXYi4ry6g53uNEdJcvTqdpvMc25yC/OynWxud3O3x/IBQzc8vM3gQ5MFDw97at2NdO6EevJQ+T266fFwFmlESERFVFRZbAXnttdcwZswYHD58GFKpFFKpFIcOHcKHH35oloTt8ePHY82aNVi/fj2Sk5MxYsQI5OfnY+jQoQCAQYMGqSSpf/jhh4iLi8OiRYtw6dIlTJ8+HX/88YcyYBEEAWPHjsXs2bOxa9cunD9/HoMGDUKdOnWUQQ4ZX3VZHQCeJnE2at8RAeERVSb4kMlEHNuconPM8S0pZa5kKIKYksEH8DSI0biSYkjwoE1elvbHyjOOiIioirPYCsisWbOQlpaGLl26oEYN+TRkMhkGDRpklhyQAQMG4M6dO/jss8+QmZmJZs2aIS4uTplEfv36dUgkT+Ozdu3a4ccff8R///tfTJkyBaGhodi5c6eyBwgAfPzxx8jPz8e7776L7OxsdOjQAXFxcXr1AKHyq+qrA1VdRkq2WtBQWt6DQmSkZMP/Wc35PPoGMUFNvSGRCCVObITgwdlX+2PlGUeVFkvNEhHpx6J9QAAgJSUFiYmJcHR0RJMmTRAYGGjJ6VgU60pTdfT375k4+E1SmeO6vROGBq0151OlX36AnZ+fLfMcfcY1R+1Qd3nQk1sIp4LLqH2oDySCTPcTB+/Wvn1KJpUnrOdmQPNWLkFeDWvseZbkrcI0Ndtz9vRC5yFVo9keET3F+7WKs2gfEAAIDQ1FaGiopadBZBZ8h1Sdk6t+eVC6xuXn6l5BUfjnrzs4uDZJNUekxtd43nk1QhxOaXjGk+AhUMcNpMRGXmp3yyD5eJUg5MlqS895DD6qsJTTJzTmouXdv4tdi+dWue2gREQVZfEAhKi60PUOaXXeQlY71B1O7vY6t2E5e9ijdqi71sf1DWL+ir+pdiy/2B1x2R+jp/v/lQpCDAgewqKB/t9p6QMyzyJ9QBjsmodMJsWhdat1jjm8fjVCWkfy609E9AQDECIzKOsdUgdnFzzKe6g8XpGtGya58TRhh2+JRMDzA0I1VsFS6NA/VDV3oxR9ghhBADRvOJWvWhzPG44g+zNPt2MZGjyERcurZVlBJ3RuBzKf9OSLOhuFAsDDe3eRnnyRncCJiJ5gAEJkYvq8Q1oy+ADKv3XDJDeeZujwHdLcBz3fa6xWQtfZwx4d+mspoVuCPkGM7mw3AXnFnsjovBP+nnfKHzxIbCxeapfbgcwrL/uBUccREVUHDECITEyfd0i1MWTrhkluPBVN+konVyua9PX/TmcQYshqTEhzHwQ19X6aIO4q33ala+Wj9PO1BTHBLbw1br8qLb/ms0CTjnpdzxpxO5D5ObtrrsxW3nFERNWB2QOQu3fvIj8/X6Xa1cWLF7Fw4ULk5+ejT58+eP311809LSKTqcg7n/pu3TDoxhPQb5tQBZv0lWc1RiIRtJba1Ye2ICYjJVuvAETfXBJrxe1A5uffKBzOnl46v+4utbzg3yjcjLMiIrJuZm9EOHr0aCxdulT5+e3bt/H888/j999/R2FhIYYMGYLvv//e3NMiMpmKvvOpTwCj941n3Bp5ydj1LwPb35H/uaSxfKWjtAo06VOsxpSek2I1JuW0jsZ++pJJgdRjwPlt8j9lUgBPg5gGrf3g/6wHJBJBmSOiS1mJ7pUBtwOZn0Rig85D3tU5ptPgd7niRERUgtkDkFOnTiE6+umWje+++w6enp5ITEzE//73P8ydOxcrVqww97SITEbxDml56RPA6H3jeXChelCh2E5VOggpZ5M+fVdjZE8ChnJJ2qV/IIWnOSK6lJXoXhlwO5BlhEa2Q/T4KWo/5y61vJhzQ0Skgdm3YGVmZqJevXrKzw8dOoRXX31V2Q09OjoasbGx5p4WkclIJDboNGgYfv78yfe1UOImV5EZLWi+8dV364beN541ijQc1bKdSkPnbpkIpBe4Ia/YDs41iuBfMweSUuNMvg2onHkpFU10rwy4HchyQiPbVety2kREhjB7AOLq6ors7GxlDsiZM2fwzjvvKB8XBAGFhfo1FSOqLPwldmhxLQtJdbzwyO7pj52tVIbHNhJ5IKIhCNF364ZeN541HsG/Zo6WR0tsp1JUcQpsJ6929aTDd0puLRzKCkFe8dOtTM52xeicJSA06OmZTLoNqIJ5KRVNdDdlOWJjUGwH0lSMQEHb9xT7hlScRGLD3BoiIj2YPQB57rnnsHTpUqxZswY7duzAw4cP0blzZ+Xjf//9NwICAsw9LSKTKr5zB345+fDNycd9JwcU2taA/eNieOY/Qpabk1pg4lLLC50G6186V68bT99/UOZ9dsntVCU6fKfkemFXekP14UU1sOvzeSrbTEy6DciQvBQt5XDLnehuhnLExqDYDlS6AICu7yn2DSEiInMyewAya9YsdOnSBRs2bEBxcTGmTJkCD4+nNwObNm1Cx46VtwwmkSY1vL0ByFve1cp/pPJYycDEecxo1GrVqlzvPuu88XypA0L/PAZRBhTcsUPxIxvUcJCipncRhJKZYKW3XYVFQ9Z3HQ7EfgPNqw5yJUu7mnQbUDnzUiqsguWIzc2Q7UDsG0JEROZm9gAkIiICycnJ+O233+Dn54fIyEiVxwcOHIiwsDBzT4vIpGq2aokafn4ozsrS2BFPEAT4urij/puDIdiUf9uL1htPALkHFiHruBTF/z49fw1HKXxb5MA14BHg6CnfYiSTqmwrOnPFE4+KdXbxw8N7d3Flx3b4Ojihhre3POdlyTyt48tdFUhDXkqFxumjgtu+LEWf7UDsG0JERJZgkUaEXl5e+M9//qPxsd69e5t5NkSmJ9jYwHfKZKR/OFae61EyCHmS++E7ZXKFgg8FTTeeuQcOIP0gULrwXfG/EqT/5gG0fwDXgPvA9/9R2VYkk4k498slva57Y+ECSLPzAAA1/PzQ9fV+OHX2jN7bgPRSKi9FnSB/PNCI79gbYduXtWLfECIisgSLBCAymQzr1q3Djh07kJaWBkEQEBQUhL59++Ktt96CoKUiEFFl5tq9O/DFEmTNjUVxZqbyeA1fX/hOmSx/3AREqRRZcxWV5Ur/bAkARGSddYWL/yP5dqwS24oybJ5H4b/6Neezf1ys/HtxVhbsPl+OAZ8vxsOAOsZLbC6Rl6KYu+prAdBznnFXIiy17UsXIyXDs28IERFZgtkDEFEUER0djb1796Jp06Zo0qQJRFFEcnIyhgwZgh07dmDnzp3mnhaRWbh27w6XLl1Q8MefKL5zBzW8vVGzVUujrHxoU/DHnyoBjzoBxQU1UHDHDk6+RSi5rSi/fTwkNfwBwRkQ87SewVYqwLNkbsuTql535s1H/fhfjPv6wqLlORcaE8LnGT8XwxLbvnQxYjI8+4YQEZElmD0AWbduHY4ePYr4+Hh06tRJ5bFDhw6hT58++O677zBo0CBzT43ILAQbGzhFtjHb9Yrv3NFv3KOSQYJ8W5HTo78hCBLY1uyEx/k/a31u0D31tRWIIoozM1Hwx5/Gf71h0fKcC3OUxDXitq8Kl7o1cjI8+4YQEZElmD0A2bhxI6ZMmaIWfABA586dMWnSJPzwww8MQIiMRFGBq8xxDuqdyWu734GTe23kZ4cCiMLjgsOqKyGCM2ratkZIxjdaz6sIgESp1LgrPxIb8+RcGGnbV4VL3ZogGb4ifUOIiIjKS1L2EOP666+/0LNnT62Pv/TSSzh37pwZZ0RUtSkqcGnrtg6IqFGzGDW91bukS1x98fyAUACAjV0o7N2Gwda5H2ydesHWuR/sXd9BWOrvELSU6BUBZD3KR8LKZTjVszuuDR6MWxMn4vrgwbjSpStyDxww0qvUn0wmxY2LfyH5t19x4+JfkMnUAy81im1frrVVj7vW0WvVQVHqtvRKg6LUbcrpE2XPwZBkeAMoyjc7e3qpHHep5cUSvEREZBKCKGqoCWpCdnZ2uHbtGmrXrq3x8Vu3biEoKKhadkPPzc2Fm5sbcnJy4OrqaunpkAUZuyt17oED8gpcQKkywPK/+7d/IC/Fq/RkW9HY84DEBlfP3saxzSnIz376c+nsYY+Q8xtQ6+qvGksLZ7o5ISnAB49snr7P4VBUjLBbd+GXk68MiPy/WGKyBPzSjLIKYeC2L5lMijUj3ylzm9Ow5d/o/jc+vw3Y/k7Zc4z5BmjSt+xxGubJTuhy/FoQkS68X6s4s2/BkkqlqFFD+2VtbGxQXFys9XGiqs4UXam1VuCqKYNv81z14ANQ2VYU0twHQU29kZGSjfzcQji52qN2qDvyfslH+oe/qpUWznRzQkKgr9qqyyNbGyQE+qLFtSxlEJI1NxYuXbqYNBEfMFLDvXJs+zJaqVsTJ8Pr0zekOmBXeCIi07NIFawhQ4bA3l5zac/quPJBpGDKrtQaK3DVvAXh4GQg998SAzVXk5JIBPg/66F2ztKBjQggKcBH85avJ4FKUp1a8M3Jh6BIVN+6GE6Rz2lfUahg2VlLNtwzWqlbS/RAqWbYFZ6IyDzMHoAMHjy4zDFMQCdrYq7tGOa4SdZYgSs8qkI396UDm6xH+Xi09TsdkxDwyM4W950cUOtJ6d7i/YuAS/9qLidrhLKzlmy4Z7RSt5bogVKNsCs8EZH5mD0AWbt2rbkvSVRu5tyOYbGbZCNUkyoZ2Nz67Ve9nlNo+/TXj7ICV+lyskYqO2vJhntGLXVr7h4o1Qi7whMRmY/Zq2ARVRZGqVxkgKrSlVrfd/zlndNLV+B6EmjETQKKi8ooO/tknB5VrGq6uek1J33HGUJR6lYXg0rdhkUDYy8Ag3fLE84H75YXC2DwUSFV5eePiKgyMPsKyNtvv63XuG+//dbEMyHSzhLbMSpTV2pd29LKfMdfFOHwuBie+fK8E9/muRBU3gp5Uk729zX6l50tawVH31p/JqoJqCh1W3o1zaWWFzoNLsdqmrl6oFQjlennj4iosrNIJ/TAwEA0b94cZq4ATKQ3S2zHqCxdqcvalqazud2Tn/mwW/dgW1OqoQJXCQ/S9JtQXlaZQwpyc/Q6lb7jyiM0sh1CWkeyvKuVqiw/f0REVYHZA5ARI0Zg48aNSE1NxdChQ/Hmm2/C09PT3NMg0knfbRbXLpwz2s1kZehKrW+VIG3v+Du5uuG5kLoIrXUGNb2LSq18lOJRT79J6VF21lre3WapW+tVGX7+iIiqCrM3IgTkpXZ37NiBb7/9FidOnEDv3r3xzjvvoHv37hC0dmuu+tjYxnrcuPgXtsycYtBzjJWcrmmFodxbdYyoPA31NG7VSv4Z2DYUEGVazvKknOyYRGBp07LLzj5plmjsuRtNBUsIk3lZ688fEVkP3q9VnEUCkJKuXbuGdevW4bvvvkNxcTEuXrwIZ2dnS07JYvgNbT30uWHVxhi9AqyhE3PpOchkMmyb/d8yn9f/s7na3+V/UtVKJopIL3BDXrEdnGsUwb9mDiTK9x4EDVWwAI1lZ/WsggVoX71RMEmPByOUECbzs4afP1Ooqq+LyNx4v1ZxZt+CVZpEIoEgCBBFEVJp2dVsiMxBn+0Y2hgjOd3SW3U0vQvsoOcbA1q3r8mkQNwnSMn1xKGsEOQVP21G6lyjEJ3/v717D2+qSvcH/k1aGqhter9brlZaEJBrLV64daSjDHBkBD0orXZgFNCBoj8Kz1EUz8GiiDwwjgyIgOeoiJcZK6PM4VbQUouHiyJULAwglhawpYRSKbRZvz/ShKbNZSfZ2bl9P8/Tp3RnZWdnTe3sN2u975twAmkR9cCkt2/cnMtYdlb2RHB7ZCohTMrz9H9/7sAO70TkTTy+Beurr77CuHHj8NhjjyEnJwdqdeBWBmZE7X0s/Z+2FDZXAbycvZUCe6y+95NfonJVLoqrMloPtN1uafgzND6lAmlPbexY4UnGbUyKfAqsbwFW3Gajipf07WNErvLI6h+RH+P9musUXwGZOXMmNm3ahNTUVDz++ON4//33ERsbq/RlEEnSvnJR3c8/4etPPrD7PF/tFSCl/LAttqoE6XXV2HmuV+tP7XO9DJ29d53riV666o4NitqUnXU1gFDk0+3Te+UrIUzkAnZ4JyJvpHgAsnr1anTt2hU9e/bE7t27sXu35a7Jn3zyicJXRmRZ2xvWM0e+kxSA+GqvACnlh22xVSWo6sJ1s21XHalwubkzqi5cR6qVET6zjURCaWCHxhE5iR3eicgbKR6ATJs2LaArXZFv8/deAVJXbjQ3haPpymXTz1LyKBo0ydKuwco4qSWAvYKE0sAOjSNyEju8E5E38kgjQiJf5e+9AqSu3PyuYD7UKrVD26DComOkXYOFcT63jaTbcEOOh70Swt28JGAiv+UtPXCIiNoK3Ixvonb0+hacOfIdKkp348yR76DXW67KZqymFBZtnrsUHhPrXZ/CO8G4wmNLeEwsUvv0Q2rf/si4cwRS+/aXdNMv9dyWVo8c2UbiFdRBhlK7ACznu8BQxcsbgiXya678d0dE5C4eL8NL5A0czS1on5zuLzX13bnC48q53bKNxN0NAmUsIUzkLH9ftSUi3+TxRoR0A8u6eYaSJSp9pRGYO7tBO3NuqZ3pJZc/VrJBIDuhA/Cd331/xQ7vRPLh/ZrrGIB4Ef5CK09Kx/PwmFj84c/rXL5Z8pkKTq3cecPo6Lll/d/JWoNAJ7qrkzS+9rvvrxgEEsmD92uuYwDiRfgLrTzZP1m3go3AXCfLHLJBoOL4u09E/ob3a65jEjoFNCVKVEqt4GQt6Z0MZEn+d6RBILmMv/tERGQJk9ApoClRopKNwNpxISfC5eR/NghUFH/3iYjIEgYgFNCUaCwoeZXlxzJA/6PpplwP+N9+bRmSv9t2pncYGwQqik3wiIjIEgYgFNCUKFEpeZVl738B314CAFQ2p2HnuV5o0F258bivJ+1aS/7WVRuOK5H8zQaBimITPCIisoQ5IBTw3N1Y0H4jMIHw4KtICW0NPnQxKK5MQIOuwWxUQ90vKF6+BJXlPpifoG8xrHxYvOlvPba10DDOnew0CNQL4Ez606go+8pmM0qShk3wiIjIElbB8iKsquBZ7ixRab0SkOE/v/EpFUjT1kIvgLXHh6GhOQQdb5ANpJSb9bpymye/BDaOsz8udwvQ4273X4+FrWB+uerkBVgFi4j8De/XXMcAxIvwF9q/WWwEFnwVoxL+hTRtLQDgzJUIbP7Jfn6DrbLAXtlz4fBHwMf59sdNWgf0+737rwcwJcPrddUo33cCe7eXWh3Km2TXsAkeEfkT3q+5jjkgRArpUMGp7juk/N9/QN1mocOw8mGftaRda582G7dveexGuvaEtHFKJn+rg1B5Pgg7N/wDDXW1Nofu2rgGvYZm+n4RAA9xuXoZERH5FQYgRAoyq+B0Ug3sN388NOiapPNYStqV2nNB8RtpfQuwf739cdoURZO/7W0NaoulYl3nUvUyIiLyK0xCJ/IUY0Wm1lyPSl0Mtlb3tvs0a0m7jvRc6EDfYsjTOPyR4bucyden9wKXq+2P6zkCOPI3+V/fAinBWnssFUtERCQProAQeYqxItPmaajUxaK4Kl3S06yVBXa654IMvTlsv6DEpn6H3jN8yf36FkgJ1tpjqVgiIiJ5BNwKSF1dHaZOnQqtVovIyEjk5+ejoaHB5nOuXr2KWbNmISYmBmFhYZg0aRLOnTO/qVKpVB2+Nm3a5M63Qv6gz3jof78BOy+ktR6wXPkKAMKiY2zmcDjVc8HYm6Nt8AHc6M1xtFjSOW2/oBN5HXK+vgWOrmawVCwREZF8Ai4AmTp1Ko4cOYJt27Zhy5Yt2LNnD2bMmGHzOXPnzsVnn32GDz/8ELt378bZs2fxwAMPdBi3fv16VFdXm74mTpzopndB/qRK1RMN14JhK/gAgJxZc20mkDvcc0Gp3hzttppJ497eII6uZrjajJKIiIhuCKgApKKiAlu3bsVbb72FzMxM3HXXXVi1ahU2bdqEs2fPWnzOpUuXsG7dOixfvhyjR4/G4MGDsX79euzduxdff/212djIyEgkJiaavjp37qzE2yIfJ/XT+MZLl2w+buzqbovZjfTpvR1XPswIQFdlGGeLvfwRm83/bJH4+k6QEqwB9led3MKd+ThEREReIKACkLKyMkRGRmLIkCGmY9nZ2VCr1SgvL7f4nP379+P69evIzs42HUtPT0fXrl1RVlZmNnbWrFmIjY3FsGHD8Pbbb8Nei5WmpibodDqzLwo8Tm2dssKhru5SczNsjTtaDKy4zdBk8ON8w/cVt3XcOtVnPDD5HUCbZPOl9MLQC6XiUhzOXImAXjhwnQ6QEqwBwMjc6coGH1Lnk4iIyIcFVBJ6TU0N4uPjzY4FBwcjOjoaNTU1Vp8TEhKCyMhIs+MJCQlmz1m8eDFGjx6N0NBQ/O///i9mzpyJhoYGPP3001av5+WXX8aLL77o/Bsiv2D8NN5WUrQjOQiSey5Izc2wNs6YP9J+C5cxf2PyO+ZJ5H3GA+n3G1Y0Gs4Zvv650PRwpS7G0Im8WXPjpYObMPpUPdL6SbtUR/QamonOYeG42nDZ6pjd77yFtGFZymy/cnQ+3Uyvb2HfDiIicgu/CEAKCwuxdOlSm2MqKirceg3PPfec6d8DBw7ElStX8Oqrr9oMQBYsWICCggLTzzqdDqmpqW69TvI+xk/jbfWkcDQHQVLPBWNuhq4alvNAVIbHLfXmsJs/ojLkb6Tfb9iCZbqwIKDH3TfOUfZnQFeNSl00iqsyOpypoTkExf/zd4yP7yP7SkRVxRGbwQegYP8PZ+fTTSx1Lg+LjsXoPHYuJyIi1/nFFqx58+ahoqLC5lfPnj2RmJiI8+fPmz23ubkZdXV1SExMtHjuxMREXLt2DfX19WbHz507Z/U5AJCZmYmff/4ZTU1NVsdoNBpotVqzLwpMDm2dkovN3IzWn3OKLN/wOpk/ote34MyR71BRuhtnKo5Af+/L0Atg57leNq9j18Y10MucC+F02WJ3kCsfRwbGBo3tV+Qa6n5B8fIlqCx3/zUQEZF/84sVkLi4OMTFxdkdl5WVhfr6euzfvx+DBw8GAOzcuRN6vR6ZmZkWnzN48GB06tQJO3bswKRJkwAAx44dw08//YSsrCyrr3Xo0CFERUVBo9FYHUPUluStU3Iy5mZY7ANSZH3LjxP5I9Y+Ve/f/09o+GG/pWebuGMlQs7cG5fJkY8jAykNGndtXINeQzO5HYuIiJzmFwGIVBkZGcjJycH06dOxevVqXL9+HbNnz8ZDDz2E5ORkAEBVVRXGjBmDd955B8OGDUNERATy8/NRUFCA6OhoaLVaPPXUU8jKysIdd9wBAPjss89w7tw53HHHHejcuTO2bduGJUuW4JlnnvHk2yUfJGnrlNza52aEJRi2Xdm6wXQwf8T4qXp7DXW/YG+JtIaAcq9EyJ174xJX83FkIqVBo2Lb0oiIyG8FVAACAO+++y5mz56NMWPGQK1WY9KkSVi5cqXp8evXr+PYsWNobGw0HXv99ddNY5uamjB27Fj85S9/MT3eqVMnvPHGG5g7dy6EELjllluwfPlyTJ8+XdH3RuS0trkZUjiQPyLlU3Up5F6JcEfujdPazKdeCFQ1RqChOQRhwdeQEnoJapWNfBwZedW2NCIi8lsqYa9WLClGp9MhIiICly5dYj6In/GFikIOX6OpahNgHoS05nG0Vm06c+Q7bF68sP2zHRIeE4s//HmdW+bM0taw8JhYjMpVOOH6aDEq35qLned6dqwElvAvpP3hdbdXwZL6v9Xk55dwBYSIAhbv11wXcCsgRErzhYpCTl2jxPwROT4td+dKhEdybyyovBzbWgnM/DOhhuYQFFdlYPzlWKRJOI8rwa5XbUsjIiK/xRUQL8KI2v9Yy30wUrzLtgUuX6O+xWb+iNRP1Yc/+O/4bsf/en4lwgP0+hasnZVv98bf3iqQHMGuL/zOkuf4wmoukbvxfs11XAEhchNfqCgkyzXayR+R+ql65gNTkPnAlIC8uZEj+dtWon/x8iWSAwdjSWiv2JZGXsUXVnOJyDcwACFyE1+oKKTENTqa7B2IuQWuJn/LHex6y7Y08h5yBbhERICfNCIk8ka+UFFIqWv0SKNFH+JqTxJHAkmpjCWhM+4cgdS+/Rl8BDCpAa7czUKJyH9xBYTITbyq0Z2Lry3HNfJTdetcTf72hWCXfJcvrOYSkW/hCgiRmxhvKm3xdEUhpa9RrQ5CakZfZCSrkar/EerTew1J7AHOuE3NFluVwHwh2CXfxQCXiOTGAITITVy9qVSC4td4tBhYcRuwcRzwcb7h+4rbDMcDnCvb1Hwh2CXfxQCXiOTGMrxehGXd/JPXNLqzQeo1tuhbcOD8AVxovIC40DgMih+EIKnBialxYfs/OeaNCwOds2VOWT6X3EWuMtFE/oL3a65jAOJF+Avtv3yhdr69a9x+ejuK9hXhXOM507GE0AQUDitEdrdsOydvMax0tG1YaEZlaGA457BZDxFyjC8Eu+SbGOAS3cD7NdcxAPEi/IX2D74QbDhq++ntKCgpgGi3eqFqXb1YPnK57SDk5JeG7Vb25G6x2VOE7PPH3z/yDgxwiQx4v+Y6VsEikpE/Nupq0begaF9Rh+ADAAQEVFBh6b6lGJU6yvp2rIZzlo87O46sMpbPJZIbK9kRkVwYgBDJxF8bdR04f8Bs21V7AgI1jTU4cP4AhiYOtTwoLEHai0kd5630LcDpvYZAKiwB6Dbc9pYyR8cTeRgDXCKSAwMQIhnI3Ynam5xvOIfEWg26NAXhV00LzkU3Qag6jrvQeMH6SboNN+R46KrRMQkdMOWAdPO9AM0URBz7HPjuA6Cx9sZj2mQgZ6nl5PqjxcDW+eZ5MbbGExER+QkGIEQy8ItGXRY+ja/8phz/evs95NQnmoZd6dyM8j51+CnxV7Onx4XGWT+3OshwY715GgxVr9oGIa3RTE6R5z/9d3RFwlIQ0Zau2vCe21f4slYRzNp4IiIiP8IAhEgGPt+oy8KNdGVzGoorEzsMDb0ahFEH4rBr0AX8lPgrVFAhITQBg+IH2X6NPuMNN9YWP/Uv8vwNt6MrElbLCrclAKiArYVA+v2GYEbfYngdi8+zMJ6IiMjPMAAhkoFPN+qycCOtF8DOk1Ew3RC3oYIKAgLDjkbj54SzECpg/rD50vqB9BlvuLH2hryHtqsdtSeAkpcheUXCZhDRngB0VYbX6nG34bvVcsQWxnsD5qoQEZGMGIAQycDYidpeoy6v60Rt5Ua6qjECDc0aq09TQYWwq8FIv5KI6eP+n/0+IG2pgzx/Y21v65SJlRUJu0GEBcYKXw5UBPOKkrrMVSEiIpkxACGSgVodhNF5M2w26hqVO8P7EtCt3Eg3NIdIevrz/Regb7dRjr+uJz9Rl7R1qi0LKxLOlAs2VviSWOmr8lQ9dv4l37MlnZmrQkREbqD29AUQ+Yu0zOEYX7AQYdGxZsfDY2IVL8Gr17fgzJHvUFG6G2eOfAe9vsXyQCs30mHB1yS9jjY6xvGLO1ps6Iq+cRzwcb7h+4rbDMfdzaGtU+20nSuHygWrAG3KjQpfxopgsFBKrHV8ZXMaiv/n7x1W1IwlnSvL9zpy5c6xm6sCw8qQtd8tIiIiK7gCQiQjb2jU5VAzRCs30imhlxAW3NS6EmL5RtmpLWU2PlHXfzANVZlFaIjIcN+8ObN1yqjtXNktK9xO2wpfdiqC6YXAzlPRsJR/Y7Rzw1/dX9LZF3NViIjIJ3AFhEhmxkZdGXeOQGrf/ooHH8XLl0j/5NzKp/FqFTA64UTrT5ZvsB3eUmbjE/VKXTTWHh+KzRu34POVr2Lz4oVYOytf/k/6neq03m4FA7gRRBgft0abYnmbkrEimDbJ/HiXKEP+zXXrgR8ANNTVovyTDxx6Fw5j93oiInITBiBEfkJqM0Sz7Vg2bqTTtHUYn/IDwrRhZsed3lJm5RP1Sl0MiqsyOuSduGW7kcOd1m30KLEWRITGAnfMBHK3AHMOW8+R6DMemPO9YdykdcC0YiBYIzn/Zu+H77l3K1agdK8nIiLFcQsWkZ9wuhmijf4caZOL0Cv9fnm2lFn4pFwvgJ3nerX+ZPkTf1k6yBuT3i9XGwKExloYV2JaABzorMGFoCDEtbRg0NUmmF7JXo8SV8sKt60IdvJL4HI1woIjJL8tWebGGn/uXk9ERB7FAITIT7jUDNHGjbQakKd7u4VPyu2V+wVk6CBvo+Tu9tAuKIqJwrngG38KE4JCUdh1HLJTR0oLJuQqK9waoEnJvzFyeW5s8ZXu9URE5HO4BYvIT7jcDNF4I93v94bvct9YWsg3kbrdyOkO8sakdyvBR0F8LM4Fmb/P8y2/ouDkh9iublL25ro1QDPPv7HP6bmRwto2M20yS/ASEZHTuAJC5Ce8vhmihU/UpZb7daqDvI2k9xYARTFRhkdU5qsMAgIqqLB031KMSh0lrcO7HNpseUrT1mJ402ns/aW73ac5NTeO8Kbu9URE5Be4AkIkM8k9OGRmbIZoiyebIer1LTgjuqMi43mcQQ/oxY3tRrZK2TodNNkoI3ugs8aw7UpleYuTgEBNYw0OnD/g+Os6q11BgMzYM+6bG2euzZ2rY0REFFC4AkIkI4d6cLiBsRli+2sIj4nFqFwFO2i303FeUhAWkY7RvxmC0UMiUPw/f7f6XKeDJhvlYS8ESTvfhcYLjr+uK9oUBFDrzmJ0wgkUV2XAWk8QTwaUREREzlIJIZxoCUzuoNPpEBERgUuXLkGr1Xr6cshBxh4c1ijZDV2vb/FoM8S2pMwLAPmDppNfGrqsW/BNZw0eT7JfPvbtsW9jaOJQ517fFW2qdlV+exg7dx9Dw+VG08OeDiiJiAIZ79dcxxUQIhlI7cHh9u7VrYzNED1N6rz84c/r5O8gb6OM7KCrTUhobsb5oCAIC9uwVFAhITQBg+IHOf/6rlAHAb9eBLYvQpruLHqltFYM65SAsLvykZIznSsfRETks5gDQiQDR3pwBBJH5kX2DvI2miwGQYXC2npApYKq3WPGn+cPm69cAnp77ap3qVVA6k2XkBFSidR9hVD/8A/PXBcREZEMGIAQycClHhx+zOPzYqOMbPa4v2L5yNcRHxpv9lBCaAKWj1yO7G7Z7rkme2xU7zId21poGEdEROSDuAWLSAYu9+DwU14xLzbKyGYDGJU6CgfOH8CFxguIC43DoPhB7l35MOZ3WCtpa6N6l4EAdFWGcXI0QCQiIlIYAxAiGXh9Dw4P8Zp5sdGtPEgdpFyiuaWu7Npkw1YxY1M/G9W7zEgdR0RE5GW4BYtIBt7eg8NTOC9tWOvKrqs2HD9abPg5zH51LofGEREReRkGIEQyMfbgCIuONTseHhMrewleTzU7dIaS8+JR+hZD6d/DHxm+t/3fxJG8DmP1Lgt9PwxUgDbFMI6IiMgHsQ+IF2Fdaf/g7h4cnm526Cxb89Kib1E2D0Nu9rZW2ehJYiZ3i2GrmHG1BIB50NIalEx+58aWLSIiUhTv11zHAMSL8Bea7PGmZody2X56O4r2FeFc442choTQBBQOK/RcJSpHmIKF9n9K2wQLLdeAj/Ptn2vSOqDf72+ct0NQkwLkFDH4ICLyIN6vuY5J6EQ+wtuaHcph++ntKCgpgGh3836+8TwKSgo8Ww5XCrtbq1SGrVUT/iLtfG3zOmxU7yIiIvJlzAEh8hH+1uywRd+Con1FHYIPAKZjS/ctRYsX57dILpmrUtnJ6wDQJbpjXoexele/3xu+M/ggIiI/wACEyEd4vKmfzA6cP2C27ao9AYGaxhoc+Pr1jkndjrKVIO7KOf+1W9rYKxdau7Lb2PH6ax3ADudERBQAuAWLyEd4RVM/GV1ovCBtXOlrwJXGjv0ypJLSe8NRls5pi3H7VJdoQ6BhUet2rfT7udJBRER+jSsgRD7C2NTPFl9qdhgXGidtXEvrakX7fhlSSO294Qhr57SoTcnc03ttBB+AWYdzIiIiP8YAhMhH+FtTv0Hxg5AQmgCVlbwIlRBIbG7GoKtNrUfa9cuwx5HeG1LZPGd7re8rp8iwosEO50RERAAYgBD5FH9q6hekDkLhsEIA6BCEqFqrg8+vvQjzcMqBVQKpCeJSzmXMISl5Wfq2K22yeb8OdjgnIiICwBwQIp+TljkcvYZmurXZoVKyu2Vj+cjlHfuAtLRgfu1FZDf+avmJUlYJ5FpxcDTfAwDueRYYucA8l8PY4VxXDcsrKK2VstjhnIiI/BwDECIfpFYHIbVvf09fhiyyu2VjVOooQyf0018iblcRBl1tgs1wSsoqgRwrDlabDNrRY4Th+8kvzXt45CxtPZ8KFjucG7drERER+TEGIETkcUHqIAxNHArEDwJK1wJXHVsl0OsFqivrcUXXhJu0GiSlRULt6oqDQ/ke7c55pRZYcZvlyluT37FSlYsdzomIKDAwACEi76EOcniV4MTB8/jyg0pcqW8yHbspUoO7p6ShlysrDnZzSNprPedtk4CP8tAhcDFW3pr8DjDne3Y4JyKigMUkdCLyLn3GG27StUnmx9sndcMQfGz96/dmwQcAXKlvwta/fo8TTXdIPlcHjlaj0iYDD24Avv8IditvAexwTkREASvgApC6ujpMnToVWq0WkZGRyM/PR0NDg83nrFmzBiNHjoRWq4VKpUJ9fb0s5yUiK/qMN6wS5G4BJq0zfJ9z2Cxg0OsFvvyg0uZpvtpcCX367+yeyyKpOSR3P3vjnKEx8lXeIiIi8lMBtwVr6tSpqK6uxrZt23D9+nU89thjmDFjBt577z2rz2lsbEROTg5ycnKwYMEC2c5LRDaogwyrA1ZUV9Z3WPlor+FiE6or65HSO8rmuSySmkMyqk21K/b6ICIisiugApCKigps3boV33zzDYYMGQIAWLVqFe677z4sW7YMycnJFp83Z84cAEBJSYms5yUi513R2Q4+HB3XgRP5KOz1QUREZF9AbcEqKytDZGSkKUgAgOzsbKjVapSXl3vdeYnIupu0GlnHWeRAPgqAG6smVrq7G1ZNUtjrg4iIAlpArYDU1NQgPj7e7FhwcDCio6NRU1Oj+HmbmprQ1HTj01mdTuf0NRAFmqS0SNwUqbG5DSssylCS1yV9xgPp90urWuXMqgkREVGA8YsVkMLCQqhUKptfP/zwg6cvs4OXX34ZERERpq/U1FRPXxKRz1CrVbh7SprNMXdNToNabW01wpEXC5JetcrRVRMiIqIA4xcrIPPmzUNeXp7NMT179kRiYiLOnz9vdry5uRl1dXVITEx0+vWdPe+CBQtQUFBg+lmn0zEIIXJAr4HxyPnjbR36gIRFaXDX5DT0GhhvaCiodM8NR1ZNiIiIAoxfBCBxcXGIi4uzOy4rKwv19fXYv38/Bg8eDADYuXMn9Ho9MjMznX59Z8+r0Wig0biwP52I0GtgPHoMiOvYCV2tAo4WW+k6vtT9KxF2qngREREFKr/YgiVVRkYGcnJyMH36dOzbtw+lpaWYPXs2HnroIVOlqqqqKqSnp2Pfvn2m59XU1ODQoUM4fvw4AODw4cM4dOgQ6urqJJ+XiNxHrVYhpXcUbh2aiJTeUTeCj83TOvblMHYkP1rsmYslIiIKcAEVgADAu+++i/T0dIwZMwb33Xcf7rrrLqxZs8b0+PXr13Hs2DE0Njaajq1evRoDBw7E9OnTAQD33HMPBg4ciOLiYsnnJfJXen0Lzhz5DhWlu3HmyHfQ61s8fUmGbVdb58NuR3JvuFYiIqIAoxJCWPp/aPIAnU6HiIgIXLp0CVqt1tOXQ2RXZfle7NywBg11v5iOhUXHYnTeDKRlerDU7MkvgY3j7I/L3cJtUkRE5BDer7ku4FZAiEgeleV7Ubx8iVnwAQANdb+gePkSVJbv9dCVgR3JiYiIvBgDECJymF7fgp0bbG8x3LVxjee2Y7EjORERkddiAEJEDquqONJh5aO9y7W/oKriiEJX1A47khMREXktBiBE5LCG+ouyjpOdsSM5gI5BCDuSExEReRIDECJyWFhklKzj3ELJjuT6FkPi++GPDN9ZXYuIiMgqv2hESETKSsnoi7DoWJvbsMJjYpGS0VfBq7JAiY7knmx2SERE5IO4AkJEDlOrgzA6b4bNMaNyZ0CtwBYnu31IjB3J+/3e8F3u4IPNDomIiBzCPiBehHWlyddY6gMSHhOLUbnK9AHxaB8SfQuw4raOwYeJyrASMucwc02IiPwI79dcxwDEi/AXmnyRXt9iqIpVfxFhkVFIyeiryMqHsQ+JNeMLFro3CGGzQyKigMT7NdcxB4SIXKJWByG1b3/3voi+xSyPQ5+aKakPSa+hme4LhtjskIiIyCkMQIjIu1lI8q5CTzTUpdh8mrEPiduCIzY7JCIicgoDECJf0m4lQPaKTt7GmOQN852iDZcuS3p6Q/1F920RMzY71FV3uD6D1hwQNjskIiIywwCEyFcEWrlXfYvh/Vq4uQ8LvibpFPXVVVg7K989SerGZoebp8HQ3LDtdbLZIRERkTUsw0vkCwKx3OvpvVYrTKWEXkJYcBMsrzwYdA4Lx94P3+vQq6Sh7hcUL1+CyvK9rl+jks0OiYiI/ARXQIi8nY2VAMMxFbC10NBwz58+bbeRvK1WAaMTTqC4KsPp08uWpK5Es0MiIiI/whUQIm9nYyXAQAC6KsM4f2IneTtNW4vxKRUIC+tsdjw8JhbDH5yKqw2280SMSeqycGezQyIiIj/DFRAibxeo5V7tJnkDaREX0St8G6oaI9DQHIKwiHCk/P4POHYpStJLNNRflPGCiYiISAqugBB5u0At92pM8gZgSupuT+ihVgGpN11CRsQFpOIk1B/lIexShaSXCIuUFqgQERGRfBiAEHk740qAtZtwqABtin+We7WW5K2y9qfLsFKSUrESYdExNk8dHhOLlIy+MlwkEREROYIBCJG3s7kSEADlXvuMB+Z8D+RuASatA8YuAYTexhME1JerMPq+u22edlTuDPd1SSciIiKrGIAQ+YJAL/faNslb4laztO6RGF+wEGHRsWbHw2NiMb5goet9QIiIiMgpTEIn8hUs92rgQE5MWr/h6DU00z2d0ImIiMgpDECIfIlxJcCD9PoWz97Q262OpTI83poTo1YHIbVvf+Wuj4iIiGxiAEJEklWW78XODWvMuouHRcdidN4M5bY0GXNiNk+DIQembRASADkxREREPo45IEQkSWX5XhQvX2IWfABAQ90vKF6+BJXlCjZCDPScGCIiIh/GFRAiskuvb8HODWtsjtm1cQ16Dc1UbjsWc2KIiIh8EgMQIrKrquJIh5WP9i7X/oKqiiPK5lt4QU4MEREROYYBCBHZ1VB/UdZxXknfwtUUIiIiBTAAISK7wiKjZB3ndY4WA1vnA7qzN45pkw3J7swnISIikhWT0InIrpSMvh0a+rUXHhOLlIy+Cl2RjI4WGypqtQ0+AEOZ383TDI8TERGRbBiAEJFdanUQRufNsDlmVO4M32vwp28xrHxY7CfSemxroWEcERERyYIBCBFJkpY5HOMLFnZYCQmPicX4goXK9QGR0+m9HVc+zAhAV2UYR0RERLJgDggRSZaWORy9hmZ6thO6nBrOyTuOiIiI7GIAQkQOUauDHC+1660VpsIS5B1HREREdjEAISL38uYKU92GG65FVw3LeSAqw+PdfHB7GRERkZdiDggRuY+3V5hSBxkCIQCAqt2DrT/nFHnHag0REZGfYABCRO7hKxWm+owHJr8DaJPMj2uTDcc9vUpDRETkZ7gFi4jcw5EKUz3uVuyyLOozHki/3zvzVIiIiPwMAxAicg+lK0y5muiuDvJ8IERERBQAGIAQkXsoWWHKmxPdiYiIyAxzQIjIPYwVpjokdxupAG2K6xWmvD3RnYiIiMwwACEi91CiwpSvJLoTERGRCQMQInIfd1eYciTRnYiIiLwCc0CIyL3cWWFK6UR3IiIichkDECJyP3dVmFIy0Z2IiIhkwS1YROS7lEp0JyIiItkwACEi36VEojsRERHJigEIEfk2dye6ExERkayYA0JEvs+die5EREQkKwYgROQf3JXoTkRERLLiFiwiIiIiIlIMV0CIiByhb+FWLyIiIhcE3ApIXV0dpk6dCq1Wi8jISOTn56OhocHmc9asWYORI0dCq9VCpVKhvr6+w5ju3btDpVKZfRUVFbnpXRCRRxwtBlbcBmwcB3ycb/i+4jbDcSIiIpIk4AKQqVOn4siRI9i2bRu2bNmCPXv2YMaMGTaf09jYiJycHCxcuNDmuMWLF6O6utr09dRTT8l56UTkSUeLgc3TAN1Z8+O6asNxBiFERESSBNQWrIqKCmzduhXffPMNhgwZAgBYtWoV7rvvPixbtgzJyckWnzdnzhwAQElJic3zh4eHIzExUc5LJiJvoG8Bts4HICw8KACogK2Fhkpc3I5FRERkU0CtgJSVlSEyMtIUfABAdnY21Go1ysvLXT5/UVERYmJiMHDgQLz66qtobm62Ob6pqQk6nc7si4i80Om9HVc+zAhAV2UYR0RERDYF1ApITU0N4uPjzY4FBwcjOjoaNTU1Lp376aefxqBBgxAdHY29e/diwYIFqK6uxvLly60+5+WXX8aLL77o0usSkQIazsk7joiIKID5xQpIYWFhhwTw9l8//PCDW6+hoKAAI0eORP/+/fHEE0/gtddew6pVq9DU1GT1OQsWLMClS5dMX2fOnHHrNRKRk8IS5B1HREQUwPxiBWTevHnIy8uzOaZnz55ITEzE+fPnzY43Nzejrq5O9tyNzMxMNDc349SpU+jdu7fFMRqNBhqNRtbXJSI36DYc0CYbEs4t5oGoDI93G670lREREfkcvwhA4uLiEBcXZ3dcVlYW6uvrsX//fgwePBgAsHPnTuj1emRmZsp6TYcOHYJare6w5YuIfJA6CMhZaqh2BRXMgxCV4VtOERPQiYiIJPCLLVhSZWRkICcnB9OnT8e+fftQWlqK2bNn46GHHjJVwKqqqkJ6ejr27dtnel5NTQ0OHTqE48ePAwAOHz6MQ4cOoa6uDoAhuX3FihX49ttv8a9//Qvvvvsu5s6di0ceeQRRUVHKv1Eikl+f8cDkdwBtkvlxbbLheJ/xnrkuIiIiH+MXKyCOePfddzF79myMGTMGarUakyZNwsqVK02PX79+HceOHUNjY6Pp2OrVq82Sxe+55x4AwPr165GXlweNRoNNmzbhhRdeQFNTE3r06IG5c+eioKBAuTdGRO7XZ7yh1C47oRMRETlNJYSwtKGZPECn0yEiIgKXLl2CVqv19OUQERERUTu8X3NdQG3BIiIiIiIiz2IAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREimEAQkREREREign29AXQDUIIAIBOp/PwlRARERGRJcb7NON9GzmOAYgXuXz5MgAgNTXVw1dCRERERLZcvnwZERERnr4Mn6QSDN+8hl6vx9mzZxEeHg6VSqXIa+p0OqSmpuLMmTPQarWKvGYg43wrh3OtLM63sjjfyuFcK8sX5lsIgcuXLyM5ORlqNbMZnMEVEC+iVqtx8803e+S1tVqt1/6H7o8438rhXCuL860szrdyONfK8vb55sqHaxi2ERERERGRYhiAEBERERGRYhiABDiNRoNFixZBo9F4+lICAudbOZxrZXG+lcX5Vg7nWlmc78DAJHQiIiIiIlIMV0CIiIiIiEgxDECIiIiIiEgxDECIiIiIiEgxDECIiIiIiEgxDEACQF1dHaZOnQqtVovIyEjk5+ejoaHB5nPWrFmDkSNHQqvVQqVSob6+Xpbz+jtn5uTq1auYNWsWYmJiEBYWhkmTJuHcuXNmY1QqVYevTZs2ufOteKU33ngD3bt3R+fOnZGZmYl9+/bZHP/hhx8iPT0dnTt3Rr9+/fD555+bPS6EwPPPP4+kpCR06dIF2dnZqKysdOdb8Clyz3deXl6H3+OcnBx3vgWf4chcHzlyBJMmTUL37t2hUqmwYsUKl88ZaOSe7xdeeKHD73Z6erob34HvcGSu165di7vvvhtRUVGIiopCdnZ2h/H8u+0fGIAEgKlTp+LIkSPYtm0btmzZgj179mDGjBk2n9PY2IicnBwsXLhQ1vP6O2fmZO7cufjss8/w4YcfYvfu3Th79iweeOCBDuPWr1+P6upq09fEiRPd9C680wcffICCggIsWrQIBw4cwIABAzB27FicP3/e4vi9e/fi4YcfRn5+Pg4ePIiJEydi4sSJ+P77701jXnnlFaxcuRKrV69GeXk5brrpJowdOxZXr15V6m15LXfMNwDk5OSY/R6///77Srwdr+boXDc2NqJnz54oKipCYmKiLOcMJO6YbwDo27ev2e/2V1995a634DMcneuSkhI8/PDD2LVrF8rKypCamop7770XVVVVpjH8u+0nBPm1o0ePCgDim2++MR374osvhEqlElVVVXafv2vXLgFAXLx4Udbz+iNn5qS+vl506tRJfPjhh6ZjFRUVAoAoKyszHQMg/va3v7nt2n3BsGHDxKxZs0w/t7S0iOTkZPHyyy9bHD958mRx//33mx3LzMwUf/zjH4UQQuj1epGYmCheffVV0+P19fVCo9GI999/3w3vwLfIPd9CCJGbmysmTJjgluv1ZY7OdVvdunUTr7/+uqzn9HfumO9FixaJAQMGyHiV/sHV38Pm5mYRHh4uNm7cKITg321/whUQP1dWVobIyEgMGTLEdCw7OxtqtRrl5eVed15f5syc7N+/H9evX0d2drbpWHp6Orp27YqysjKzsbNmzUJsbCyGDRuGt99+GyKAWvhcu3YN+/fvN5sntVqN7OzsDvNkVFZWZjYeAMaOHWsaf/LkSdTU1JiNiYiIQGZmptVzBgp3zLdRSUkJ4uPj0bt3bzz55JOora2V/w34EGfm2hPn9BfunJvKykokJyejZ8+emDp1Kn766SdXL9enyTHXjY2NuH79OqKjowHw77Y/YQDi52pqahAfH292LDg4GNHR0aipqfG68/oyZ+akpqYGISEhiIyMNDuekJBg9pzFixdj8+bN2LZtGyZNmoSZM2di1apVsr8Hb/XLL7+gpaUFCQkJZsfbz1NbNTU1NscbvztyzkDhjvkGDNuv3nnnHezYsQNLly7F7t278dvf/hYtLS3yvwkf4cxce+Kc/sJdc5OZmYkNGzZg69atePPNN3Hy5EncfffduHz5squX7LPkmOv58+cjOTnZFHDw77b/CPb0BZBzCgsLsXTpUptjKioqFLoa/+YNc/3cc8+Z/j1w4EBcuXIFr776Kp5++mm3vi6RnB566CHTv/v164f+/fujV69eKCkpwZgxYzx4ZUSu+e1vf2v6d//+/ZGZmYlu3bph8+bNyM/P9+CV+a6ioiJs2rQJJSUl6Ny5s6cvh2TGAMRHzZs3D3l5eTbH9OzZE4mJiR2SvZqbm1FXV2czmc4ed53XG7lzrhMTE3Ht2jXU19ebrYKcO3fO5jxmZmbipZdeQlNTEzQajeT34qtiY2MRFBTUoTqYrXlKTEy0Od74/dy5c0hKSjIbc/vtt8t49b7HHfNtSc+ePREbG4vjx48HbADizFx74pz+Qqm5iYyMxK233orjx4/Ldk5f48pcL1u2DEVFRdi+fTv69+9vOs6/2/6DW7B8VFxcHNLT021+hYSEICsrC/X19di/f7/puTt37oRer0dmZqbTr++u83ojd8714MGD0alTJ+zYscN07NixY/jpp5+QlZVl9ZoOHTqEqKiogAg+ACAkJASDBw82mye9Xo8dO3ZYnaesrCyz8QCwbds20/gePXogMTHRbIxOp0N5ebnNuQ8E7phvS37++WfU1taa3UgEGmfm2hPn9BdKzU1DQwNOnDjB320n5vqVV17BSy+9hK1bt5rlVAL8u+1XPJ0FT+6Xk5MjBg4cKMrLy8VXX30l0tLSxMMPP2x6/Oeffxa9e/cW5eXlpmPV1dXi4MGDYu3atQKA2LNnjzh48KCora2VfN5A5MxcP/HEE6Jr165i586d4v/+7/9EVlaWyMrKMj1eXFws1q5dKw4fPiwqKyvFX/7yFxEaGiqef/55Rd+bp23atEloNBqxYcMGcfToUTFjxgwRGRkpampqhBBCPProo6KwsNA0vrS0VAQHB4tly5aJiooKsWjRItGpUydx+PBh05iioiIRGRkpPv30U/Hdd9+JCRMmiB49eohff/1V8ffnbeSe78uXL4tnnnlGlJWViZMnT4rt27eLQYMGibS0NHH16lWPvEdv4ehcNzU1iYMHD4qDBw+KpKQk8cwzz4iDBw+KyspKyecMZO6Y73nz5omSkhJx8uRJUVpaKrKzs0VsbKw4f/684u/Pmzg610VFRSIkJER89NFHorq62vR1+fJlszH8u+37GIAEgNraWvHwww+LsLAwodVqxWOPPWb2H/PJkycFALFr1y7TsUWLFgkAHb7Wr18v+byByJm5/vXXX8XMmTNFVFSUCA0NFf/2b/8mqqurTY9/8cUX4vbbbxdhYWHipptuEgMGDBCrV68WLS0tSr41r7Bq1SrRtWtXERISIoYNGya+/vpr02MjRowQubm5ZuM3b94sbr31VhESEiL69u0r/vGPf5g9rtfrxXPPPScSEhKERqMRY8aMEceOHVPirfgEOee7sbFR3HvvvSIuLk506tRJdOvWTUyfPp03xK0cmWvj35H2XyNGjJB8zkAn93xPmTJFJCUliZCQEJGSkiKmTJkijh8/ruA78l6OzHW3bt0szvWiRYtMY/h32z+ohAigWp5ERERERORRzAEhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIiIiIiLFMAAhIlJAXl4eVCoVnnjiiQ6PzZo1CyqVCnl5eR3Gq1QqdOrUCQkJCfjNb36Dt99+G3q93uz53377LcaPH4/4+Hh07twZ3bt3x5QpU3D+/Hl3vy2/1r17d6xYscLuuDVr1mDkyJHQarVQqVSor693+7UREfkyBiBERApJTU3Fpk2b8Ouvv5qOXb16Fe+99x66du3aYXxOTg6qq6tx6tQpfPHFFxg1ahT+9Kc/Ydy4cWhubgYAXLhwAWPGjEF0dDT++c9/oqKiAuvXr0dycjKuXLmi2HsLZI2NjcjJycHChQs9fSlERD6BAQgRkUIGDRqE1NRUfPLJJ6Zjn3zyCbp27YqBAwd2GK/RaJCYmIiUlBQMGjQICxcuxKeffoovvvgCGzZsAACUlpbi0qVLeOuttzBw4ED06NEDo0aNwuuvv44ePXpYvZampibMnz8fqamp0Gg0uOWWW7Bu3TrT47t378awYcOg0WiQlJSEwsJCU9ADACNHjsRTTz2FOXPmICoqCgkJCVi7di2uXLmCxx57DOHh4bjlllvwxRdfmJ5TUlIClUqFf/zjH+jfvz86d+6MO+64A99//73ZtX388cfo27cvNBoNunfvjtdee83s8e7du2PJkiV4/PHHER4ejq5du2LNmjVmY86cOYPJkycjMjIS0dHRmDBhAk6dOmV6PC8vDxMnTsSyZcuQlJSEmJgYzJo1C9evXze9v9OnT2Pu3LmmlShr5syZg8LCQtxxxx1WxxAR0Q0MQIiIFPT4449j/fr1pp/ffvttPPbYY5KfP3r0aAwYMMAUxCQmJqK5uRl/+9vfIISQfJ5p06bh/fffx8qVK1FRUYG//vWvCAsLAwBUVVXhvvvuw9ChQ/Htt9/izTffxLp16/Cf//mfZufYuHEjYmNjsW/fPjz11FN48skn8eCDD2L48OE4cOAA7r33Xjz66KNobGw0e96zzz6L1157Dd988w3i4uLwu9/9znTjv3//fkyePBkPPfQQDh8+jBdeeAHPPfecKeAyeu211zBkyBAcPHgQM2fOxJNPPoljx44BAK5fv46xY8ciPDwcX375JUpLSxEWFoacnBxcu3bNdI5du3bhxIkT2LVrFzZu3IgNGzaYXueTTz7BzTffjMWLF6O6uhrV1dWS55aIiOwQRETkdrm5uWLChAni/PnzQqPRiFOnTolTp06Jzp07iwsXLogJEyaI3NzcDuMtmTJlisjIyDD9vHDhQhEcHCyio6NFTk6OeOWVV0RNTY3Vazl27JgAILZt22bx8YULF4revXsLvV5vOvbGG2+IsLAw0dLSIoQQYsSIEeKuu+4yPd7c3Cxuuukm8eijj5qOVVdXCwCirKxMCCHErl27BACxadMm05ja2lrRpUsX8cEHHwghhPj3f/938Zvf/Mbsep599lnRp08f08/dunUTjzzyiOlnvV4v4uPjxZtvvimEEOK///u/O1x/U1OT6NKli/jnP/8phDDMb7du3URzc7NpzIMPPiimTJli9jqvv/66xTmyxPj+Ll68KPk5RESBiCsgREQKiouLw/33348NGzZg/fr1uP/++xEbG+vQOYQQZluC/uu//gs1NTVYvXo1+vbti9WrVyM9PR2HDx+2+PxDhw4hKCgII0aMsPh4RUUFsrKyzF7jzjvvRENDA37++WfTsf79+5v+HRQUhJiYGPTr1890LCEhAQA6JMNnZWWZ/h0dHY3evXujoqLC9Np33nmn2fg777wTlZWVaGlpsfjaKpUKiYmJptf59ttvcfz4cYSHhyMsLAxhYWGIjo7G1atXceLECdPz+vbti6CgINPPSUlJTNwnIlJAsKcvgIgo0Dz++OOYPXs2AOCNN95w+PkVFRUd8jtiYmLw4IMP4sEHH8SSJUswcOBALFu2DBs3buzw/C5dujh34e106tTJ7Gdjxa62PwPoULXLXa9tfJ2GhgYMHjwY7777bofnxcXFSToHERG5D1dAiIgUZsxFMOYqOGLnzp04fPgwJk2aZHVMSEgIevXqZbUKVr9+/aDX67F7926Lj2dkZKCsrMwsp6S0tBTh4eG4+eabHbpeS77++mvTvy9evIgff/wRGRkZptcuLS01G19aWopbb73VbLXClkGDBqGyshLx8fG45ZZbzL4iIiIkX2dISIjZqgsREcmDAQgRkcKCgoJQUVGBo0eP2rypbmpqQk1NDaqqqnDgwAEsWbIEEyZMwLhx4zBt2jQAwJYtW/DII49gy5Yt+PHHH3Hs2DEsW7YMn3/+OSZMmGDxvN27d0dubi4ef/xx/P3vf8fJkydRUlKCzZs3AwBmzpyJM2fO4KmnnsIPP/yATz/9FIsWLUJBQQHUatf/b2Px4sXYsWMHvv/+e+Tl5SE2NhYTJ04EAMybNw87duzASy+9hB9//BEbN27En//8ZzzzzDOSzz916lTExsZiwoQJ+PLLL03v7+mnnzbbQmZP9+7dsWfPHlRVVeGXX36xOq6mpgaHDh3C8ePHAQCHDx/GoUOHUFdXJ/m1iIgCCbdgERF5gFartTtm69atSEpKQnBwMKKiojBgwACsXLkSubm5pkCgT58+CA0Nxbx583DmzBloNBqkpaXhrbfewqOPPmr13G+++SYWLlyImTNnora2Fl27djX1sUhJScHnn3+OZ599FgMGDEB0dDTy8/PxH//xH7K896KiIvzpT39CZWUlbr/9dnz22WcICQkBYFi92Lx5M55//nm89NJLSEpKwuLFi82aNNoTGhqKPXv2YP78+XjggQdw+fJlpKSkYMyYMZLm3Wjx4sX44x//iF69eqGpqclqlbHVq1fjxRdfNP18zz33AADWr1/v0HUTEQUKlbD2F5WIiEhGJSUlGDVqFC5evIjIyEhPXw4REXkIt2AREREREZFiGIAQEREREZFiuAWLiIiIiIgUwxUQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSDAMQIiIiIiJSzP8H8WW+CaGyxGcAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cca06fb1be0c4a4588956ce900814eef", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gVVf7H8ffcnl4gISSEkNC7CIqAiiAIirAq6k9XBeyriAXcXXRXBRGRtYsuirurqKwVZFGkiSgqCipGpUpJqKGG9Hrvnd8fMVcuKQRII/m8nuc+4c6cmTkz3NzMd84532OYpmkiIiIiIiJSCyx1XQEREREREWk8FICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICIiIiIiEitUQAiIiIiIiK1RgGIiIiIiIjUGgUgIiIiIiJSaxSAiIiIiIhIrVEAIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIiIlJrFICISL2VmpqKYRi8/vrrdV2VBmvSpEkYhlHX1TgprVq1YsyYMXVdDREROUEKQESq0euvv45hGL6Xy+UiNjaWIUOG8MILL5CdnV1mm9IbwNKXxWKhefPmXHrppXz77bdlyv/yyy9ceeWVJCQk4HK5iIuLY/DgwcyYMaNMWY/Hw2uvvcYFF1xAZGQkTqeTVq1aceONN/L999+Xew7//Oc/MQyD3r17V3iepXV9+umnK7wGFe2/PtmwYQOTJk0iNTW1rqvSYH3yySdMmjSprqtRrVatWsWkSZPIyMio1v0uX76cm266iXbt2hEYGEhSUhK33HILaWlpVd7H0d8lNpuNyMhIevbsyT333MOGDRuqvJ9WrVphGAaDBg0qd/2rr77qO87Rv+vHfp8FBgbSsmVLhg8fzmuvvUZhYWG5+/voo4/o378/0dHRvnO/+uqrWbx4cZXrLCKnDwUgIjXg0Ucf5c0332TmzJmMGzcOgHvvvZeuXbvy888/l7vNzJkzefPNN3n99de56667WLduHeeffz7Jycm+MqtWraJXr1789NNP3Hrrrbz44ovccsstWCwWnn/+eb/95efnc+mll3LTTTdhmiYPPvggM2fOZNSoUXzzzTecffbZ7N69u0w95syZQ6tWrVizZg1bt26t9DyffPJJ8vLyTvDq1B8bNmxg8uTJjToA+fvf/05+fn6N7f+TTz5h8uTJNbb/urBq1SomT55c7QHIX//6Vz7//HMuv/xyXnjhBa655hree+89evTowb59+6q8n8GDB/Pmm2/y2muv8eijj3LmmWcye/ZsunfvzjPPPFPl/bhcLlasWFHusefMmYPL5apw29LvsxkzZnDLLbeQnp7OTTfdxNlnn82uXbv8yj711FOMGDECwzB44IEHePbZZxk5ciRbtmzhnXfeqXJ9ReQ0YopItXnttddMwPzuu+/KrFu+fLkZEBBgJiQkmHl5eb7ljzzyiAmYBw8e9Cu/bt06EzAffPBB37JLLrnEjIqKMo8cOVJm//v37/d7P3bsWBMwn3322TJl3W63+eSTT5q7du3yW759+3YTMOfNm2dGRUWZkyZNKvc8AfOMM84wAfPpp5+u8jU4USkpKSZgvvbaa6e8r/K8//77JmCuWLGiWvebk5NTrfs7Efn5+abH46mz4x+r9HNYExISEszRo0fXyL4r8+STT5qAmZKSUq37/eKLL8r8333xxRcmYP7tb3+r0j4Ac+zYsWWWHzp0yOzTp48JmAsXLjzufhISEswLL7zQDA0NNZ977jm/dbt27TItFos5cuTIMr/rFX2fmaZpvvXWW6bFYjF79+7tW1ZcXGyGhoaagwcPLrcex36viUjDoBYQkVoycOBAHnroIXbs2MFbb7113PIxMTEA2Gw237Jt27bRuXNnwsPDy5SPjo72/Xv37t288sorDB48mHvvvbdMWavVyv3330+LFi38ls+ZM4eIiAiGDRvGlVdeyZw5cyqsX79+/Rg4cCD/+Mc/TvoJekZGBvfddx+tWrXC6XTSokULRo0axaFDhyrc5oILLuCCCy4os3zMmDG0atXKb9k777xDz549CQkJITQ0lK5du/pail5//XWuuuoqAAYMGODrMvL555/7tl+0aBHnnXceQUFBhISEMGzYMNavX1/muMHBwWzbto1LLrmEkJAQrrvuOgC2bNnCyJEjiYmJweVy0aJFC6655hoyMzMrvS4XXHABXbp04YcffqBv374EBASQmJjIyy+/7Ffu888/xzAM3nnnHf7+978TFxdHYGAgWVlZALz//vv07NmTgIAAmjZtyvXXX8+ePXv89lHRGJC33nrLt21kZCTXXHNNmSfXAKtXr+aSSy4hIiKCoKAgunXr5rvGY8aM4aWXXgL8uwaV8nq9PPfcc3Tu3BmXy0WzZs24/fbbOXLkiN8xTNPkscceo0WLFgQGBjJgwIAy/w+Vyc3NZcKECcTHx+N0Omnfvj1PPfUUpmn6lTMMg7vuuov58+fTpUsXnE4nnTt39usGNGnSJP785z8DkJiY6Dun0lY0t9vNlClTaN26ta/L44MPPlhh16OjnX/++VgsljLLIiMj2bhxY5XPtzxNmjThnXfewWazMXXq1Cpt43K5uOKKK/jvf//rt/ztt98mIiKCIUOGnFAdrrvuOm655RZWr17NsmXLADh06BBZWVn069ev3G2O/l6ryLJlyzj33HMJDw8nODiY9u3b8+CDD/rWl/6evPvuuzz44IPExMQQFBTEiBEjynymv/zyS6666ipatmyJ0+kkPj6e++67r9zvuE2bNnH11VcTFRVFQEAA7du3529/+5tfmT179nDTTTfRrFkz3+fpP//5z3HPSaShsx2/iIhUlxtuuIEHH3yQpUuXcuutt/qtS09PB0puyvbs2cOUKVNwuVxcffXVvjIJCQl88803rFu3ji5dulR4nEWLFuF2u7nhhhtOqH5z5szhiiuuwOFwcO211zJz5ky+++47zjrrrHLLT5o0ifPPP5+ZM2cyfvz4EzpWTk4O5513Hhs3buSmm27izDPP5NChQyxYsIDdu3fTtGnTE9rfsZYtW8a1117LhRdeyPTp0wHYuHEjX3/9Nffccw/nn38+d999Ny+88AIPPvggHTt2BPD9fPPNNxk9ejRDhgxh+vTp5OXlMXPmTM4991x+/PFHv2DH7XYzZMgQzj33XJ566ikCAwMpKipiyJAhFBYWMm7cOGJiYtizZw8ff/wxGRkZhIWFVVr/I0eOcMkll3D11Vdz7bXX8t5773HHHXfgcDi46aab/MpOmTIFh8PB/fffT2FhIQ6Hg9dff50bb7yRs846i2nTprF//36ef/55vv76a3788cdyg9hSU6dO5aGHHuLqq6/mlltu4eDBg8yYMYPzzz/fb9tly5Zx6aWX0rx5c+655x5iYmLYuHEjH3/8Mffccw+33347e/fuZdmyZbz55ptljnP77bf76nn33XeTkpLCiy++yI8//sjXX3+N3W4H4OGHH+axxx7jkksu4ZJLLmHt2rVcdNFFFBUVVXoNoSR4GTFiBCtWrODmm2/mjDPOYMmSJfz5z39mz549PPvss37lv/rqK+bNm8edd95JSEgIL7zwAiNHjmTnzp00adKEK664gl9//ZW3336bZ5991vc5jYqKAuCWW25h9uzZXHnllUyYMIHVq1czbdo0Nm7cyIcffnjc+h4rJyeHnJycU/59AGjZsiX9+/dnxYoVZGVlERoaetxt/vjHP3LRRRexbds2WrduDcB///tfrrzySt//z4m44YYbmDVrFkuXLmXw4MFER0cTEBDARx99xLhx44iMjDyh/a1fv55LL72Ubt268eijj+J0Otm6dStff/11mbJTp07FMAz++te/cuDAAZ577jkGDRpEcnIyAQEBQEnQnpeXxx133EGTJk1Ys2YNM2bMYPfu3bz//vu+ff3888+cd9552O12brvtNlq1asW2bdv46KOPfAHe/v37Oeecc3yBbVRUFIsWLeLmm28mKyur3IdDIo1GHbfAiDQoVel+FBYWZvbo0cP3vrTLwrGv8PBwc/HixX7bLl261LRarabVajX79Olj/uUvfzGXLFliFhUV+ZW77777TMD88ccfq1z377//3gTMZcuWmaZpml6v12zRooV5zz33lCnLUd08BgwYYMbExPi6lVW1C9bDDz/s6+51LK/Xa5pm+V2w+vfvb/bv37/MNqNHjzYTEhJ87++55x4zNDTUdLvdFdahoi5Y2dnZZnh4uHnrrbf6Ld+3b58ZFhbmt3z06NEmYE6cONGv7I8//mgC5vvvv1/h8SvSv3//Mt3bCgsLzTPOOMOMjo72/X+vWLHCBMykpCS/bn1FRUVmdHS02aVLFzM/P9+3/OOPPzYB8+GHH/YtK/38lUpNTTWtVqs5depUvzr98ssvps1m8y13u91mYmKimZCQUKZLYOn/n2lW3AXryy+/NAFzzpw5fssXL17st/zAgQOmw+Ewhw0b5rffBx980ASO2wVr/vz5JmA+9thjfsuvvPJK0zAMc+vWrb5lgOlwOPyW/fTTTyZgzpgxw7esoi5YycnJJmDecsstfsvvv/9+EzA/++yzSutanilTppiAuXz58iqVP/p3szz33HOPCZg//fRTpftJSEgwhw0bZrrdbjMmJsacMmWKaZqmuWHDBhMwv/jii3J/1yvrgmWapnnkyBETMC+//HLfstLvgqCgIPPiiy82p06dav7www9VOt9nn3220uOZ5u+/J3FxcWZWVpZv+XvvvWcC5vPPP+9bdvTvUalp06aZhmGYO3bs8C07//zzzZCQEL9lpun/2b/55pvN5s2bm4cOHfIrc80115hhYWHlHkuksVAXLJFaFhwcXG42rLlz57Js2TKWLl3Ka6+9Rrt27Rg5ciSrVq3ylRk8eDDffPMNI0aM4KeffuIf//gHQ4YMIS4ujgULFvjKlXbBCQkJqXK95syZQ7NmzRgwYABQ0h3l//7v/3jnnXfweDwVbjdp0iT27dtXpnvQ8cydO5fu3btz+eWXl1lXHWlhw8PDyc3N9XX1OBHLli0jIyODa6+9lkOHDvleVquV3r17s2LFijLb3HHHHX7vS1s4lixZclID9W02G7fffrvvvcPh4Pbbb+fAgQP88MMPfmVHjx7te4IL8P3333PgwAHuvPNOv4HCw4YNo0OHDixcuLDC486bNw+v18vVV1/td+4xMTG0bdvWd+4//vgjKSkp3HvvvWVaU6ry//f+++8TFhbG4MGD/Y7Ts2dPgoODfcf59NNPKSoqYty4cX77rerT408++QSr1crdd9/tt3zChAmYpsmiRYv8lg8aNMj3pB+gW7duhIaGsn379iodCyjTGjhhwgSASq97eVauXMnkyZO5+uqrGThw4AltW5Hg4GCAcr+DymO1Wrn66qt5++23gZLvifj4eM4777xqO/7kyZP573//S48ePViyZAl/+9vf6NmzJ2eeeeZxu56Vfvb+97//4fV6Ky07atQov+/EK6+8kubNm/v+3wC/36Pc3FwOHTpE3759MU2TH3/8EYCDBw+ycuVKbrrpJlq2bOl3jNLPqGmazJ07l+HDh2Oapt9nfMiQIWRmZrJ27dpK6yvSkCkAEallOTk55QYG559/PoMGDWLw4MGMGTOG5cuXExIS4suiVeqss85i3rx5HDlyhDVr1vDAAw+QnZ3NlVde6UuzWdq1oqo3GR6Ph3feeYcBAwaQkpLC1q1b2bp1K71792b//v0sX768wm3PP/98BgwYcMJjQbZt21ZpN7JTdeedd9KuXTsuvvhiWrRowU033VTllJ5btmwBSsbtREVF+b2WLl3KgQMH/MrbbLYy42kSExMZP348//rXv2jatClDhgzhpZdeOu74j1KxsbEEBQX5LWvXrh1AmaxdiYmJfu937NgBQPv27cvst0OHDr715dmyZQumadK2bdsy575x40bfuW/btg3gpP8Pt2zZQmZmJtHR0WWOk5OT4ztOaV3btm3rt31UVBQRERHHPc6OHTuIjY0t8ztX2tXu2Gtx7A0lQERERJlxKRUdy2Kx0KZNG7/lMTExhIeHV3rdj7Vp0yYuv/xyunTpwr/+9S+/denp6ezbt8/3qupnCkq+f+DEHk788Y9/ZMOGDfz000/897//5ZprrjnphwQVHf/aa6/lyy+/5MiRIyxdupQ//vGP/PjjjwwfPpyCgoIK9/d///d/9OvXj1tuuYVmzZr5MoeVF4wc+xkyDIM2bdr4/T7t3LmTMWPGEBkZSXBwMFFRUfTv3x/Ad51Lg9HKPvsHDx4kIyODWbNmlfl833jjjQBlvkdEGhONARGpRbt37yYzM7PMDUp5goOD6d27N//73//Izc0tczPqcDg466yzOOuss2jXrh033ngj77//Po888ggdOnQASuYMOeOMM457rM8++4y0tDTeeeedctNezpkzh4suuqjC7R955BEuuOACXnnllUrHFlQHwzDKDB4GyrTSREdHk5yczJIlS1i0aBGLFi3itddeY9SoUcyePbvSY5TevLz55pu+ZABHOzoxAIDT6SwzeBjg6aefZsyYMfzvf/9j6dKl3H333UybNo1vv/22TMByKo5+anuqvF4vhmGwaNEirFZrmfWlT7Cr4zjR0dEVJjooHVNR28o7Z6Dcz1xFTrUFb9euXVx00UWEhYXxySeflLlZv+KKK/jiiy9870ePHl3lyTrXrVuH1WotE7RWpnfv3rRu3Zp7772XlJQU/vjHP1Z52/KOD1T4HRgaGsrgwYMZPHgwdrud2bNns3r1al8QcKyAgABWrlzJihUrWLhwIYsXL+bdd99l4MCBLF26tML/z/J4PB4GDx5Meno6f/3rX+nQoQNBQUHs2bOHMWPGHLeF5WilZa+//npGjx5dbplu3bpVeX8iDY0CEJFaVDoQt6rZY9xuN1Dy1PDYAORovXr1AvBNWHbxxRdjtVp56623qjQQfc6cOURHR/syFh1t3rx5fPjhh7z88ssV3uj279+fCy64gOnTp/Pwww8f93gArVu39t2MnIiIiIhyu8OU93TZ4XAwfPhwhg8fjtfr5c477+SVV17hoYceok2bNhXeKJZ2wYmOjq5wIraq6tq1K127duXvf/87q1atol+/frz88ss89thjlW63d+/eMoHnr7/+ClAm29exEhISANi8eXOZrjubN2/2rS9P69atMU2TxMREX4tLReWg5IaysmtU2TX+9NNP6devX6UBVGldt2zZQlJSkm/5wYMHq9QqkZCQwKeffkp2drbfjfymTZv89n8iKjqnhIQEvF4vW7Zs8bWwQMlg5IyMjCod6/Dhw1x00UUUFhayfPlymjdvXqbM008/7XfusbGxVar3zp07+eKLL+jTp88JtYBASQvFY489RseOHav0UKMiJ/Id2KtXL2bPnn3ciRgtFgsXXnghF154Ic888wyPP/44f/vb31ixYoXfZ7O0ZbOUaZps3brVFwj88ssv/Prrr8yePZtRo0b5yh3bjbP0c1jZ91dUVBQhISF4PJ5T/g4RaYjUBUuklnz22WdMmTKFxMREX5rWyqSnp7Nq1SpiYmJ8qShXrFhR7pPY0j7MpV1u4uPjufXWW1m6dGm5M6R7vV6efvppdu/eTX5+PvPmzePSSy/lyiuvLPO66667yM7O9htjUp7SsSCzZs067rkBjBw5kp9++qnczECVPW1u3bo1mzZt4uDBg75lP/30U5msN4cPH/Z7b7FYfDcapSlRS2/uj51QbsiQIYSGhvL4449TXFxcpg5HH7siWVlZvgCyVNeuXbFYLFVKyep2u3nllVd874uKinjllVeIioqiZ8+elW7bq1cvoqOjefnll/2OtWjRIjZu3MiwYcMq3PaKK67AarUyefLkMv8Ppmn6ruuZZ55JYmIizz33XJnrd/R2FV3jq6++Go/Hw5QpU8o999LygwYNwm63M2PGDL/9PvfccxWew9EuueQSPB4PL774ot/yZ599FsMwuPjii6u0n6NVdE6XXHJJuXUrnfyvsusOJWMOLrnkEvbs2cMnn3xSpstQqZ49ezJo0CDfq1OnTsetc3p6Otdeey0ej6dMqtiquOWWW3jkkUd4+umnT3jbUv/973/517/+RZ8+fbjwwgsByMvL45tvvim3fOn4nPK6EpYqzR54tNIA6djfszfeeMOvW+oHH3xAWlqa7zNQ2lpy9OfMNM0yk7xGRUVx/vnn85///IedO3f6rSvd1mq1MnLkSObOnVtuoFKV7xCRhkwtICI1YNGiRWzatAm3283+/fv57LPPWLZsGQkJCSxYsKDcGYQ/+OADgoODMU2TvXv38u9//5sjR47w8ssv+564jhs3jry8PC6//HI6dOhAUVERq1at4t1336VVq1a+vsVQ8pR027Zt3H333b4AIyIigp07d/L++++zadMmrrnmGhYsWEB2djYjRowo91zOOeccoqKimDNnDv/3f/9X4Tn379+f/v37+3UNqcyf//xnPvjgA6666ipuuukmevbsSXp6OgsWLODll1+me/fu5W5300038cwzzzBkyBBuvvlmDhw4wMsvv0znzp19g+8B3+zLAwcOpEWLFuzYsYMZM2Zwxhln+J5On3HGGVitVqZPn05mZiZOp5OBAwcSHR3NzJkzueGGGzjzzDO55ppriIqKYufOnSxcuJB+/fqVuaE91meffcZdd93FVVddRbt27XC73bz55pu+G5PjiY2NZfr06aSmptKuXTveffddkpOTmTVr1nHTn9rtdqZPn86NN95I//79ufbaa31peFu1asV9991X4batW7fmscce44EHHiA1NZXLLruMkJAQUlJS+PDDD7ntttu4//77sVgszJw5k+HDh3PGGWdw44030rx5czZt2sT69etZsmQJgC9YuvvuuxkyZAhWq5VrrrmG/v37c/vttzNt2jSSk5O56KKLsNvtbNmyhffff5/nn3+eK6+8kqioKO6//36mTZvGpZdeyiWXXMKPP/7IokWLqpSadvjw4QwYMIC//e1vpKam0r17d5YuXcr//vc/7r33Xr8B51VVek5/+9vfuOaaa7Db7QwfPpzu3bszevRoZs2aRUZGBv3792fNmjXMnj2byy67zJfgoSLXXXcda9as4aabbmLjxo1+A7CDg4O57LLLqlS/X3/9lbfeegvTNMnKyuKnn37i/fffJycnh2eeeYahQ4ee8DknJCQwadKkKpcv/T4rKipiz549LFmyhK+//pru3bv7pbPNy8ujb9++nHPOOQwdOpT4+HgyMjKYP38+X375JZdddhk9evSo8DiPPvooK1euZNiwYSQkJHDgwAH++c9/0qJFC84991y/spGRkZx77rnceOON7N+/n+eee442bdr4UqJ36NCB1q1bc//997Nnzx5CQ0OZO3duuS1tL7zwAueeey5nnnkmt912G4mJiaSmprJw4UKSk5MBeOKJJ1ixYgW9e/fm1ltvpVOnTqSnp7N27Vo+/fTTcoMnkUajdpNuiTRspWkpS18Oh8OMiYkxBw8ebD7//PN+KSBLlZeGNygoyOzTp4/53nvv+ZVdtGiRedNNN5kdOnQwg4ODTYfDYbZp08YcN25cuTMGu91u81//+pd53nnnmWFhYabdbjcTEhLMG2+80Zeid/jw4abL5TJzc3MrPK8xY8aYdrvdl06SClJ9lqa7pIozoR8+fNi86667zLi4ONPhcJgtWrQwR48e7TtORTOhv/XWW2ZSUpLpcDjMM844w1yyZEmZNLwffPCBedFFF5nR0dGmw+EwW7Zsad5+++1mWlqa375effVVMykpybRarWVS8q5YscIcMmSIGRYWZrpcLrN169bmmDFjzO+//95XZvTo0WZQUFCZc9u+fbt50003ma1btzZdLpcZGRlpDhgwwPz000+Pe1369+9vdu7c2fz+++/NPn36mC6Xy0xISDBffPFFv3Kl17uiVL/vvvuu2aNHD9PpdJqRkZHmddddZ+7evduvzLFpeEvNnTvXPPfcc82goCAzKCjI7NChgzl27Fhz8+bNfuW++uorc/DgwWZISIgZFBRkduvWzS9lrdvtNseNG2dGRUWZhmGUOdasWbPMnj17mgEBAWZISIjZtWtX8y9/+Yu5d+9eXxmPx2NOnjzZbN68uRkQEGBecMEF5rp166o8E3p2drZ53333mbGxsabdbjfbtm1rPvnkk34pU02z4s91eceZMmWKGRcXZ1osFr+UvMXFxebkyZPNxMRE0263m/Hx8eYDDzxgFhQUHLeeCQkJ5abkBvw+25U5ehuLxWKGh4ebPXr0MO+55x5z/fr1VdpHaV2GDRtWaZnK0vCWvlwul9miRQvz0ksvNf/zn/+UuQ7FxcXmq6++al522WVmQkKC6XQ6zcDAQLNHjx7mk08+aRYWFlZah+XLl5t/+MMfzNjYWNPhcJixsbHmtddea/7666++MqW/J2+//bb5wAMPmNHR0WZAQIA5bNiwMml0N2zYYA4aNMgMDg42mzZtat56662+VMzHfg+tW7fOvPzyy83w8HDT5XKZ7du3Nx966CG/Mvv37zfHjh1rxsfHm3a73YyJiTEvvPBCc9asWZWel0hDZ5jmCYysExGRGnfBBRdw6NChkxojc6Ieeughpk2bVqa7mEhD8fnnnzNgwADef/99rrzyyrqujoigMSAiIo1aWlpatcyyLSIiUlUaAyIi0ght376dDz/8kPfff59LL720rqsjIiKNiFpAREQaodJZtvv37+/L0iQiIlIbNAZERERERERqjVpARERERESk1igAERERERGRWqNB6I2Y1+tl7969hISE+Ca6ExERETmdmKZJdnY2sbGxWCx6tn46UADSiO3du5f4+Pi6roaIiIjIKdu1axctWrSo62pIFSgAacRCQkKAkl/Y0NDQU97f7o3r+HD65OOWu/yvj9CiY5dTPp6IiIhIVlYW8fHxvvsaqf8UgDRipd2uQkNDqyUA6XBWb5o2a05O+qEKy4Q0aUqHs3pjsVhP+XgiIiIipdSd/PShjnJSbSwWKwPH3FZpmQGjb1PwISIiItKIKQCRatW2d19GjH+Q4MimfstDmjRlxPgHadu7bx3VTERERETqA3XBkmrXtndfWp/Vmz0b15OTcYTg8AjiOnZWy4eIiIiIKACRmmGxWInv3K2uqyEiIqcpj8dDcXFxXVdD6gG73Y7VqoeYDYkCEBEREak3TNNk3759ZGRk1HVVpB4JDw8nJiZGA80bCAUgIiIiUm+UBh/R0dEEBgbqhrORM02TvLw8Dhw4AEDz5s3ruEZSHRSAiIiISL3g8Xh8wUeTJk3qujpSTwQEBABw4MABoqOj1R2rAVAWLBEREakXSsd8BAYG1nFNpL4p/UxoXFDDoABERERE6hV1u5Jj6TPRsCgAERERERGRWqMARERERKQWGIbB/Pnz67oaInVOAYiIiIjIKdq3bx/jxo0jKSkJp9NJfHw8w4cPZ/ny5TVyvM8//xzDMGo0XfHUqVPp27cvgYGBhIeH19hxpPFRFiwRERFpUDxekzUp6RzILiA6xMXZiZFYLTU3hiA1NZV+/foRHh7Ok08+SdeuXSkuLmbJkiWMHTuWTZs21dixT5Vpmng8Hmy2sreERUVFXHXVVfTp04d///vfdVA7aajUAiIiIiINxuJ1aZw7/TOuffVb7nknmWtf/ZZzp3/G4nVpNXbMO++8E8MwWLNmDSNHjqRdu3Z07tyZ8ePH8+2335a7TXktGMnJyRiGQWpqKgA7duxg+PDhREREEBQUROfOnfnkk09ITU1lwIABAERERGAYBmPGjAHA6/Uybdo0EhMTCQgIoHv37nzwwQdljrto0SJ69uyJ0+nkq6++KreOkydP5r777qNr166nfpFEjqIWEBEREWkQFq9L44631mIes3xfZgF3vLWWmdefydAu1TuRXXp6OosXL2bq1KkEBQWVWX8qXZfGjh1LUVERK1euJCgoiA0bNhAcHEx8fDxz585l5MiRbN68mdDQUN9cGdOmTeOtt97i5Zdfpm3btqxcuZLrr7+eqKgo+vfv79v3xIkTeeqpp0hKSiIiIuKk6yhyMhSAiIiIyGnP4zWZ/NGGMsEHgAkYwOSPNjC4U0y1dsfaunUrpmnSoUOHattnqZ07dzJy5EhfC0RSUpJvXWRkJADR0dG+IKewsJDHH3+cTz/9lD59+vi2+eqrr3jllVf8ApBHH32UwYMHV3udRapCAYiIiIic9takpJOWWVDhehNIyyxgTUo6fVpX3yzrplleyFM97r77bu644w6WLl3KoEGDGDlyJN26dauw/NatW8nLyysTWBQVFdGjRw+/Zb169aqROotUhQIQEREROe0dyK44+DiZclXVtm1bDMM44YHmFkvJMNyjA5hjZ/m+5ZZbGDJkCAsXLmTp0qVMmzaNp59+mnHjxpW7z5ycHAAWLlxIXFyc3zqn0+n3vrzuYiK1RYPQRURE5LQXHeKq1nJVFRkZyZAhQ3jppZfIzc0ts76iNLlRUVEApKX9Pjg+OTm5TLn4+Hj+9Kc/MW/ePCZMmMCrr74KgMPhAMDj8fjKdurUCafTyc6dO2nTpo3fKz4+/mRPUaTaKQARERGR097ZiZE0D3NR0egOA2geVpKSt7q99NJLeDwezj77bObOncuWLVvYuHEjL7zwgm8sxrFKg4JJkyaxZcsWFi5cyNNPP+1X5t5772XJkiWkpKSwdu1aVqxYQceOHQFISEjAMAw+/vhjDh48SE5ODiEhIdx///3cd999zJ49m23btrF27VpmzJjB7NmzT/i8du7cSXJyMjt37sTj8ZCcnExycrKvpUXkZCkAERERkdOe1WLwyPBOAGWCkNL3jwzvVCPzgSQlJbF27VoGDBjAhAkT6NKlC4MHD2b58uXMnDmz3G3sdjtvv/02mzZtolu3bkyfPp3HHnvMr4zH42Hs2LF07NiRoUOH0q5dO/75z38CEBcXx+TJk5k4cSLNmjXjrrvuAmDKlCk89NBDTJs2zbfdwoULSUxMPOHzevjhh+nRowePPPIIOTk59OjRgx49evD999+f8L5EjmaYNTl6Suq1rKwswsLCyMzMJDQ0tK6rIyIijVxBQQEpKSkkJibicp1cV6nF69KY/NEGvwHpzcNcPDK8U7Wn4JXaU9lnQ/czpx8NQhcREZEGY2iX5gzuFFOrM6GLyIlRACIiIiINitViVGuqXRGpXhoDIiIiIiIitUYBiIiIiIiI1BoFICIiIiIiUmsUgIiIiIiISK1RACIiIiIiIrVGAYiIiIiIiNQaBSAiIiIitcAwDObPn1/X1RCpcwpARERERE7Rvn37GDduHElJSTidTuLj4xk+fDjLly+vkeN9/vnnGIZBRkZGjew/NTWVm2++mcTERAICAmjdujWPPPIIRUVFNXI8aVw0EaGIiIjIKUhNTaVfv36Eh4fz5JNP0rVrV4qLi1myZAljx45l06ZNdV3FCpmmicfjwWbzvyXctGkTXq+XV155hTZt2rBu3TpuvfVWcnNzeeqpp+qottJQqAVEREREGhavB1K+hF8+KPnp9dTo4e68804Mw2DNmjWMHDmSdu3a0blzZ8aPH8+3335b7jbltWAkJydjGAapqakA7Nixg+HDhxMREUFQUBCdO3fmk08+ITU1lQEDBgAQERGBYRiMGTMGAK/Xy7Rp03wtF927d+eDDz4oc9xFixbRs2dPnE4nX331VZn6DR06lNdee42LLrqIpKQkRowYwf3338+8efOq56JJo6YWEBEREWk4NiyAxX+FrL2/LwuNhaHTodOIaj9ceno6ixcvZurUqQQFBZVZHx4eftL7Hjt2LEVFRaxcuZKgoCA2bNhAcHAw8fHxzJ07l5EjR7J582ZCQ0MJCAgAYNq0abz11lu8/PLLtG3blpUrV3L99dcTFRVF//79ffueOHEiTz31FElJSURERFSpPpmZmURGRp70+YiUUgAiIiIiDcOGBfDeKMD0X56VVrL86jeqPQjZunUrpmnSoUOHat0vwM6dOxk5ciRdu3YFICkpybeuNBCIjo72BTmFhYU8/vjjfPrpp/Tp08e3zVdffcUrr7ziF4A8+uijDB48uMp12bp1KzNmzFD3K6kWCkBERETk9Of1lLR8HBt8wG/LDFg8EToMA4u12g5rmuUdr3rcfffd3HHHHSxdupRBgwYxcuRIunXrVmH5rVu3kpeXVyawKCoqokePHn7LevXqVeV67Nmzh6FDh3LVVVdx6623nthJiJRDY0BERETk9LdjlX+3qzJMyNpTUq4atW3bFsMwTnigucVScgt2dABTXFzsV+aWW25h+/bt3HDDDfzyyy/06tWLGTNmVLjPnJwcABYuXEhycrLvtWHDBr9xIEC53cXKs3fvXgYMGEDfvn2ZNWtWlbYROR4FICIiInL6y9lfveWqKDIykiFDhvDSSy+Rm5tbZn1FaXKjoqIASEtL8y1LTk4uUy4+Pp4//elPzJs3jwkTJvDqq68C4HA4APB4fh9g36lTJ5xOJzt37qRNmzZ+r/j4+BM+tz179nDBBRfQs2dPXnvtNV/QJHKq9EkSERGR019ws+otdwJeeuklPB4PZ599NnPnzmXLli1s3LiRF154wTcW41ilQcGkSZPYsmULCxcu5Omnn/Yrc++997JkyRJSUlJYu3YtK1asoGPHjgAkJCRgGAYff/wxBw8eJCcnh5CQEO6//37uu+8+Zs+ezbZt21i7di0zZsxg9uzZJ3ROpcFHy5Yteeqppzh48CD79u1j3759J3eRRI6iMSAiIiJy+kvoW5LtKiuN8seBGCXrE/pW+6GTkpJYu3YtU6dOZcKECaSlpREVFUXPnj2ZOXNmudvY7Xbefvtt7rjjDrp168ZZZ53FY489xlVXXeUr4/F4GDt2LLt37yY0NJShQ4fy7LPPAhAXF8fkyZOZOHEiN954I6NGjeL1119nypQpREVFMW3aNLZv3054eDhnnnkmDz744Amd07Jly9i6dStbt26lRYsWfutqctyLNA6GqU9Ro5WVlUVYWBiZmZmEhobWdXVERKSRKygoICUlhcTERFwu14nvwJcFC/yDEKPkRw1kwZLaUdlnQ/czpx91wRIREZGGodOIkiAjtLn/8tBYBR8i9Yi6YImIiEjD0WlESardHatKBpwHNyvpdlWNqXdF5NQoABEREZGGxWKFxPPquhYiUgF1wRIRERERkVqjAERERERERGqNAhAREREREak1CkBERERERKTWKAAREREREZFaoyxYUv28HqU/FBEREZFyKQCR6rVhASz+K2Tt/X1ZaCwMna4JoEREpFEzDIMPP/yQyy67rK6rIlKn1AVLqs+GBfDeKP/gAyArrWT5hgV1Uy8REZEatm/fPsaNG0dSUhJOp5P4+HiGDx/O8uXLa+R4n3/+OYZhkJGRUSP7BxgxYgQtW7bE5XLRvHlzbrjhBvbu3Xv8DUWOQwGIVA+vp6TlA7Oclb8tWzyxpJyIiEgDkpqaSs+ePfnss8948skn+eWXX1i8eDEDBgxg7NixdV29SpmmidvtLnfdgAEDeO+999i8eTNz585l27ZtXHnllbVcQ2mIFIBI9dixqmzLhx8TsvaUlBMREalBHq+H7/Z9xyfbP+G7fd/hqeGHX3feeSeGYbBmzRpGjhxJu3bt6Ny5M+PHj+fbb78td5vyWjCSk5MxDIPU1FQAduzYwfDhw4mIiCAoKIjOnTvzySefkJqayoABAwCIiIjAMAzGjBkDgNfrZdq0aSQmJhIQEED37t354IMPyhx30aJF9OzZE6fTyVdffVVuHe+77z7OOeccEhIS6Nu3LxMnTuTbb7+luLj41C+aNGoaAyLVI2d/9ZYTERE5CZ/u+JQn1jzB/rzf/940C2zGxLMnMihhULUfLz09ncWLFzN16lSCgoLKrA8PDz/pfY8dO5aioiJWrlxJUFAQGzZsIDg4mPj4eObOncvIkSPZvHkzoaGhBAQEADBt2jTeeustXn75Zdq2bcvKlSu5/vrriYqKon///r59T5w4kaeeeoqkpCQiIiKqdJ5z5syhb9++2O32kz4nEVAAItUluFn1lhMRETlBn+74lPGfj8c8pjvwgbwDjP98PM9c8Ey1ByFbt27FNE06dOhQrfsF2LlzJyNHjqRr164AJCUl+dZFRkYCEB0d7QtyCgsLefzxx/n000/p06ePb5uvvvqKV155xS8AefTRRxk8ePBx6/DXv/6VF198kby8PM455xw+/vjj6jo9acTUBUuqR0LfkmxXGBUUMCA0rqSciIhINfN4PTyx5okywQfgWzZ9zfRq745lmuWNfawed999N4899hj9+vXjkUce4eeff660/NatW8nLy2Pw4MEEBwf7Xm+88Qbbtm3zK9urV68q1eHPf/4zP/74I0uXLsVqtTJq1KgaPWdpHBSASPWwWEtS7QJlg5Df3g99QvOBiIhIjVh7YK1ft6tjmZjsy9vH2gNrq/W4bdu2xTAMNm3adELbWSwlt2BH38wfO7billtuYfv27dxwww388ssv9OrVixkzZlS4z5ycHAAWLlxIcnKy77Vhwwa/cSBAud3FytO0aVPatWvH4MGDeeedd/jkk08qHNciUlUKQGrAypUrGT58OLGxsRiGwfz58/3WjxkzBsMw/F5Dhw71K5Oens51111HaGgo4eHh3Hzzzb4vllI///wz5513Hi6Xi/j4eP7xj3/U9KlVrtMIuPoNCG3uvzw0tmS55gEREZEacjDvYLWWq6rIyEiGDBnCSy+9RG5ubpn1FaXJjYqKAiAtLc23LDk5uUy5+Ph4/vSnPzFv3jwmTJjAq6++CoDD4QDA4/m9RadTp044nU527txJmzZt/F7x8fEne4o+Xq8XKOnqJXIqNAakBuTm5tK9e3duuukmrrjiinLLDB06lNdee8333ul0+q2/7rrrSEtLY9myZRQXF3PjjTdy22238d///heArKwsLrroIgYNGsTLL7/ML7/8wk033UR4eDi33XZbzZ3c8XQaAR2GaSZ0ERGpVVGBUdVa7kS89NJL9OvXj7PPPptHH32Ubt264Xa7WbZsGTNnzmTjxo1ltikNCiZNmsTUqVP59ddfefrpp/3K3HvvvVx88cW0a9eOI0eOsGLFCjp27AhAQkIChmHw8ccfc8kllxAQEEBISAj3338/9913H16vl3PPPZfMzEy+/vprQkNDGT16dJXPafXq1Xz33Xece+65REREsG3bNh566CFat27tG18icrIUgNSAiy++mIsvvrjSMk6nk5iYmHLXbdy4kcWLF/Pdd9/5+mjOmDGDSy65hKeeeorY2FjmzJlDUVER//nPf3A4HHTu3Jnk5GSeeeaZug1AoCTYSDyvbusgIiKNypnRZ9IssBkH8g6UOw7EwKBZYDPOjD6z2o+dlJTE2rVrmTp1KhMmTCAtLY2oqCh69uzJzJkzy93Gbrfz9ttvc8cdd9CtWzfOOussHnvsMa666ipfGY/Hw9ixY9m9ezehoaEMHTqUZ599FoC4uDgmT57MxIkTufHGGxk1ahSvv/46U6ZMISoqimnTprF9+3bCw8M588wzefDBB0/onAIDA5k3bx6PPPIIubm5NG/enKFDh/L3v/+9zENTkRNlmBpJVKMMw+DDDz/ksssu8y0bM2YM8+fPx+FwEBERwcCBA3nsscdo0qQJAP/5z3+YMGECR44c8W3jdrtxuVy8//77XH755YwaNYqsrCy/7l0rVqxg4MCBpKenl5tSr7Cw0K/ZNCsri/j4eDIzMwkNDa3+kxcRETkBBQUFpKSkkJiYiMvlOuHtS7NgAX5BiPHbWMSayIIltaOyz0ZWVhZhYWG6nzmNaAxIHRg6dChvvPEGy5cvZ/r06XzxxRdcfPHFvn6c+/btIzo62m8bm81GZGQk+/bt85Vp1sw/pW3p+9Iyx5o2bRphYWG+V3X0BxUREakvBiUM4pkLniE60P9vaLPAZgo+ROoRdcGqA9dcc43v3127dqVbt260bt2azz//nAsvvLDGjvvAAw8wfvx43/vSFhAREZGGYlDCIAbED2DtgbUczDtIVGAUZ0afiVVjEUXqDQUg9UBSUhJNmzZl69atXHjhhcTExHDgwAG/Mm63m/T0dN+4kZiYGPbv9083WPq+orElTqdT/TZFRKTBs1qsnBVzVl1XQ0QqoC5Y9cDu3bs5fPgwzZuXpK/t06cPGRkZ/PDDD74yn332GV6vl969e/vKrFy50i9n+LJly2jfvn254z9EREREROoDBSA1ICcnxzf5D0BKSgrJycns3LmTnJwc/vznP/Ptt9+SmprK8uXL+cMf/kCbNm0YMmQIAB07dmTo0KHceuutrFmzhq+//pq77rqLa665htjYWAD++Mc/4nA4uPnmm1m/fj3vvvsuzz//vF8XKxERERGR+kYBSA34/vvv6dGjBz169ABg/Pjx9OjRg4cffhir1crPP//MiBEjaNeuHTfffDM9e/bkyy+/9OseNWfOHDp06MCFF17IJZdcwrnnnsusWbN868PCwli6dCkpKSn07NmTCRMm8PDDD9d9Cl4RERERkUooDW8jprR1IiJSn5xqGl5puJSGt2FRC4iIiIiIiNQaBSAiIiIiIlJrFICIiIiI1ALDMJg/f35dV0OkzikAERERETlF+/btY9y4cSQlJeF0OomPj2f48OEsX768Ro73+eefYxgGGRkZNbL/oxUWFnLGGWdgGIYvw6fIqdBEhCIiIiKnIDU1lX79+hEeHs6TTz5J165dKS4uZsmSJYwdO5ZNmzbVdRUrZJomHo8Hm63iW8K//OUvxMbG8tNPP9VizaQhUwuIiIiINCimx0Pu6jVkfryQ3NVrMD2eGj3enXfeiWEYrFmzhpEjR9KuXTs6d+7M+PHj+fbbb8vdprwWjOTkZAzDIDU1FYAdO3YwfPhwIiIiCAoKonPnznzyySekpqYyYMAAACIiIjAMgzFjxgDg9XqZNm0aiYmJBAQE0L17dz744IMyx120aBE9e/bE6XTy1VdfVXhuixYtYunSpTz11FOndpFEjqIWEBEREWkwspYuZf/j03Dv2+dbZouJodmDDxB60UXVfrz09HQWL17M1KlTCQoKKrM+PDz8pPc9duxYioqKWLlyJUFBQWzYsIHg4GDi4+OZO3cuI0eOZPPmzYSGhhIQEADAtGnTeOutt3j55Zdp27YtK1eu5PrrrycqKor+/fv79j1x4kSeeuopkpKSiIiIKPf4+/fv59Zbb2X+/PkEBgae9HmIHEsBiIiIiDQIWUuXsueee+GYKc7c+/eXLH/+uWoPQrZu3YppmnTo0KFa9wuwc+dORo4cSdeuXQFISkryrYuMjAQgOjraF+QUFhby+OOP8+mnn9KnTx/fNl999RWvvPKKXwDy6KOPMnjw4AqPbZomY8aM4U9/+hO9evXytcqIVAcFICIiInLaMz0e9j8+rUzwUbLSBMNg/+PTCLnwQgyrtfqOW4PzOd99993ccccdLF26lEGDBjFy5Ei6detWYfmtW7eSl5dXJrAoKiqiR48efst69epV6bFnzJhBdnY2DzzwwMmfgEgFNAZERERETnt53//g1+2qDNPEvW8fed//UK3Hbdu2LYZhnPBAc4vF8lu1fg9giouL/crccsstbN++nRtuuIFffvmFXr16MWPGjAr3mZOTA8DChQtJTk72vTZs2OA3DgQot7vY0T777DO++eYbnE4nNpuNNm3aACWBy+jRo6t+oiLlUAAijZPXAylfwi8flPz01uwARRERqVnugwertVxVRUZGMmTIEF566SVyc3PLrK8oTW5UVBQAaWlpvmXlpbiNj4/nT3/6E/PmzWPChAm8+uqrADgcDgA8Rw2w79SpE06nk507d9KmTRu/V3x8/Amd1wsvvMBPP/3kC2I++eQTAN59912mTp16QvsSOZa6YEnjs2EBLP4rZO39fVloLAydDp1G1F29RETkpNl+u6GvrnIn4qWXXqJfv36cffbZPProo3Tr1g23282yZcuYOXMmGzduLLNNaVAwadIkpk6dyq+//srTTz/tV+bee+/l4osvpl27dhw5coQVK1bQsWNHABISEjAMg48//phLLrmEgIAAQkJCuP/++7nvvvvwer2ce+65ZGZm8vXXXxMaGnpCLRctW7b0ex8cHAxA69atadGixYleIhE/agGRxmXDAnhvlH/wAZCVVrJ8w4K6qZeIiJySwF49scXEgGGUX8AwsMXEENirZ7UfOykpibVr1zJgwAAmTJhAly5dGDx4MMuXL2fmzJnlbmO323n77bfZtGkT3bp1Y/r06Tz22GN+ZTweD2PHjqVjx44MHTqUdu3a8c9//hOAuLg4Jk+ezMSJE2nWrBl33XUXAFOmTOGhhx5i2rRpvu0WLlxIYmJitZ+3yMkyzJocPSX1WlZWFmFhYWRmZhIaGlrX1al5Xg8816Vs8OFjlLSE3PsLWKpvgKKIiFRNQUEBKSkpJCYm4nK5Tnh7XxYs8B+M/ltQElcDWbCkdlT22Wh09zMNgFpApPHYsaqS4APAhKw9JeVEROS0E3rRRcQ9/xy2Zs38ltuaNVPwIVKPaAyINB45+6u3nIiI1DuhF11EyIUXlmTFOngQW1QUgb16VmvqXRE5NQpApPEIbnb8MidSTkRE6iXDaiWo99l1XQ0RqYC6YEnjkdC3ZIwHFQxQxIDQuJJyIiIiIlIjFIBI42GxlqTaBcoGIb+9H/qEBqCLiIiI1CAFINK4dBoBV78Boc39l4fGlizXPCAiIiIiNUpjQKR6eD0l2aNy9peMoUjoW39bEjqNgA7DTp/6ioiIiDQgCkDk1J2OM4tbrJB4Xl3XQkRERKTRURcsOTWaWVxEREREToACEDl5Xk9JywdmOSt/W7Z4Ykk5ERGRRs4wDObPn1/X1RCpcwpApOq8Hkj5En75oORnypeaWVxERATYt28f48aNIykpCafTSXx8PMOHD2f58uU1crzPP/8cwzDIyMiokf0DtGrVCsMw/F5PPPFEjR1PGg+NAZGqKW+cR0BE1bbVzOIiItKApaam0q9fP8LDw3nyySfp2rUrxcXFLFmyhLFjx7Jp06a6rmKFTNPE4/Fgs5V/S/joo49y6623+t6HhITUVtWkAVMLiBxfReM88o9UbXvNLC4iIrXI6zXZs/kIv363jz2bj+D1ltdVuPrceeedGIbBmjVrGDlyJO3ataNz586MHz+eb7/9ttxtymvBSE5OxjAMUlNTAdixYwfDhw8nIiKCoKAgOnfuzCeffEJqaioDBgwAICIiAsMwGDNmDABer5dp06aRmJhIQEAA3bt354MPPihz3EWLFtGzZ0+cTidfffVVhecWEhJCTEyM7xUUFHRqF0sEtYDI8VQ6zuN4jJJsWJpZXEREasm2Hw/w5btbyM0o9C0LCndy3v+1pXWP6Go/Xnp6OosXL2bq1Knl3pyHh4ef9L7Hjh1LUVERK1euJCgoiA0bNhAcHEx8fDxz585l5MiRbN68mdDQUAICAgCYNm0ab731Fi+//DJt27Zl5cqVXH/99URFRdG/f3/fvidOnMhTTz1FUlISEREV92h44oknmDJlCi1btuSPf/wj9913X4WtJSJVpU+QVG7HquOM86iIZhYXEZHate3HAyx+ZV2Z5bkZhSx+ZR1Db+9S7UHI1q1bMU2TDh06VOt+AXbu3MnIkSPp2rUrAElJSb51kZGRAERHR/uCnMLCQh5//HE+/fRT+vTp49vmq6++4pVXXvELQB599FEGDx5c6fHvvvtuzjzzTCIjI1m1ahUPPPAAaWlpPPPMM9V5mtIIKQCRylV1/EZAOORn/P4+NLYk+Kiv84CU53SaTFFERPx4vSZfvrul0jJfvbeFxO5RWCxGtR3XNGuue9fdd9/NHXfcwdKlSxk0aBAjR46kW7duFZbfunUreXl5ZQKLoqIievTo4besV69exz3++PHjff/u1q0bDoeD22+/nWnTpuF0Ok/wbER+pwBEKlfV8RtXvQGG5fS9eT8dJ1MUERGftC0Zft2uypNzpJC0LRnEta9iEpUqaNu2LYZhnPBAc4ulZBju0QFMcXGxX5lbbrmFIUOGsHDhQpYuXcq0adN4+umnGTduXLn7zMnJAWDhwoXExcX5rTs2YDiZsRy9e/fG7XaTmppK+/btT3h7kVIahC6VS+hbciNORU+LDAiNg1bnlsws3vXKkp+nW/ChyRRFRE5ruVmVBx8nWq6qIiMjGTJkCC+99BK5ubll1leUJjcqKgqAtLQ037Lk5OQy5eLj4/nTn/7EvHnzmDBhAq+++ioADocDAI/n97m2OnXqhNPpZOfOnbRp08bvFR8ff7Kn6Fc/i8VCdHT1j6WRxkUBiFTOYi1pBQDKBiENYJyHJlMUEWkQgkKr1iWoquVOxEsvvYTH4+Hss89m7ty5bNmyhY0bN/LCCy/4xmIcqzQomDRpElu2bGHhwoU8/fTTfmXuvfdelixZQkpKCmvXrmXFihV07NgRgISEBAzD4OOPP+bgwYPk5OQQEhLC/fffz3333cfs2bPZtm0ba9euZcaMGcyePfuEzumbb77hueee46effmL79u3MmTOH++67j+uvv77SQesiVaEARI6v0wi4+g0Ibe6/PDS2ZPnp3EXpuIPsNZmiiMjpoHnbcILCKw8ugiOcNG8bXu3HTkpKYu3atQwYMIAJEybQpUsXBg8ezPLly5k5c2a529jtdt5++202bdpEt27dmD59Oo899phfGY/Hw9ixY+nYsSNDhw6lXbt2/POf/wQgLi6OyZMnM3HiRJo1a8Zdd90FwJQpU3jooYeYNm2ab7uFCxeSmJh4QufkdDp555136N+/P507d2bq1Kncd999zJo16ySukIg/w6zJ0VNSr2VlZREWFkZmZiahoaHH36CeD9L2ej3s2bienIwjBIdHENexM5bj1e+XD2Duzcff+ch/l3QvExGRGlNQUEBKSgqJiYm4XK4T3r6iLFilaiILltSOyj4bJ3w/I3VOg9Cl6izWkvEd9dCW1av47PVZ5KQf8i0LjmzKwDG30bZ3JfOQVHWQvSZTFBGp91r3iGbo7V3KzAMSHOHk3KtrZh4QETlxCkDktLdl9SoWPPN4meU56YdY8MzjjBj/YMVBSOkg+6w0yh8HoskURUROJ617RJPYPaokK1ZWIUGhJd2uqjP1roicGo0BkdOa1+vhs9cr74+6YvYsvBUNIm/og+xFRBohi8Ugrn0E7c6KIa59hIIPkXpGAYic1vZsXO/X7ao82YcPsWfj+ooLNORB9iIiIiL1jLpgyWktJ+NI9ZTrNAI6DKvXg+xFREREGgIFIHJaCw6vWi7yKpWrx4PsRURERBoKdcGS01pcx84ERzattExIk6bEdexcSzUSERERkcooAJHTmsViZeCY2yotM2D0bcefD0REREREaoUCEDntte3dlxHjHyzTEhLSpGnlKXhFREREpNZpDIg0CG1796X1Wb1PfCZ0ERGReqRVq1bce++93HvvvXVdlQqNGTOGjIwM5s+fX9dVkdOUWkCkwbBYrMR37kbHfv2J79xNwYeIiNSKMWPGYBgGTzzxhN/y+fPnYxgnNgfJd999x223Vd61uK49//zzvP766ye0jWEYCljERwGIiIDXAylfwi8flPysaOJGEREpl8vlYvr06Rw5UrX08BWJiooiMDCwmmpVM8LCwggPD6/rashpTAGISGO3YQE81wVmXwpzby75+VyXkuUiIqchr9fDrvU/s/HrL9i1/me8tfBQZdCgQcTExDBt2rRKy82dO5fOnTvjdDpp1aoVTz/9tN/6Vq1a8dxzzwFgmiaTJk2iZcuWOJ1OYmNjufvuu31lCwsLuf/++4mLiyMoKIjevXvz+eefV3p8wzCYOXMmF198MQEBASQlJfHBBx/4lfnll18YOHAgAQEBNGnShNtuu42cnBzf+jFjxnDZZZf53l9wwQXcfffd/OUvfyEyMpKYmBgmTZrkd04Al19+OYZh+N7/9NNPDBgwgJCQEEJDQ+nZsyfff/99pfWXhkEBiEhjtmEBvDcKsvb6L89KK1muIERETjNbVq/i1bE3896jD/LJC0/y3qMP8urYm9myelWNHtdqtfL4448zY8YMdu/eXW6ZH374gauvvpprrrmGX375hUmTJvHQQw9V2J1p7ty5PPvss7zyyits2bKF+fPn07VrV9/6u+66i2+++YZ33nmHn3/+mauuuoqhQ4eyZcuWSuv60EMPMXLkSH766Seuu+46rrnmGjZu3AhAbm4uQ4YMISIigu+++47333+fTz/9lLvuuqvSfc6ePZugoCBWr17NP/7xDx599FGWLVsGlHQrA3jttddIS0vzvb/uuuto0aIF3333HT/88AMTJ07EbrdXehxpGBSAiNQXtd0NyuuBxX8FzHJW/rZs8UR1xxKR08aW1atY8Mzj5KQf8luek36IBc88XuNByOWXX84ZZ5zBI488Uu76Z555hgsvvJCHHnqIdu3aMWbMGO666y6efPLJcsvv3LmTmJgYBg0aRMuWLTn77LO59dZbfetee+013n//fc477zxat27N/fffz7nnnstrr71WaT2vuuoqbrnlFtq1a8eUKVPo1asXM2bMAOC///0vBQUFvPHGG3Tp0oWBAwfy4osv8uabb7J///4K99mtWzceeeQR2rZty6hRo+jVqxfLly8HSrqVAYSHhxMTE+N7v3PnTgYNGkSHDh1o27YtV111Fd27d6+07tIwKAARqQ/qohvUjlVlWz78mJC1p6SciEg95/V6+Oz1WZWWWTF7Vo13x5o+fTqzZ8/2tSgcbePGjfTr189vWb9+/diyZQseT9l6XXXVVeTn55OUlMStt97Khx9+iNvtBkq6SXk8Htq1a0dwcLDv9cUXX7Bt27ZK69inT58y70vru3HjRrp3705QUJBfHb1eL5s3b65wn926dfN737x5cw4cOFBpPcaPH88tt9zCoEGDeOKJJ45bb2k4FICI1LW66gaVU/GTrJMqJyJSh/ZsXF+m5eNY2YcPsWfj+hqtx/nnn8+QIUN44IEHTnlf8fHxbN68mX/+858EBARw5513cv7551NcXExOTg5Wq5UffviB5ORk32vjxo08//zz1XAmJ+bYrlOGYeD1eivdZtKkSaxfv55hw4bx2Wef0alTJz788MOarKbUEwpAROpSXXaDCm5WveVEROpQTkbVsk9VtdypeOKJJ/joo4/45ptv/JZ37NiRr7/+2m/Z119/Tbt27bBay08dHxAQwPDhw3nhhRf4/PPP+eabb/jll1/o0aMHHo+HAwcO0KZNG79XTExMpfX79ttvy7zv2LGjr44//fQTubm5fnW0WCy0b9++ytfgWHa7vdxWnnbt2nHfffexdOlSrrjiiuN2H5OGQQGISF2qy25QCX0hNBaoKEe9AaFxJeVEROq54PCIai13Krp27cp1113HCy+84Ld8woQJLF++nClTpvDrr78ye/ZsXnzxRe6///5y9/P666/z73//m3Xr1rF9+3beeustAgICSEhIoF27dlx33XWMGjWKefPmkZKSwpo1a5g2bRoLFy6stH7vv/8+//nPf/j111955JFHWLNmjW+Q+XXXXYfL5WL06NGsW7eOFStWMG7cOG644QaaNTv5B1KtWrVi+fLl7Nu3jyNHjpCfn89dd93F559/zo4dO/j666/57rvvfIGQNGwKQETqUl12g7JYYej0394cG4T89n7oEyXlRETqubiOnQmObFppmZAmTYnr2LlW6vPoo4+W6YJ05pln8t577/HOO+/QpUsXHn74YR599FHGjBlT7j7Cw8N59dVX6devH926dePTTz/lo48+okmTJkBJVqlRo0YxYcIE2rdvz2WXXcZ3331Hy5YtK63b5MmTeeedd+jWrRtvvPEGb7/9Np06dQIgMDCQJUuWkJ6ezllnncWVV17JhRdeyIsvvnhK1+Ppp59m2bJlxMfH06NHD6xWK4cPH2bUqFG0a9eOq6++mosvvpjJkyef0nHk9GCYplle3w9pBLKysggLCyMzM5PQ0NC6rk7jlPJlyYDz4xn9MSSeVzN12LCgpBvY0S0xoXElwUenETVzTBGRchQUFJCSkkJiYiIul+uEty/NglWREeMfpG3vxt2qaxgGH374od88HqeDyj4bup85/djqugIijVppN6isNMofB2KUrK/JblCdRkCHYSXdvHL2l4z5SOirlg8ROe207d2XEeMf5LPXZ/kNSA9p0pQBo29r9MGHSH2hAESkLpV2g3pvFCXdno4OQmqxG5TFWnMtLCIitaht7760Pqt3SVasjCMEh0cQ17EzFj1UEak3FICI1LVOI+DqN8rpBhWrblAiIifBYrES37nb8Qs2Qup5L/WBAhCR+kDdoERERKSRUAAiUl+oG5SIiIg0AkrDKyIiIvWKugnJsfSZaFgUgIiIiEi9YLfbAcjLy6vjmkh9U/qZKP2MyOlNXbBERESkXrBarYSHh3PgwAGgZFI8wzh2olRpTEzTJC8vjwMHDhAeHo7VqrGRDYECEBEREak3YmJiAHxBiAiUzApf+tmQ058CEJHa4vUoy5WIyHEYhkHz5s2Jjo6muLi4rqsj9YDdblfLRwOjAESkNmxYUME8H9M1z4eISDmsVqtuOkUaKA1CF6lpGxaUzHR+dPABkJVWsnzDgrqpl4iIiEgdUAAi8huv18Ou9T+z8esv2LX+Z7xeTzXs1FPS8kF56QN/W7Z4Ykk5ERERkUZAXbBEgC2rV/HZ67PIST/kWxYc2ZSBY26jbe++J7/jHavKtnz4MSFrT0k5TUIoIiIijYBaQKTR27J6FQueedwv+ADIST/EgmceZ8vqVSe/85z91VtORERE5DSnAEQaNa/Xw2evz6q0zIrZs06+O1Zws+otByXdtVK+hF8+KPmp7lsiIiJyGlEXLGnU9mxcX6bl41jZhw+xZ+N64jt3O/EDJPQtyXaVlUb540CMkvUJVezmpWxaIiIicppTC4g0ajkZR6q1XBkWa0lwAMCxs/n+9n7oE1WbD0TZtERERKQBUAAijVpweES1litXpxFw9RsQ2tx/eWhsyfKqtFwom1aNqJHMZyIiIlIpdcGSRi2uY2eCI5tW2g0rpElT4jp2PrUDdRoBHYad/EzoyqZV7Wos85mIiIhUSi0g0qhZLFYGjrmt0jIDRt+GpaqBQqUHs5YEB12vLPl5IvtUNq1qVaOZz0RERKRSCkCk3qqt7jFte/dlxPgHCY5s6rc8pElTRox/sH48Da+JbFqNVI1nPhMREZFKqQuW1Eu13T2mbe++tD6rd0lWrIwjBIdHENexc/W0fFSH6s6m1YjVeOYzERERqZRaQKTeqavuMRaLlfjO3ejYrz/xnbvVn+ADqjebViNX45nPREREpFIKQGrAypUrGT58OLGxsRiGwfz58/3Wm6bJww8/TPPmzQkICGDQoEFs2bLFr0x6ejrXXXcdoaGhhIeHc/PNN5OTk+NX5ueff+a8887D5XIRHx/PP/7xj5o+tRqn7jGVqI5sWlI7mc9ERESkQgpAakBubi7du3fnpZdeKnf9P/7xD1544QVefvllVq9eTVBQEEOGDKGgoMBX5rrrrmP9+vUsW7aMjz/+mJUrV3Lbbb8Pls7KyuKiiy4iISGBH374gSeffJJJkyYxa1blN+/l2b1xXb25oT+R7jGNwrGznncYBveug9Efw8h/l/y89xcFHyegNPNZZaol85mIiIiUS2NAasDFF1/MxRdfXO460zR57rnn+Pvf/84f/vAHAN544w2aNWvG/Pnzueaaa9i4cSOLFy/mu+++o1evXgDMmDGDSy65hKeeeorY2FjmzJlDUVER//nPf3A4HHTu3Jnk5GSeeeYZv0ClKj6cPpmmzZrXi/Sj6h5zlOqa9dzrOfn0vw1QaeazBc88XmGZast8JiIiImWoBaSWpaSksG/fPgYNGuRbFhYWRu/evfnmm28A+OabbwgPD/cFHwCDBg3CYrGwevVqX5nzzz8fh8PhKzNkyBA2b97MkSMnfnNeX9KPqnvMb6pr1vMNC+C5LjD7Uph7c8nP57o0+lnTT4vMZyIiIg2UWkBq2b59+wBo1sw/XWqzZs186/bt20d0dLTfepvNRmRkpF+ZxMTEMvsoXRcRUfYGvbCwkMLCQt/7rKysMmVWzJ5F67N619nT31qbGLA+O+6s50bJrOcdhlXeklEaxBy7n9IgppGPG6n3mc9EREQaKLWANCLTpk0jLCzM94qPjy9Tpq7HV9TqxID11YnMel6R4wYxlAQx9WTsT12p15nPREREGigFILUsJiYGgP37/Wes3r9/v29dTEwMBw4c8FvvdrtJT0/3K1PePo4+xrEeeOABMjMzfa9du3aVW66ux1c0+u4x1THreXUEMSIiIiI1QF2walliYiIxMTEsX76cM844AyjpCrV69WruuOMOAPr06UNGRgY//PADPXv2BOCzzz7D6/XSu3dvX5m//e1vFBcXY7fbAVi2bBnt27cvt/sVgNPpxOl0HreO9WF8RaPuHlMds55XRxAjIiIiUgPUAlIDcnJySE5OJjk5GSgZeJ6cnMzOnTsxDIN7772Xxx57jAULFvDLL78watQoYmNjueyyywDo2LEjQ4cO5dZbb2XNmjV8/fXX3HXXXVxzzTXExsYC8Mc//hGHw8HNN9/M+vXreffdd3n++ecZP378KdW9Po2vaLTdY0pnPS8z4WApA0LjKp/1vDqCGBEREZEaoBaQGvD9998zYMAA3/vSoGD06NG8/vrr/OUvfyE3N5fbbruNjIwMzj33XBYvXozL5fJtM2fOHO666y4uvPBCLBYLI0eO5IUXXvCtDwsLY+nSpYwdO5aePXvStGlTHn744RNOwXusBj++4nRQOuv5e6MoCUKOHsdRxVnPS4OYrDTKHwdilKyvLIgRERERqQGGaZrl3Z1II5CVlUVYWBiPXX4RUTHNGTC67ucBaSi8Xs+pdx8rdx6QuJLgoyrZq3xZsKDcIKaRZ8ESEZGGofR+JjMzk9DQ0LqujlSBApBGrPQXdv23X9OhDlPvNjRbVq/is9dn+aUSDo5senITPZ7qJIKnGsSIiIjUcwpATj8KQBox/cJWvy2rV1U6w3adZPE6DWZCr5YWIxERaZR0P3P60RgQkWri9Xr47PVZlZapk4keLVZIPK/2jneCqrXFSEREROo9ZcESqSZ7Nq6vdAZ3qPuJHuub0hajY69bTvohFjzzOFtWa54SERGRhkYBiEg1qeoEjnU90WN9UdUWI28jn61dRESkoVEAIlJNqjqBY32Y6LE+UIuRiIhI46QARKSaxHXsTHBk00rL1KeJHuuaWoxEREQaJwUgItXEYrEycEzlE0FqosffqcVIRESkcVIAIlKN2vbuy4jxD5ZpCQlp0rRuUvDWY2oxEhERaZyUhlekGhw7j8XNM2aRtnmT5rWoRGmLUWXzpqjFSEREpOFRACJyiiqbx6Jjv/51WLP6r7TF6NjrF9KkKQNGax4QERGRhkgzoTdimjn01NXLmc9PQ5oJXURETpbuZ04/agEROUn1dubz05DFYiW+c7e6roaIiByHx2uyJiWdA9kFRIe4ODsxEqvFqNv6bE+vs+PLyVEAInKSTmQeC91ci4jI6W7xujQmf7SBtMwC37LmYS4eGd6JoV2a11l99hxQAHK6URYskZOkeSxERKSxWLwujTveWusXfADsyyzgjrfWsnhdWr2oj5weFICInCTNYyEiIo2Bx2sy+aMNlDdouHTZ5I824PHWzrDiyuojpwcFIHJyvB5I+RJ++aDkp9dT1zWqdZrHQkREGoM1KemVtjSYQFpmAWtS/LtCebwm32w7zP+S9/DNtsPVFqAcrz5S/2kMiJy4DQtg8V8ha+/vy0JjYeh06DSi7upVyzSPhYiINAYHsqt2s390uZocL1LV+kj9pTS8jdhJpa3bsADeGwVlGj5/y4Bx9RuNKgiB8ucB0TwWIiJSHy38OY0p85Mp8JhYrVZsNmvpX3BMSv+aG4Dp+0tf5PZyJK/4uPsOD7RjtxoUFHvILqi4Z0Soy4bLXtIJxzAM3O5irFY7AF6PBwsGHo8bi82C6TWx2Rzk5edhtVrwml7cpklu8e8P97yFeex67mql4T2NqAVEqs7rKWn5qLAXqAGLJ0KHYdCInvq37d2X1mf11jwWIiJS7z2zbDP78ry/vXP/9qoeGVUIUgCyCtxklWnEKCxbsLA0iCkALL9VVaMHGgIFIFJ1O1b5d7sqw4SsPSXlEs+rtWrVB5rHQkRETge5v93UWwyIcFmx2+3HlDDxuj0YVismJhaj5Ia/oNhDRn7FAUZ4gB2X3UpBsZuM/OMHNRGBdgyvG4vVwGJYKS5yY7PZwDBKG2DAANPrBcOguLgIA7DZ7JgYFHu9ZBV4KP+hqNR3CkCk6nL2V285ERERqRMRATb+dWkcPc7swNG3g16KSfl5O57oKBw2J62aBpWsMEvGdUz6eAP7yozr6MjQLs3wmlbm/rSHP7+TfNzj3zOgFW0Dd9MqphM2exAWq40Cw02Y00l6bjbNIprw8/q1tEvqzjc/L6Jb615s3fQ94UHNCI1w4d6fy7zUdOamuNlfTuOJ1G8KQKTqgptVb7nTmddT0tKTs7/kfBP6NqpuZyIicnozDIOWCXH4xnCWMg1yC3IJ8jTBai1pXTBNE8NwM6hrcwZ2jmFNymEOZhcSFeLknMQmWC0GJmDxQkyIs0rHD3F4aNGyDcHOYIot4PA6KMwqJM9bhDPP5L8f/Js/DB/Ohq+X0j4ymEM71lFQcIhtB/ay94cUEmPbcWGbNpD+Ld4Wsfytei+P1DAFIFJ1CX1Lsl1lpVF+k6dRsj6hL16vp+GOiVAWsONTgCYiUq/ZrFaaNAmlTABiGLTu3Jb35rzF119+y1MzniclJYXu3c4g9dB2WjZLolfrSEzTBNPEYgGPWXJXYBom3RIjiApxcjC74maJmDAH/bsm4vFY+OnXdViyMunX8xzMwhwO7jmAzWEnMDCffz37NDlGNu06dCOsuYPWbdthmg7CDyUQHtKSvLx0/jDsMrbtTK7JSyU1QAGIVJ3FWnKT/d4ofu+gWeq3L7ChT7Dlu9VlskIFRzZl4JgGkBWqoixgWWklyxthFrAyFKCJiJwmyj4YsmDF5Qqi/8DhnD/wYsLDw+nWrRvPPv4PzhnWlUOHDpCYEEvGwVzCHWHY3Qae7EKCoyIIiAjDdFj5yyVt+fO76yo8auCutdz75x/YtXMnLqcdd3Y2g/v+QlKb5gRG2Elo1wJbywA6t+tBdGgP0jN2sH3bN9hcrWga5eVgThGxLYNxuAoJcAYQaNXt7OlGqQTkxHQaUXKTHXpMDu/QWLj6DbZkN2XBM4/7BR8AOemHWPDM42xZvaoWK1vNjpsFjJIsYI1wUkaf0gDt2GQFpQHahgV1Uy8RETkhodGxBDWJBsBqtXLfQ3/lk3e+pIUrnNwt+2lpi6Jg5yFcBwoILvBQtHMPm35YwY7N33FuSzd/v7gJ4S7/fUYF2wlK/ZGQ7Hx++HY1u3bsIDXD5EBYPHN/2c2ylT9iOqMxXDHMe38FRQVOoqNiiIuLJS4+jITWYaSmplOYn0H64YPYbAY5eftIbB1fB1dIToVCRjlxnUaUpNo9pouNF/hs7M2Vbrpi9ixan9X79OyOpSxglVOaZhGRBsFqtRAUABDgW2YCj02fxq/rNxNsjeJAziHC28cQGBhKdlYmabsOEdAsiHVbNuLekk+nFpH8b0wrPl6znQPZIfzww4/sXb2DMIeXvUXZWGJbYrbuS6ErmEIgG/i0IIedH3zFxNtHEB3ZlX17cjkYfYjmsYkkJXZmb9oB9qencMH5w4iODOLH5C9x2CIJCwqvk+skJ08tIHJyLNaSm+yuV5b8tFhLxnwc0/JxrOzDh9izcX0tVbKaKQtY5U4kQBMRkXotwA4B9t/Hh1gBr9dD+y7tccYGU5BRxMv/nofXZscRGkhYXFNiWrTh/HMHMvCCSynM9uKxGXRLas1nb79Byg9rCHF6yDy4g33eQHI6DcZ0Bvkd03QGsTm0E28vWk9woJuzzuyKI9CkKOMQe7cdwVLkZMTwkezdvpfMbDfxLbpitbuxhAfX8tWRU6UWEKk2ORlHqrVcvVNXWcBOlwHdCtBERBo0i6XkuXWTJk2wFHk5P+8MLFYrTlsQMc0SOJiZwcH0fcQ2jaNDxzM4vB8efnAy2YfTwbRxcP9+TK+B9YwhJTs0yg6AxzT57KCXN24+D1dAEBashEU2wdwWSUREE3KycujR4wwKPB5ys9PZmXqEOIujlq+EnCq1gEi1CQ6PqNZy1cXr9bBr/c9s/PoLdq3/Ge/JjtEozQJ2bMYQHwNC40rKVZcNC+C5LjD7Uph7c8nP57rUz7EUStMsInJa8Xq9xy90FOO3gMEwDEJjo+kzoDd/vXc8mUcOYZomESGBdGjVneCQJtjtTQgMCMbtySMrNwcPJjnZ6RQGRUNASNng4/eD4HYE8uCTiyg00ggJyeFITh7BYWFY7blkpu8m+ecfSdm+E6fDRUFhLl3bdDnVSyG1TC0gUm3iOnYmOLJppd2wQpo0Ja5j51qr05bVq6ovI1cVs4BVW+vE6ZZx6wTSNIuISN0qLCzku+9+oFfvs8rJhQWlj+oq+otmA7AYTH/uaV59dTbDLjwfZ9MQ8gtz2Lt3Lz269+O2W8exc8d+IqKbk5edToDLRZ7dVuE+j5ZV4OBgih1bi3ziY7P59dc8tmU5sYXE4LVk0SQ/hyhvIC3imvHz+uSTuAJSl9QCItXGYrEycMxtlZYZMPq2WhuAvmX1qurPyHWcLGDVFhCcjhm3SgM0oGwrUQ0EaCIictIKiopY/OkarBU0glipOPjwYxjceusNzHz9nxhWNwWFuTSJiCMtbR8bN26kWbNoivJyKMzOwVNYiLUot0r1sxTmsGHdZpyOYN7/ci+TVhUx6dPD/P3DXTy8OJNJq3L5Zmcm0U1b0DxGWbBON2oBkWrVtndfRox/sEyrQ0iTpgwYXXvzgHi9Hj57fValZU46I1cFWcCq9cb6dM24VRqglTsPyBP1q8VGRKQRMzAoLsgHy29ZCo/127Mur+nFMAxf96vymYy7/88EuEIJC7HgcBms/2kHDqcTw7BAcSFWrxvTbWDu3YyRlwkBoeV3wzJNyM/GmbWfFZ9+QUZYMG9tdJap48EcD48tP8hjw1qxY+nHJ3sZpI4oAJFq17Z3X1qf1btOZ0I/kYxc8Z27nfgBSrOA1ZTTeUB3bQRoIiJySuw2C1FBVjCNcuOPQ7t20NTlwmMWYI9O8C1fv2ETFsOJYTho0zYGm9UKho3wgAiK3fm47C5MTxHrN6cQEBhEfnYG3uICrBYHLrsVu9fA/fNCsnpfWxJsHB2EmCVRj+XnRbg9Oay3x7Jho+vYqh3F5IUv9jC+bZtquipSWxSASI2wWKwnd2NfTU77jFyn+4Dumg7QRETklNjsdlr2vYj//bSH6BAXZydGYrX8Hgy4rW7u/dvjBNiKmDZzpm/5kSNHKCzw4nAE0qFDHACmaeJ2uylyFxPgCgQTPl30KSEBDnIP5+EEDJsXq9dDeIATR85OmqxbwJ62Ayhyhfr2HeTJo/Oe1fy6fyv5SWdCl6HldkT+ncGBnGJ+ra9/y6VCCkCkQaqvGbmqTAO6RUSkBh3J93DfJ6m+983DXDwyvBNDu5SMcXQAB3MKiAsLxMTE+K2ZJDAwiMAAGzbb7y0ThmHgcrn4bPFSPB6TzPR0HDYn+/ZswFucT5DFTmiwE4vbg9PwYLdaiMnYStf1u8kOicXjCiPEKKaVmUVeQSF7rSZ72vSr8rmkpikAOd1oELo0SKUZuSpT2xm5TogGdIuISA0oKC5JXuI95tnWvswC7nhrLYvXpQFgsdootFrJLfAAbl85i8XA4/FQVFD4+8amm6L8ItokuOjQtiUXXXgu+bl5tIptQqjdQZMAB03sFmKDXDQLDiLcaiPSaSfYahCdnUrHjM0k5aZhdRcSZLPgiGuLWdEYkXKMHHbxKV0TqX0KQKRBqm8ZuU5qLpLayrglIlLDqm0+JjklHq9JVkFxuetK45HJH23A4zVxe71YrTaCgv1nGbdYrAQGBhJ89HLTyv79GzhweBOFbOGLrSkcDIwhwxVNZHAQIQEugl0uHHYbLrudsKAgXA4HdsOC0+YALCVDUWxWHK4AXKFV753QNNBK+yaVjROR+khdsKTBqi8ZuU5pLpJTHNDt9XrqNBmAiEi1zsckp2RNSnqZlo+jmUBaZgFrUtJp6/Ti8bgJCQ31db8CSEvbi7vYgsPmon3HuJIsV4ZBsSedt1ce4sv8FuR4PNCi5P/W0TqbTju/ITbzVwyLDYdhwWp6sJlgs9qwW5w4nA4MuwWPARbDoHkgbKjiOd3RJ56goMCTvyhSJxSASINW1xm5SuciOVbpXCQjxj94/D/AJzmgW3/0RaSuVct3oFSbA9kFVS7X3uUlPCKIps2aUuSFH1IOcyC7gG2HvSSFeglyUBJ8AF7TzVcpBotyzimzryJHMMltBhOyy0ZidioOixXD4wbDwGZYcVoN7A4bpt2Fy2bFa9hoX5jLFwWZuJ2VdMMyvTwxoiPdI60EuJwnfU2kbigAkQavrjJy1ehcJMehP/oiUtfq8jtQyhcdUrWuStEhLgJsXv4x/jaWb07n/Omfsy/z9zEfEU6DK5OyuOC3916szFhVGtwcEzAYBpgmPzTvTZu8NGxWE5vNRnFxMYbVgmGxUuw28XjdmKYFW6Adp9ek/e5VrG89tGyq3t/E71vFRV2HkpZ2AA/2E78YUqc0BkSkhpzIXCTVqap/9NUHW0RqUl19B0rFzk6MxFLJuG6DkmxYZydGkplXyJdb9/GXzw/5BR8ARwpNXt3oYcHaXQCsSTnM4YLSPZS3Y4M8exBbnZEcys+nABOnzYHb9LLlyBE2HjjA3txsdmdnUlTkITg4nAsjIH7rMuzF/jOnNwu184+r29EtPo95S2aRb+zGQ9VmV5f6Qy0gIjWkruYiqfFJGEVEquC0n4+pAbJaDEJddjLyyw5ELw0dHhneqWQ+EKedad/mVDgPhwFMW/Irw7q34GB2XpWOv6/IS0BBERbTi93hIr0wm0J3MYeyssgzLYQEOigw3FgKcnEYVsxfv6Zz9jYuuHok2V4Hbs8RBp0Ryc59qdz+p2vZtmM1oWEGRQUKQE43CkBEakhdzUWiP/oiUh+c9vMxNVAuuxXyi7EY/ql4Y46ZB+TnXZnsy/VWuB/fgPXUdKICg6p0bCM7nYPZR7AQRpjFSkRgCIZRRE5+AYXZuYRY4eDerTSNaEFIcDABdivZ2fncdfMNGB4vYMdqQD7ZbN+QyqBzhvHBsrc4o6smvj3dKAARqSGlc5FU1hpRE3OR6I++iNQHdfUdKFUTFezkuWt6cCC7oNyZ0I8UV21czoHsAi7qGEaoo4CsIifldsMyTWz5meTv2EqeYZKXd5DmSa2IdLjYlnaQg4czyPAYpBw6zNkd4jhy5AARwYF07XAG115xFZ/Mep2BI6/BTj4F3iJM7CQ1acV/Ft6P21rAa/PWVdNVkdqiMSAiNaSu5iI57SdhFJEGob7NxyT+DMPgnMQI/nBGc/okNcGKl5Rd6yksLsLDYSJjHFXaz+a9R/hh50Gu7HiIkuDjmE5bZsl75/olGBHNycwrJD+3kGKLg0KPG4vHxGFYMJwuLC4nB9JzCHIFYBYVc3a7Lix5+9/sXLqYwowMsg5nkpdZREFWLkVmAbsP55O6qxi7K6B6L47UOAUgIjWodC6SYwOCkCZNaywTlf7oi0h9URffgVJVJobFwIObL376gIXfvsLenJ/YsPtL/j33WQLydhMT5qBMQHHU9gD/XLmD6/+9gQ82RTOkdSYRAf7dtlzFOcSvfYeW6ankHNhNmNNCoNOJp9iLBQPT8GKxG0TbTdpFhhITHsnhw4fA9FJ45DAxYaHk5xTQpFkzouLiiGoZR9MW0QSEhLL1i2y2fL2XZkZizV4qqXaGaZqVTEkjDVlWVhZhYWFkZmYSGhpa19Vp0I47IaDXc9KTDVakvHlAansSRhER0KSo9ck5jy9nX1YB4QEmH93Rnl+2/4jTZWPdhm+JbtISrz2bQm8BMc72bMgN5MXP7ZQEG0d3rSq9dSy7bHjbrUR6LexYmUZgoB22/kBmXi7e/CLS8wvAW0SgzUWPpE6EO9ykHDnI/oxsQmx2woIDCImIwO3Op1l4NE5XKC4KOHDwCH96/iWwGHh+y+BoC7TjCggDJxw5lE5kbBPdz5xGNAZEpBZUOhfJhgWw+K+Qtff3ZaGxMHR6yUzoJ6muJ2EUESlVV/MxScXc7mJ27/iBrWk/EGVtQkxMM/am7sAaZeAkAG9wBoNbhbKt+U98vr8N+d5jB5ofO9aj5P1Xu5N4qOduOocWsT7jEAWBQdgNK95ALzn7D2BiITo0HIfVgScvhxbhkQS7AsnOzifAFYTF7SYoKIRdjihyLIHEGQUMGN6f4txibC47Nq+B123Da+aQcWg/Dms4hTlVy8Il9YcCEJG6tGEBvDeKMk3cWWkly69+45SCEP3RFxGR8pimycGMQwRaAnGYTgoNiImJw+kyOZSSRqszkwjOCGVcv7MYXriTDTuy+TU9mKW7g6lwvg/gSL6VZm0Hs3P+RmwWKwHOIHB7OZKRQZDLRajdSYDDRYHXjsPiwOL2EOFyEWCz4TVNdgS1ZFWLvuTYAn37nLfLxoSYQ/RPCMRqN3EadtLTD/JD6je0ju/Aui3JNX/BpFopABGpK15PSctHuf1rf2vuXjwROgw75e5YIiIiR3PaHTRtEkvToHg+X/4Z1465ni0pv7J93TZade6O+wDs2b+LOW+9hy3ApHP7HmxbuxdaXnrcfb/46rucV1BAUICLwxkZBFjteJwBBLicODwmFkdoSWu8xYZhAbtpYAc2BbdkacKFZfZ3oKCYv36ZwtW7dxHr3IonIpdNm3cRGOKgKD6bz3d+VwNXSGqSBqGL1JUdq/y7XZVhQtaeknIiIiLVyOv2kJ5yiHPOPJ+/TvgbTY0wWkXF07ppK0LNQI7szabtGR04s08vvJ4gmsbG8NBf76zSvsdc8394AwMoKizAYnixGlacWAiy28gsyCMwMAhr/kFseEjPzKSwuIjiAjcr434bn2iU371r4e4oAhJs7Nt9ENPtJT3rMBs3rSe/YF81XhmpDWoBEakrOfurt5yIiEgVOZwu2nfqiccwsNmDCGoeQuuYFrTreA54PJDnxlNcxPVX3soVQ/OwWgw8Hi/RQXYO5haX23ZvAM2C7PQOCYDuXVmzchVutxerw4YNA3dxHjk5ebgL0gnwFGMSQmx4DOlH9pMe3ZpsR2UTGhrkFgewJdVOoTeYjj060jQsiJ1bU4mOa1JDV0lqigIQkboS3Kx6y50CZagREWlkPNDM3YS8zelYrQ5MwOL2lHz3myZemxXDMAALQZZADAM8Hi9/P7sl96zYVmbGj9I2i7+c0xKbowm9Bl3K99+uocjtxiAPq1mEp7gIh81GnrsQs6iQYK+LHTt3EhERwkF31aodaHZj2w/fEhvegk2bdkKQnYTmfYGPqvPqSA1TACJSVxL6lmS7qrAbllGyPqFmU+aWl643OLIpA8coXa+INCx62HIUAwoMNyYmTquBxzDxGGCzGni9XmwG2KwWPB43Xit4MDEtJgPahvOMow1PfLWD/bnFvt01C3HwlwEtuah9U7JJY3vKetweD9gsFLuLMDxeMgs94Ahkd3oGMYEubEXFBIeFYdgMXIU5Var2jp+TsaQHsPi9DwgJCaNJ2w78vPmLmrpKUkMUgIjUFYsVulwJq16ouMzQJ2p0APqW1atY8MzjZZbnpB9iwTOPa6IwEWkw9LClLJs1CIvFgsWwgNeN0+kCDKw2KDTdFNrdFAQWkHJgLwVFhQQEuHAXZRLfJphHo4vYk2PncI6bIKuH7u2dePN+ZUPRLhxWCxFJQbg9XkyLAXjJ9BZTYBgUGW7sFhuFJmQWFWC3W8kvLKKZNYPAohzy7EHljAEBMAlxeehylouz7riBH79J5ZtPlsLOQmKbaiLC040CEKn/amCSvnphwwJYNaPi9X3HnVIK3uPxej189vqsSsusmD2L1mf1brxPCEWkQdDDlrJMA8xQKxabnYAgB1angWmxkZWbS4GnkAM5e9mbsRtvdiF2p5Mc9xHcOIkMiSQkzEWeJ5e29gLObhPM4QP7SQiJIiPQRXZ+LkVeLxaPg0JLPhbDgsfrxW01wObAbrFhcbsxbFZyCgoICHJhGiae4iJ671/NihYDwTSPCUJKOnsN6bCfVklx7CoqwIjNZ8AtgwkLimL/+m11cxHlpCkAkfqthibpq3OVpuAFMGDdXBg0qcaCrT0b1/s9CSxP9uFD7Nm4XnOJiMhpSw9byuc23aw/sh4Mg8z9BwA3+49kYQsMIDg4ALM4m7CQMLan7qF5dDMsxVbszgCycg/gNnOwGIVkFGfhPhKAERzI7iP7KSwuJiMvk+i4Zuw7nIMlxEJRjhvDgEI82CwOXFYnxaaJpdiN3fTistkxrBYCHCGEZqRysf1LvmzSkxz77wPSm4QY3DDAQvuoQAqL83EXHKZpdBO8XpOoyDCyrLF1dyHlpCgAkfqrhifpqyter4c9n71Dzq5igm1hxAVmYinT2nxUCt7E82qkHjkZR6q1nIhIfaSHLeXzmm72F22iaZMmOIuKced7iW4SQlCTKLzeYqzuIPbs3UtgoJPignwsHhPTCCQnuwjTayc4IIi0HdvodkY3QoIiycnNwo6dQLubndv2YrVC7Bmt2bJnM1YDCopyCbAa5HjckFtAZGgIjoAAAhyBOA3wOmzk5uXQImMLN+SmsScgiiNBNrpd1Z0usWBxOXBYA8F0ExQRicViJzMvl/2Hd2MrLqrryyknSAGI1E8NdJI+/z7IHQAIthUysNk22oYeLrtBDabgDQ6PqNZyIiL1kR62VMAwyMg+QlhkKHarl+AwGzZnCFlFBdhsYA+w07ptGzIyDuG02Ai0B7F9904iwkPB5sBwOolpkUhGeg6Z2YVs2baFLu3PIDMjl+YxcRQW5ZB0UQu2L9xIYVERNpuNQxlHyMnIZeehTBLbtsJutbJv7Vqah4cQFOCkdZuWJWNGLCZxBfuwh7npmngm7gIv+fnFZBXlExxgx3QbOAOCsVoLaNq0KUUF3rq+mnKCNBGh1E8NcJK+0j7Ixz6Jy3E7WLCnI1uyysljXoMpeOM6diY4smmlZUKaNCWuY+caq4OISE3Tw5bymV6TyMhY9uw9TEa+h2379nLoyGGcVg//+/BdMrL3k5efR0FBIfn5+RzI248z0kGRN5etqRs5lJFJdGwCWW43W1O3Ed0sjsIiD61ataG40E1QQAiFlsKSVL4GOBx2QiPCad68Oed36EyCNZhmXivnJ7Wja3wC7Tu0JycvF4/pJS8/nyJ3ASPvGMOhAwcp9kJRTiYuu4ODBw+TXVRMTpGbsNAYrJZgigvtdX055QQpAJH6qYFN0ld5H+SS/lcr9ifhNY9aFhpXoyl4LRYrA8fcVmmZAaNva1R9okWk4dHDlvIZFgv2wFAiIpqQ2KIVQUHBBIQYZB46yFlndsLmzScpqinREQE0jw6ke5twwgIisDkCaN22O+EhEezauY3wyCa07dIFZ2gIu7J3kHJgFwVWD9vS0jjkNSgyCik2PHgLvFhMCHKZOJwGQVYvYTYbzgALQcEOvPnZuFwOioqL8Tq8GB4rtiYBOF2R7E3bi8Xh4HB2BoVuL4cOZJKbm8m2bdvIyszD4yms68spJ0gBiNRP9WiSvupw/D7IBtluF3vywvBN51TDKXgB2vbuy4jxD5b54xzSpCkjxj9I67N6s2v9z2z8+gt2rf8Zr9dTo/UREaluethSPq/Xi+HxkpuVQ5Eni9RDqcz+4E3cppOwiGgsxRa27vyatL2biXWFcSj9Wzo0DyM0MgSLFw5mHCQ4LBBPcSEhLjsF2RkYpger4eFw5mGsTitbd/2KN9iK6bVSaLHi9hq4PVBkFpJpdXPE4cVtNymyuvHYDIqLi8E0KS4uJpt8kjd8T7ArnO6dz6RFs7ZEhMcQHNyE9u064XYbFBUVcejQIdL2NrLucw2AxoBI/eSbpC+N8seB1M4kfdWlyn2Q3Y7fsnw9UWsD7Nv27kvrs3qXmZxr23ereXXszcqZLyKnvdKHLcfOAxLSpCkDRjfO7zTDsGC4HKz7dROFngxSdqVy9fWX0zTAyeYNm+nRvhNPvfsq4y6+l+Lsvfy8biND+3fh8xVLaNqkD+FhVoKCI3DnFXBoXwYdklqyfd8BYpvEcXDfDiIiwomw2Ulr1oT9u7IpNr3YsFGMicNmYDdtFBcWYQSF4jGh2OLGZrNhmmbJrOtOC/k5MeRmH+FI+l5CQyKw4SDCaZCX68blDMblyqEg38P2lM11fTnlBCkAkfrJYi1JtfveKEpaBI4OQmqvhaCME52T5Lfywek/V2n3wcMmw8Brav28LBarX/YX5cwXkYamooctja3lo5RhQMa+A7Ro2hRHkwIGNulJy/A2NLXlkN0qiKaBkeRk5JMTnIMjv4i84lwinA4uPr8fyT/9jNXTmYyMXLCZpKbuIO3QEYqLi0nZvpEu7bpz4Eg6NpuNQCMetyUVd7GHYksxEfZAbG4P3qJCApx2MD0Ue2y4zZKgCKsNPBBsCeXf0z9h0qxhFGfnkI+Bxw2eYhdZ+9KwWa1gGMQ2icHWTrezpxv9j0n91WlESardcucBqb0WAp8TnZPkqPJxJgTbzi5p4aC8GV5/64NcB8GH1+vx+4PcvH0H5cwXkQbp2IctjZrpxSCfiJAgzohvxgefzeHpF1/l/ltHUhSaS3ZIKrHNovho6XyKc/ZhGAYrNnxJZEgg53eO5dc9GZhGICFhTQjvHEZgcCCpKank5nnZuGU1cXEt2bGziNyMbOx2O2ZhPlgMcgvzsVtsOB12LFhwOBx4LQaG6cVtMSgqLMJisRBpMyjKy2XWC2sZdFlXgguP0KxZU1L27aCoyENsbCxWmxWv1UFIRFhdX005QQpApH7rNKIk1W5dz4R+onOSHFPeYsDAZttYsKcjvjTCx6iLPsj+aYFLuEJCKcjOqnS7xpgzX0SkIfF4vfy8aS0FOcWY3jbYPcVccGFb+nW+glWHF/Lhkvn0aHkGZ3RuyqR/Pct1A6/mSFYxKzd+QBxt6NfrUlo0i2DbgUwsNie/blkHVoPcgiJyC71Y9jXjqw+3kL5xE61CrRgYFHk92A2jpKXDUvK+qKgINyaG005ecRE2LwS4nFgMk8L8PEK87Xj12S+58urBWHHgCgjGa8+j0CwkOz2PINcRivM1PvF0owBE6j+LtcYm46uSE52TpILybUMPM4KNfLa/NTlup295XfVBrqib1fGCj1KNLme+iEgDYhgw6OLzCHU05/o//ZGhQ9rhLs7g/sdH06pLc/btS6G4MJ+0zBCGXzSI3IwiouMcOI7EE4CFw8Y+It1Oopq0ZUdaClER4RQb2Tjs8fzjgW/JODifyFAXh3bsJr5rczymDbPITbEJRfZiDNNGrteDCwPTYSezIA83JhaHDYfVhtsRAe5d5OYfIWufh3lvfYvF7sAVYmf0rf0wirNIiI1k197NBNjLSWMv9ZoCEJHjOZE5SRLPq7R829DDtA45zJ68MHL6/o3gdn3qpA9y5WmBq6ax5cwXEWlIvKbJz9+t5trBNzBl8mTcRUdYtvxDrhp1LdvSfiExrjnrktfQd3AvNv24m/3bv2f36iwe+dM4AkMjmPGfmdgdhVx05v/h9dpo2qQnzz+/i6KsYsixcWDHTiI7J2HYHXjcJlYnmAVQ6HGTXewGRwAF3mKyC/MxvVZyvW5cDidBThsOi0l2QR5er4fdO1KIiQ4nbe8uwpo0p9iI4pUXfiCuRVMS2zk45/y+ZGWsq+vLKSdIAYjI8VR1rpHstCqVtxgQH5QJbZpAHXVhOn5a4Mo1xpz5IiINidViIzQsFqe9mM6tQgmwxpKZc5jXX3qDbhe0YOFHqxk8tCehNhdnnXs+Xa4YzpadORjmAdIO5tCvbyzb1pk0j7mEZZ8n89xjcwlt4eRQyiEMax6x8ZEUF+QSEBSG3ebAQSFWb8nDNo8H3FYDuysAT7GJ1wKhAVYCLAZ2mxWbxcKG1O3g8VJclIPbU4S3KIecg1vJNfYREhXDrs37SNseyrdLt2EP0O3s6Ub/YyLHU9W5RhZPBJvrtJjD5FS7TzXGnPkiIg2J1+vlUHYGU2b9iz/dNpRPPl+O252HI6oQIyOca2+7iqw8k44tzmHttm/5x4dv8sdL7iK4STGbvz/E+3Ni2PZrFB99+gNuqwdbbCTZmYcIDQ3gyP5dmGGRFHhMPJ4i8nBic1uwWkychh3TYuA1weYFi9NKgMuCy2bHYVhxWK1YMdi1ewcWbyTF7mIM04ndasFbVITNnkvm/h0EBASQU7SXvNxcQqJi6vpyygnSRIQix1M6J0kF2at88g6XDDzPPXyc8jU/y/nxVLX7VEBoqN/70gkKlYJXROT0lp+fyw/friOqWRw3jvwLaTlb6d23F93a9mLYRUNp2iScuCgXAYaDLVt+Zc/hXK68aTQ//9iSWU/t4qe0BDI6nsnepjEciIjDe0Yf6DWA3MBgCgsLf5tU0ILFYmf3/sPYrAZWw8BmseK0WwgOcBDgtGExwW6xYjHBYbNjeMBtWjmUnY/b48Yw3WAWU5B/CLc3H5Mi3MV5uIvzcHiLaBLsxJNbWTdpqY/UAiKnlxOdh6M6VDonSTmWPghDpsH7Y8opX4dzmBwlrmNngiObVtoNK6RJU256YRZpmzcpZ76ISAPTJLwpA1v8gZgeTZj/6ce4f41hV8fDfPXVRm677HoO7IHmMUGk5SzF5gmkS+vb+GXJBibe9TXuuG4UJ7Yrm9PRFYTt7IFYcw6Rs38XAYFB5BUUszP9AG0iErAbJX8/bBawGiV/G+1OF5geLIaBp6iYAKuTw/kF5JsWbKYHPMWYZhFet5vAwBBs1kAwc/C68/BYrLg9JlYctX795NSoBUROHxsWwHNdYPalMPfmkp/PdSlZXtNK5yQJPF6mjd8GpAc2KSkf2tx/dWhs2ZS9dcBisTJwzG2Vlhkw+jZsNgfxnbvRsV9/4jt3U/AhItJA5OXm8dHb7xCQXcC1I65kf04m/331fxzZuJPnZ76B3RrMd8m/EuBqyrtvFvDqE6sp8Fjw2Aopjo0HwDD8W/pL34ecczEYBhZvyZweNlco2QUFmF4vdtOLx12MzWIjNDAQp6UYm9cDXhMrXtw2k6zsXCwW8ODFYppYbHYMexO8NjvFXi92uxOvFzweD16vl0JPXq1fPzk1agGR08OJzsNREzqNAHcBzLv1+GVz9kPXK+vHHCYVaNu7LyPGP1hmHpC6SgssIiK1JzgoiC7tYnj77Y/x2tNYu3IXQy5tR1bKHr7+7lcyInMZc9Fg5n3k5pdvPDSJCSLAcFPgCgFXYIX7NQwDIyiUwK59ydn+A1a7DQwXGfluAuwmAVYrNmvJQHOLCQ7DCgbYbFYMi5PCIjf7s7PwWJ0YnmLyCnIJCgjBsHjIySkgJDgEAyeO/2fvzuPkqsrE/3/OvbeW7qrqvdOddFZCQ3Z2A1FEcAFFMzqK21cBBwd3R/E7osw4biO4zCBuPxE3wHEBleEbN1wA2QIR2UkCdEL2dLrTa3XXfu85vz9uV3d6ryS9Vj/vl23St07dOlVJh/vcc57nCQTROonnebi51BR+cmIiSAAiZr6j7cMxmWLzxx8DAwnm093DZByN6zew/Kz1gzqhyzYrIYQofkYr/u3qz/GzB3/Brr2KK95xKqtPCtD0dBtXXP1KWlMHuPHn9/PiX06kutpgWYpsbyc6WljPjcDqs1G5Xnqfe5RYMEwq10M2lwU7jLIURhtsLFytsW0bx1bkjEMqm6K1p4e0Z4g6GnBxHJtgyMK2gtiOwlIuqXQKjAbAUuNsjRYzjmzBEjPf0fThmGzjJqRPf4L50bIsW7ZZCSHEHGOMIVtic3rNy3BbAzz30NN875t3UVMW44b//CVvOPWT7HzoRHbufI6AZaHSSYxWmN7CS7ibk88mpCwsC9KZBKm0wfXAxiJo+XfBHcchHAqhjEMql6AjmaQ9kSAQDuAZG52K42YVxtPUVVVhZzJkejqxchmUm8LWGay+QETMHhKAiJmv0D4chY47HvmEdGB4EDI4wVxrj31bn2b7Q/exb+vTaO1N/vyEEEKIAhg8Hn34Cdaf8XJOWrqCz/7rv3LN//13bLsWRQ3vfNvveO6xJlAWrutidAo3l8C07MEk4xgz9qqDUgpVGiPYsJjde3aS0Q4ZbejNuSgDyihynoeyg2Q8Q9YY0q4mmcmgLBvbWFjBErLZLJatUVYph1pa8EwWlIenM/05J+NMRcxAsgVLzHwzra9GPiH9rqsHr8yULfCDj1UbadqyeVhuRbSqhgsuHyG3YrzKXhNZ+Ws6qohNI6092V4mhBAjUMZi3dIzcXUP69efTdm8eoKRLk5ZcwLnlL2Rz3/p10QiCoNDOp0mYHl4bgZyHuqJP2FteHNBr9OeSKCUJqtCZDxNVmuMUdhATrsY1w8iclqTzOZI5XLkNERKIvRkXMKhEgweSkWoq4/QeXgXyhhcN4sxEAgE8Dy5wTfbKDNeCCuKVjwep7y8nO7ubsqG9HuYUbTnV7uKNzNyHojyL/4/9szUXkyPcjHftGUzm66/dtSnDeqjsW3TKIHMV/xAZ7zHj8ZEnmsWOKogUAgh5oizr72bQ/E0APNKbIwCpSyUAmM06WyKVMrF9fwcS6O9gXK7xv8/A+AEUcHwuK/npXrAy2FbDrYCS4FlWVh9uwaMAox/TmMMWmtynsb0rW4opVDKAvw5au35Sx5HVODS2QT7v/fPM/96RvSTAGQOmzUBCBxRBQtG7KsxA0rbgv8P4/c/dMW4/TXe++0fYj33u5Ere+Xf04aPwOZvjf740bzn0aqIzbDPb6IcVRAohBBzyA8eeJH//N326Z7GhNKZJPtueOvsuJ4RgOSATIvPfe5zfRH9wNeKFSv6H0+n03zoQx+iurqaaDTKm9/8ZlpaBuc37N27l4svvpjS0lLmzZvHv/7rv+K67lS/lamT3/Y0Q/tq5B3YvnXM4AOgp72NA9ueGaeyl4GHvz3G4/iVvwrJKxm3ithRnGsW0NrjnptvGnPMvbfcJDk5Qog56b3nnsC/X7yS+rLwcX9VlATGfK2KksCEvM54X/NioSn69MREKdocEK01ljU8vtJas3//fhYvXjwNsxqwevVq/vKXv/R/7zgDfxQf//jH+d3vfscvf/lLysvL+fCHP8w//uM/8tBDDwF+452LL76Y+vp6Nm/eTHNzM5deeimBQIBrrx39ru+st2rjjO6rAdDb1VnYuKYt41T2or+84CgPDlT+Gq/M79FUEZvBJYMLVXAQuH0ri1avm6JZCSHEzPHec0/gveeeMCHnuuvZZj7/m200d6f7j80vD/PZN6ziojUFlq4/TvF4nPIvTslLiQlSdAFIPB7nve99L7/5zW8oKyvjfe97H5/97Gexbf8i9fDhwyxbtmzaE5Ycx6G+vn7Y8e7ubn74wx/ys5/9jAsuuACAH//4x6xcuZJHHnmEs88+mz/96U9s27aNv/zlL9TV1XHqqafyxS9+kauvvprPfe5zBIPBqX47U2eG99WIVlQWNs7JTswLFlL5q9DqYLvum7KATmtDc1MXiXiGSFmI+Y0VWNZopY2PTsFBYIHjhCh2UqxBHI+L1szn1avq+duuDlp70syLhXnJsirsCfo3XRSnogtAPvOZz/DUU0/xk5/8hK6uLv7zP/+Txx9/nDvuuKP/wnwmpL00NTWxYMECwuEw55xzDtdddx2LFy/mscceI5fL8apXvap/7IoVK1i8eDEPP/wwZ599Ng8//DBr166lrm6g6tOFF17IBz7wAbZu3cppp5024mtmMhkymUz/9/F4fPLe4BzVsHI10aqacXNAGlatg8cm4AULqfxVaHWw+78GT/500pPSdz7RygO3NZHoGvi7GKkIce7bGll+2rzjPn/BQWCB44QoZlKsQUwE21Kcs7ywBoVCQBHmgNx5551873vf4y1veQvvfe97+fvf/87hw4d5wxve0H/xrdT0RuXr16/n5ptv5q677uK73/0uu3bt4txzz6Wnp4dDhw4RDAapqKgY9Jy6ujoOHToEwKFDhwYFH/nH84+N5rrrrqO8vLz/a9GiRRP7xgSWZXPB5VeOOeb8y67EWvaycRoaAmqsH8+jaHg4bvPEI8Sb/WT1bZvGH3sMdj7Ryl3fe3ZQ8AGQ6Mpw1/eeZecTrcf9GvkgcCyx6hoaVq4+7tcSYjbLF2sYesOkt6ONTddfS9OWKWjuKoSYk4ouADl8+DBLlizp/76mpoa//OUv9PT08LrXvY5kMjmNs/O99rWv5ZJLLmHdunVceOGF/P73v6erq4vbb799Ul/305/+NN3d3f1f+/btm9TXm6sa129g41XXDLsIjlXXDFRfGrOhYZ9Rc0AGNzwcVyGvNfCi/i+TkJSuteGB25rGHPPg7U1ofXwrlAUHgbLFRMxhUqxBCDGdim4L1uLFi9m+fTvLli3rPxaLxfjTn/7Ea17zGt70pjdN4+xGVlFRwUknncSOHTt49atfTTabpaura9AqSEtLS3/OSH19PX/7298GnSNfJWukvJK8UChEKCSVIqZC4/oNLD9r/dj7qkdraDieIxoeFuyoXquApPRjaGjY3NQ1bOVjqN7ODM1NXTScfHzbo/JB4NCtJbHqGs6/TLaWCCHFGoQQ06noApDXvOY1/PjHP+Z1r3vdoOPRaJQ//vGPvPrVr56mmY2ut7eXnTt38u53v5szzjiDQCDA3XffzZvf7HcZff7559m7dy/nnHMOAOeccw5f+tKXaG1tZd48f8/8n//8Z8rKyli1atW0vY/pNtMSKS3LHv8/3EdW9upphrs+DckxLgpKa+CjT4JzDIUG8q9173XwwNfGHz9a8voxNjRMxMcOPo523HgKCgKFmKOkWIMQYjoVXQDy+c9/noMHR77DG4vF+POf/8zjjz8+xbMa7P/+3//LG97wBpYsWcLBgwf7q3S94x3voLy8nCuuuIKrrrqKqqoqysrK+MhHPsI555zD2WefDfhB1qpVq3j3u9/NV7/6VQ4dOsS///u/86EPfWjOrnDM6kTKfGWvXQ+MHXyA//i+LcdeCcyy4YTzCgtARkpeH62hYT53ZIyeLJGywv5uFjquEAUFgULMQVKsQQgxnYouB6SyspLVq0dPLo3FYpx33nlTOKPh9u/fzzve8Q5OPvlk3vrWt1JdXc0jjzxCbW0tAF//+td5/etfz5vf/GZe/vKXU19fzx133NH/fNu2+e1vf4tt25xzzjm8613v4tJLL+ULX/jCdL2laVU0iZSFlsstdNxoxk1KHyXB/TgbGs5vrCBSMXZwEa30S/IKISaXFGsQQkwnZWZCTVoxLeLxOOXl5XR3d1NWVjbd0zkmWnt8/0NXjFv29r3f/uHM33qz6wG45fXjj7vst8ffC6V/JQMGBxR9QclIKxkTML98FazRXPS+NRNSilcIMb78zZvR9BfNEGKGK4brmbmm6FZAxNxyNImUM51edA4HnPN4IXUuBzKr0Wboj+dRlN4dTz4pvWxIl9qyBaNvo5qAFZrlp83jovetGbYSEq0MSfAhxBQrqGKfEKPwtOHhne38vycP8PDOdrzjrGAo5paiywERc8vRJFKOlaQ+3QnsA835PtZ/LGK1cW7ZD1kefoSjLr1biCMT4AupZlVoQ8Nxxi0/bR7LTqmdtE7oQojCSbEGcSzueraZz/9mG83d6f5j88vDfPYNq7hozfwxnimETwIQMasVmiDZ1Xxw2FatfJI6MK0J7KNtS0roKu7q+iQXVXyV5fP2HX3p3ULkE+ALkc8diTczch6I8h8vYIXGstRxl9oVQkwMKdYgjsZdzzbzgf95fNh/BQ51p/nA/zzOd991ugQhYlxFmwNi2zbNzc39ZWrz2tvbmTdvHp4nzZWKYc9kITkg4VgZ6Z74MZ1/srchaG249ZrNY/THMERjindf93IsZwbcLyg0d+QY+oQIIYSY2TxteNlX7hm08nEkBdSXh3nw6guwp3BVuxiuZ+aaos0BGS2uymQyBIPH0ENBzEiFdL3mOGLsye4EPH5zPkVvDzTv7Jm0ORyVQnJHtm2CG9b4Ceu/vsL/9YY1/nEhhBCz1t92dYwafIB/W6q5O83fdnVM3aTErDQDbqlOrG9+85sAKKX4wQ9+QDQa7X/M8zzuv/9+VqxYMV3TE5NgrK7Xay94DZt/+bNjPvdkdwKe6uZ8E2Ks3JHj6BMihBBiZmvtGT34OJZxYu4qugDk61//OuCvgNx4443Y9sC2j2AwyNKlS7nxxhuna3pikoyWSPn8ww8e97knsxPwdDTnmxAj5Y6M2ydE+X1CVlws27GEEGIWmhcLT+g4MXcVXQCya9cuAM4//3zuuOMOKisl0XWuGCmRciK6+E5mJ+B8c76xtmHNmuZ8ezZD/OAYAwzED/jjjrePiRBCiCn3kmVVzC8Pc6g7PVopEurLw7xkWdVUT03MMkWbA3LvvfdK8CEK6vY7lsnuBGxZinPf1jjmmJe9tbGwErXa85sFPvMr/1ftobXHvq1Ps/2h+9i39emR81lGeN4xmapO7kIIIaaFbSk++4ZVQH/pkX757z/7hlVTmoAuZqeiWwHJ8zyPm2++mbvvvpvW1la01oMev+eee6ZpZmIq5ZPUx+r2O5bzL7ty0uvh55vz+X1ABlZCopUhXvbWxsKa823b5G9/OmIFoslt5J6W5fTGEwPnHFpeeITnUbYALvrK0edqTFCfECGEEDPXRWvm8913nT6sD0i99AERR6Foy/B++MMf5uabb+biiy9m/vz5KDU4Gs/nisxlc6lsXdOWzSMmqZ9/2ch9QPKPTWUnYK3NsTXnGyHxuylezaYDK/u+G36OjVddQ2OsbeSE8aEldQt+A55f7Wq8PiEfe0ZyQIQQYpbztOFvuzpo7UkzL+Zvu5qulY+5dD1TLIo2AKmpqeHWW2/lda973XRPZcaaaz+wM7kT+jHrv+gfWMHQBr6/4yX0ukFGCj7AD7Deu3wLVs9oORvHGCwU2idECCHEnDHZwcpcu54pBkW7BSsYDHLiiSdO9zTEDDJWt99Z2wl4hMTvA8lyet2xq2b1tLdxIJJgUWS0EceYMJ7vEzLitq5J6OQuhBBiRrvr2eZh27Xmy3atOa9oA5BPfOITfOMb3+Db3/72sO1XQhSNERK6/ZWPAp5ayLhjSRgfq0+IEEKIOeOuZ5v5wP88PmxT7qHuNB/4n8f57rtOlyBkjiraAOTBBx/k3nvv5Q9/+AOrV68mEAgMevyOO+6YppkJMYFGSOiOOtnCnlrIuGNNGB+pT0iRmLXb9YQQYgp52vD532wbqzMUn//NNl69ql6qZs1BRRuAVFRU8KY3vWm6pyHE5Fqywd/edETid0NpN1EnM0YOiCHmZGgo7R7jxH05IEumLgl/NhipmMGwymJCCCH4266OQduuhjJAc3eav+3q4Jzl1VM3MTEjFG0A8uMf/3i6pyDE5LNsv2Tu7ZfiBxsGS8EFdTv7qmDl7zPl+UHK+XUvMu4Np4u+LNumjtC0ZfOI5Zx7O9rYdP21fmUxCUKEEAKA1p7Rg49jGSeKS9E2IgRwXZe//OUvfO9736OnpweAgwcP0tvbO80zE2IC5RO/ywb20TaWtbOxsYVoWXTQ0JiTYWPDdhrL2sc+5ys+PTxhfKIaFs5CWnvcc/NNY46595abRm70KIQQc9C8WHhCx4niUrQrIHv27OGiiy5i7969ZDIZXv3qVxOLxfjKV75CJpPhxhtvnO4pCjFxRkj8blyygeXAgXt+Qe/vPkvUydJQ2j3+ygdA9fLB309kw8JZ6MD2rYO2XY2kp72NA9u3zs5qakIIMcFesqyK+eVhDnWnR+sMRX25X5JXzD1FuwLyL//yL5x55pl0dnZSUlLSf/xNb3oTd9999zTOTIhJkk/8XvsW/1fL9ssLX/B2Vi4KsCgSLyz4gMHJ5/neHkPK/RJv9o9v2zRhb2Gm6u3qnNBxQghR7GxL8dk3rAKGZyPmv//sG1ZJAvocVbQByAMPPMC///u/EwwOLjW6dOlSDhw4ME2zEnPGTNqulM8TAUZrTDhAQVnDQPK59vyVj1HrmAB3farot2NFKyondJwQQswFF62Zz3ffdTr15YO3WdWXh6UE7xxXtFuwtNZ43vCLov379xOLxaZhRmLOmInblUZrEDhIX3ByZPL5CI0OBzvGhoWzTMPK1USrasbchhWrrqFh5eopnJUQQsx8F62Zz6tX1U9qJ3Qx+xTtCshrXvMabrjhhv7vlVL09vby2c9+lte97nXTNzFR3GbydqVVG+Fjz8Jlv4WzPwilQ8oeli3wg5Qjg6RCGxEeS8PCWcSybC64/Moxx5x/2ZXSD0QIIUZgW4pzllfzD6c2cM7yagk+BMoYM9Leillv//79XHjhhRhjaGpq4swzz6SpqYmamhruv/9+5s2bN91TnHbxeJzy8nK6u7spKyub7unMftqDG9aMvcJQtgA+9szMKG+rvfG7le96AG55/fjnuuy3Rb0CkjdSH5BYdQ3nXyZ9QIQQYrrI9czsU7QBCPhleH/xi1/w9NNP09vby+mnn87/+T//Z1BS+lwmP7ATrBgv1vuDqoFGh4PNsKBqCkgndDGU/J0QYnrJ9czsU7Q5IACO4/Cud71ruqch5opi3K40QqPDASPkjMwBlmVLqV3Rb6RVsWhVDRdcLqtiQggxmqIOQJqamrj33ntpbW1Faz3osf/4j/+YplmJonVk6dqJGDdTjJbAXrbADz7mQB8QIUbStGUzm66/dtjx3o42Nl1/LRuvukaCECGEGEHRBiDf//73+cAHPkBNTQ319fUoNZDwpJSSAERMvCUb/Ivy8bYrLZmFFyQjNDocMWdEiDlCa497br5pzDH33nITy89aL9uxhBBiiKINQP7zP/+TL33pS1x99dXTPRUxV8zm7UqFJKTnGx0KIfycjzHKMgP0tLdxYPtW2bInhBBDFG0A0tnZySWXXDLd0xBzzWzcrjQT+5YIMcMV2vW+0HFCCDGXFG0Acskll/CnP/2J97///dM9FTHXzKbtSvm+JUO3jOX7lgztCyKEAArvel/oOCGEmEuKNgA58cQT+cxnPsMjjzzC2rVrCQQCgx7/6Ec/Ok0zE3PCbNiupD1/5WPEfBUDKLjrU34wNRODJyGmUcPK1USrasbchhWrrqFh5eopnJUQQswORdsHZNmyZaM+ppTixRdfnMLZzExSN3uOyud7vHgfPPC18cfPpr4l06mQPBpRVEargpUnVbCEmBpyPTP7FO0KyK5du6Z7CkLMPCPle4xnNvUtmS6SRzMnNa7fwMarrhnWByRWXcP5l0kfECGEGE3RBiBHyi/yHFmKV4g5Z7R8j/HMtr4lU03yaOa0xvUbWH7WeumELoQQR8Ga7glMpltvvZW1a9dSUlJCSUkJ69at4yc/+cl0T0uIqTdmvsdoFJQ1zM6+JVNl3Dwa/Dwa7U3lrMQUsyybRavXsfKl57Fo9ToJPoQQYhxFuwJy/fXX85nPfIYPf/jDvPSlLwXgwQcf5P3vfz9tbW18/OMfn+YZCjGF9mw+um1XM71vyUwx7udqIH7AHyd5NEIIIQRQxAHIt771Lb773e9y6aWX9h/buHEjq1ev5nOf+5wEIGJuOdo8jmPsW6K1N7e2ohT6uUoejRBCCNGvaAOQ5uZmNmwYvnVkw4YNNDc3T8OMhJhGheZxvPxfYdl5x1TBqWnL5mHJuNGqGi64vIiTcQv9XCWPRgghhOhXtDkgJ554Irfffvuw47fddhuNjY3TMCMhptGSDf6qBqMVYujL93jFp/2tQscQfGy6/tphPRF6O9rYdP21NG3ZfGzzPpL2YNcD8Myv/F9nQl5FoZ+r5NEIIYQQ/Yp2BeTzn/88b3vb27j//vv7c0Aeeugh7r777hEDEyGKmmX7JWFvvxT/YtmgDRxIltPrBok6ORrecu0xbZfS2uOem28ac8y9t9zE8rPWH/t2rJla5naEz3WA5NEIIYQQIynaFZA3v/nNbNmyhZqaGu68807uvPNOampq+Nvf/sab3vSm6Z6eEFNv1Ua/JGzZfJri1Xx/x0u4fe86fn9wBbfvXcv3v3PnMa1UHNi+dcxu0AA97W0c2L712OadL3M7NNk7X+Z226ZjO+9EOeJzHaRsgZTgFUIIIUZQtCsgAGeccQb/8z//M93TEGLmWLWRpngVm77+5WEP5bdLHW335t6uzgkdN8i4ZW6VX+Z2xcXTu8qwaqM/B+mELoQQQoyrqAMQz/P43//9X7Zv3w7AqlWr+Id/+Accp6jfthCj0trjnlt+MOaYo90uFa2onNBxg8zEMrfaGznQsGwptSuEEEIUoGivxLdu3crGjRs5dOgQJ598MgBf+cpXqK2t5Te/+Q1r1qyZ5hkKMfWOZrvUotXrCjpnw8rVRKtqxjxvrLqGhpWrj2quwMwrcztTc1GEEEKIWaRoc0De+973snr1avbv38/jjz/O448/zr59+1i3bh1XXnnldE9PiGkxGdulLMvmgsvH/pk6/7Irjy0BfSaVuZ3puShCCCHELFG0AciTTz7JddddR2XlwLaPyspKvvSlL/HEE09M48yEmD6TtV2qcf0GNl51DdGqmkHHY9U1R51TMshMKXM7bi4Kfi7KTCgNLIQQQsxwRbsF66STTqKlpYXVqwdv+2htbeXEE0+cplkJMb0mc7tU4/oNLD9r/cR2Qp8pZW5nYi6KEEIIMUsV7QrIddddx0c/+lF+9atfsX//fvbv38+vfvUrPvaxj/GVr3yFeDze/yVEMdLaY9/Wp9n+0H3s2/o0WnsTsl1qpPPmWZbNotXrWPnS81i0et3xBR95o5W5La2Gt9w8NbkXMy0XRQghhJjFlDFmpD0Fs55lDcRWSvl3SvNv9cjvlVJ43tzcNhGPxykvL6e7u5uysrLpno6YQE1bNnPPzTcNWumIVtVwweVX0rh+w4iPx6prOP+yK8fcLjXeeSfV1jvhd5+A5BGrN1OVAL7rAbjl9eOPu+y3sgIihBBTTK5nZp+iDUDuu+++gseed955kziTmUt+YItT05bNbLr+2lEfz+dkaO0d1XapQs87KfIJ4MNyMPq2YU12wz/twQ1r/ITzEfNAlB8MfewZ6f0hhBBTTK5nZp+izQGZq0GFmNu09rjn5pvGHHNkn49CS+0e7XmPhtaG5qYuEvEMkbIQ8xsrsKwjks5nQjPCmZKLIoQQQhSBog1AANLpNE8//TStra1orQc9tnGj1OwXxWcy+nxM5nl3PtHKA7c1kejK9B+LVIQ4922NLD9tnn9gpiSA53NRRuwD8mXpAyKEEEIUqGgDkLvuuotLL72UtrbhF01zOe9DFLfJ6PMxWefd+UQrd33v2WHHE10Z7vres1z0vjV+EDKTEsBXbfRXWkbqhC6EEEKIghRtFayPfOQjXHLJJTQ3N6O1HvQlwYcoVpPV52Oiz6u14YHbmsYc8+DtTWhtZlYzQvCDjWXnwtq3+L9K8CGEEEIclaINQFpaWrjqqquoq5uiixIhZoB8n4+xxKprmH/yilFL6R7PeQvtH9Lc1DVo29VIejszNDd1zZxmhEIIIYSYEEUbgLzlLW/hr3/963RPQ4gpVUifj5M3vJwffuRKbv/CNfz+m1/j9i9cw/c/dAVNWzYf13nH6x9ypER87OBj0Lh8AjgwPAiRBHAhhBBitinaMrzJZJJLLrmE2tpa1q5dSyAQGPT4Rz/60Wma2cwhZeuKx9CSuql4nHtv/cGwPh8nb3g5f//NHaOeZ7xSusfaP2SoA893cufXnxh33Bs/fhoNjWV+zsXzv4enbx/SB6RBEsCFEGKOk+uZ2adoA5Af/vCHvP/97yccDlNdXd3ffBD8JPQXX3xxGmc3M8gPbHEYrTngKy57L6Wxsv6gZP7JK/jhR64cs5pVrLqG9377h6OuZDz/8IPc/vXrcPqqyhnAcQLYAQfbCeC5WVBWf3Vc13WxLQttIOA4GGPI5rKkUxmqaj+AZcUG/Wzm+f8sJVhsXc/51duIOQMrJkkvwPOJBbyYquNAuhLTtwqi+srjGiCVyVASCmK0f0Qp1d94FGP6Rg2U0/X/Fez7p9B2eP37PsJJZ7+soM9fCCHE9JLrmdmnaAOQ+vp6PvrRj/KpT31qUFd0MUB+YGe/o2kOuG/r09z+hWvGPWdZ/TsJlCwZ8bGu/Tfh5dqPbbJDWIETCUTeADAoCMn/k1Sjf8bbFvyq73GOeNz/ddOBlezoGTsv5VhVLVjIe75+46ScWwghxMSS65nZp2jL8GazWd72trdJ8CFmBu1NeOnWo20OWGiJ3FRPF9lM/YiPea6/EmGMIe15GKCkpBRlKbTWKAWWsvE8D9u2yeVyOI5NLudSUlJCOpPGc12yOReVe56g6xGJvRLbPvI/GAnQD3Nx3W+AwcFH/ntj4IL6XezVS/pWQEx/YGL65mcxcutCfwWk/5v8//zvMmkAsulUQZ+VEEIIIY5e0QYgl112GbfddhvXXDP+HV8hJtW2TaM0r/vKceUuHG1zwMJL75aQ0b0ApNMZgqEQgYDjB/PKv1pPex5/2L8fo23+4ZJ3YIIeq09cw5/v+l8aV55KJpUmR4Ydz+/kpJNOItWrqWtcyPa/beYPv/kTkZJ6XJUmm3oOZf2Z6794AwFiPPH4Xzn7DWdT07OI2KOjJ6orBTEnzblveCldVaswOY3neqRdg7az/OjmH3PFu69AeS454/nT9jyMNv1NSdO5DMYYtDa4uRxGe8QfuheTGf11h+bazD95Bc3PP9f/fcPK1UfdCV4IIYSYa4o2APE8j69+9av88Y9/ZN26dcOS0K+//vppmpmYU7ZtgtsvZdi9+Hizf/yttx5zEHI0zQG19tBGE4rEyCR6Rh+sYuTsSh7tvgWlFA889DAnnXIq689cR2lFGeGuLJZ//Y7rgpvL4bkusfIIzW2tnHBSI8GSMDEnQCLpUVoa4M47/5dXnHsR/3z5lXzvx99h67YdeLkS5i+oZvP99xBPHKauMUImZUg92UooFKBr29g9QvKC2U50zsOzDMpy8DIdxBO9VJQGIZuEgALtoT0bCwXKXx3xPA/LsnBdF601lm2hjR7ztUbKtVHKwhzxvGhVDRdcfnQJ+UIIIcRcU7QByDPPPMNpp50GwLPPDu62PFLSqxATTnv+yseIG4H6jt31Kb+z9jHcNS90RaPr15/i+zeW05s98sc9n4Q9+PtA6StwsXCUv3WxpqaBWEkEozV4g/+5CAdLSLgplGXR09XN/HUn4Ga7yWl/+5VSCm083ve+f+aJx57nd3/6LT29XbhGU1JaSjaTIRgMoeMBujq7qa1uwGBIZzKsW/9K+H8/Gve9ZYOVpFIdbHtmC01N2wk4YVzjUFkWIxnvpCMZp7yqkpBThtam/2ffsiy0Geh94nl61C4jMHqujRkStPR2tLHp+mvHrSYmhBBCzGVFG4Dce++90z0FMdft2Tx429VI4gf8ccvOPerT55sDjr4NyxC2cmw+UDXuuWJOBhO+EDfQSM7rwXVdLMuiPBYjEVfYtt23QpC/TFe87nVv5dldT2O0oWF5A11th8m6mt6eDhbU1dGWTBAIOHR3x4lWRJlXV82tP/kxXjrFshUn8OTjD5LNJgkGLVq7uimrrcIJWITDDs9lSikPVhLKdGKNEBkYIBuqZbcX5bs3fB5leaQzkM2mKAnHCDphdmzdyorVJ7NixSmY0iwhJ0LOaBwnCBiM7s/88PNKtBkxViwk12aoI3NvhBCTb+j2SNkOKcTMNicytPfv38/+/funexpirulpnthxQ1iWzQWvOo2+tOtRRqkhvx553BCyXF63+HnedtJWgqFl/Y+6rovneTQsqKDlwE4s2yIUDB1xGoOyFNFoFMtSdHZ2UVZWhlKKYDBIKpX2S/DaFqWlJSQSCXbv3s1ZZ51FJu2iPcNP/+fnGGNTWlpKJBAmFe9F4W9rKquo4tlFb+tPOD9S/vufty3jRz+8jmSqm0AgwOHWdoKBElKpXg53tNPR3UVHeyt7dzxOR+seDrfuJpft7c8B6f8k+kr0aq1HbLZeSK7NUPncGyHE5Gvaspnvf+iKo2quKoSYXkUbgGit+cIXvkB5eTlLlixhyZIlVFRU8MUvfnHYBYgQkyJxeGLHDbVtE43PfJaNDduJOtlBD8WcNBvqW0nrACNeVQOgyGiH31e8glsb3krSLvEPG+jN5mjzXIw2nLSyCs/zcL2BSEAp1b+CoLXm4MGDNDc3YwxkMhl6e/0kds/TfOMb38BxHH75y1/S3d1NMpWhsXElr3zla9Ce4fDhwzz77DOEgyHKyspwAg6ZdJpn9BLefkeObhUdNOsuXcLXnq/j108eYF6sDs91CNhllJREaT2UJJO26EkmyGmPRx5+gua9u3nh2b/x4s5niHe2kc3m8LyB7VeWZWEp5SfZjxDHFZprM1HPE0IULr89cuhNgvx2SAlChJiZinYL1r/927/xwx/+kC9/+cu89KUvBeDBBx/kc5/7HOl0mi996UvTPENR9CK1EzvuSEfklzSWtbM81s6BZDm9bpCok6WhNM7zPbVA3binsjwPWzmYvjgll8viZrM8+uSTLKyp4vCBF1l1+jnD6uGeftaZNN+1F62hcflyUgn/jkaqN0H9CUtRndDd1c4nPnEVO17cz4UXXshP/udHOLZDdXUtp522jkce+iuW1qxeexLbtz9Pd6IXBwvjaHp7e2muOp3frfwgnY/ehtd9kJr5i/jp/U/QFe/kpMZGtr3QxPxFNezdvZuGeYvYk9pFLpkjUhajtbWNSCjAlq0vcPraZYRDAeLthyiJVaJUKbYdAqXIum5/6d6RFF49bGKeJ2YW2dozcx1tKXIhxMxRtAHILbfcwg9+8AM2bhyoMLRu3ToaGhr44Ac/KAGImHyx+RM77khD8kssBYsi3YOGRO3Ry8keyS4NEQjY5BhYAMgkk9jKJmMsXvaK15P1coSDgyvJNe1o6q8mlUxmKC+vIZXIsXbtWjq7Osjlcnja4wc/+CHnnvcq2g53cPUnr+HDH/kMPck4jz/+KLlMkrPXn0V9XR2xSCXPPrWFbC7H1Z/8FF/8t0+x5IQV/Pp//x8La5aw7tX/wA+++XkcFcZWIeI9cVLJDJm04dRTz6RpRxOR0hrKKiyaW3qpilaRySYpCZXwws6DRNcE6Wg7gAqGqZt/AuHSYP976e+SPoLxc22Gi1XX0LBydcHjxcw0UuUzqXR2bCYjkDvaUuSTRYJUIY5e0QYgHR0drFixYtjxFStW0NHRMQ0zEnPOkg1+v4+xEtHLGvxxR6u3ZdwhDaXdRJ0MvW6QUbdhhWyCtTGcgCLXdwGulEU4YPGTW29Faw/bCfHgI3djOQP/QTUYdu7YSWlpKdpoPM+QySQB2LlzJ8FQANu2cWyHN73pjXT3ZHjlK1/N3x/bQtbVJNM9tB7YR2nQoT4UYcnSxTz+92fIZjIYo/nWt7/Fod0vsnPPHqpra9BeknQ6iXZL2NfczJIlS9CuwzkvO4UXtid58MHN1NQ2sGJlAzte3EY4GKarO05FZTk9PZ0E7FLiPWkqot207GsiVlFLuLTcfy8m38pw5I/JsmwuuPzKMTvOD3X+ZVfKBcgsN1rlM6l0dvQmK5A7mlLkk0WCVCGOTdHmgJxyyil8+9vfHnb829/+Nqeccso0zEjMOZbtNxscIweDi758bB3RowVsrVJwQd1OYPj2ovx3wZX1OLbBtgf+KTBGE7BdrvjA+/GMi1JgY+Fms/1PtFB0dxyiqrKCsvIYxtKUlMYoKYlQWVVBtDwKNhhPEw4r8Fyee+EJamuryCZ6adq1k0WLT8RoG894uFnDgvp5BCyHRCpN8/79BO0Suru7qK+pJFZRyV/v+n8kU0miZTV0J+J4XoZnn9pLRbWiNFqGm8nS0rqfRNxgvBx2MEA67dHaliCZ9dixp4Wcp8hmuunpPkRW59CewenLAVFKjZrL37h+AxuvuoZoVc2g40oN/ic0Vl0jF6ZFoNCtPVp7Y44Rk5ujUeg2x8naDin5J0Icu6JdAfnqV7/KxRdfzF/+8hfOOeccAB5++GH27dvH73//+2menZgzVm30mw0O64Te4Acfx9oJvX91pZmRr5oVKEVjWTvnm5384cAJhI8IhFTIxjqpGmdBDNv2A6D+62+l8DyPgOPgeh6O0Vh2kCPyttHGcODgfqrqKllaUUVVTRmWUniuReuhFlLpBA0LF2IMaO1i8Ein0ygcyksj7HlxF4lEApQiF7BpPrQHZfwyuoGAYl5tLd2HOzhj3Ros22bTr39OMtFNT28PsViUyopatO5F6Si9PTm6uxLU11poN4YxPbiex7zyKrriHTTUzyNSXklH224yrodju+zduRXbLqF2wcmovl4eo+WA5DWu38Dys9ZLJ/Q5YKZs7ZntJjtHo5DtkZO1HVLyT4Q4PkUbgJx33nk8//zz/H//3//Hc889B8A//uM/8sEPfpAFCxZM8+zEnLJqo99scM9mf+tUtM4PII7nP0r51ZXbL4WBDUR9+gKNUDmkO1ka7eCZyDJWLZgHuSyqNEBJQwzHdrAcB6UUtn3EKk1fSVrbsQlHSsmkc5SWRHEtp//UllLkcml27dpJZVUtsZoQBpewE2BBbS12aAHd8TiO42BZFsZ4xGJlOHaQk086ie37DlJfX8/O7nYy2uPO/70dx7HJeWki0VLsgIXjKDrb28B26Il30Hqok4qKKJZtyOZckj1pQoEwXZ29BAIOrudyuDXO/PqFHGzZS1W0jM6uwxg0B/YfIBYLc/BQCwsXVGCyCQ4376ayfhlBK4DruoM+ulE/dssedsEpF6DFZyZs7SkGkx3IFbI9crK2Q0qQKsTxKdoABKChoUGSzcXMYNnH1GxwTKOurizwV1f+cDWkOzHa0NnZyeOJJLv37qWt5RD/510bqa6vxRiLrOVRqgbK9RpA6yy1C+rQlkXKaFy7BFSGgSt0gx2wKQkGyGSTNO1qZ9XJywk8v4UNz9+HCmqeWPhSDpksu3a1cWK54rQtd4AxvO7ii3nkK1+mNhbCcWwcXK7+P2/GCmi+8OWbOKEkSVYpnt+/h5evmIeyAmwJ2LTasLzxRPbuaaZh3jy2d3SRSXVjWTYnNzaS6Umw59AuqCrnpPkNdHa2sqRuPu2dcTqyKexglJbmBAtqK7As6O1ux032EIxWYVmWX5p37EUQMUdM99aeYjEVgVx+e+TQPIxYdQ3nXzZ5eRgSpApxfIo2APnxj39MNBrlkksuGXT8l7/8Jclkkssuu2yaZibEBBprdeUPVwP+XcLO9jS9VopUPM0rz3s1LQfbaW+L++ewNFrnOFW9DJsQCtXfnO+73/8Bb7/kUrTWOMGBPhkehlQqSUvrIfYcbOY9H72aF3ftYKHKYtWEwU3RY7kEgjbJbI5IysPt3E39/DoaTzyRRx68hzt+9RM+83+vZZ7rkv7R53AihrSppuS2b1Jd18Bp1UuI/eEvELOIuIfo7emk5aCiu6OHQC5AiRVAOxbhcJjuA83EwqWce8pqUskUpcZQU1tDJpdjaeMyAoEA7dk4oWApWmu/8aAXJ5fpxQ2Xjbv9Sswt07m1p5hMVSA30vbIyd4OKUGqEMenaAOQ6667ju9973vDjs+bN48rr7xSAhBRPApYXdmxYw9vv+QNOAGF4zgEgwEso1CWwnWzeNkedK/BBjyt6ezowA1V0vTiLjCKbDaLNh6B/BYso0inPJTS5DyP9padRANBAstWsKWylnCgln17d5HLxTlz1TJ6u3oIrryQDmP4149/AhPOsn/fXmzHpcVLU35iI9FSC3dHJ8HGMhRwqLeH5ScvJuum6eq2WTh/MTmvl7JIGWiL0lCIirJqli5YQKorTkdrG2sbGmg/3MaypcvYu28vdtjicGeChtpqsh0eSilSqRQlJWGUMvT2dBEp97dkShAi8qZza08xmcpAbqTtkZNJglQhjk/RBiB79+5l2bJlw44vWbKEvXv3TsOMhDg+x1pr3mDwdBbQKOWgtcZ1PZTBL5XrBAgGqrCSDmhwbJtYaSk79+ykbu0ZGKMhmwVr4AI9Uhblk194C7YKojyF6ssnCds2LFiAo2DxymW0tbdywvJFGGPo1C5thw/z8X8/mW3bttPacpAnHttOSzLDEye9lrRr6PZ+Rs8rP4QJ2PzmO98nvuFc5ldX0Zm+m2BpjECukvkLyqiLRWneu4+6gOKNG84mlU7zfNMOLjjvfNI9XYRDDt3LF/PU1m3Mr6qmqb2Hh559hvLyKPPqlxGpiKJyAbo6uplXl0OpUiCOkT1Yos90be0pJsUcyBXzexNiKhRtADJv3jyefvppli5dOuj4U089RXV19fRMSohjdDy15pWCmppKULq/4Z7WGsey0Vr7+Q9+L3AADJrmVIpyS7OioZ6gLsUY4wcifasEllKUl4ewCZJJ53ACAVKpNFljY1SOLAFsp5eK6kq6upM4QQgEwtQ1LGH+Ypsz1q8D4+KoKJGwQdslBJThppe8GlcpbA1Xv++zBByHRLoHYwcxOdBZmDevjKWxcl7/prN55u9/w8rlCGiPM888i0Unn8zBHVupDJfQsvdFTl27ms7eOF1uC2WRKG5OE4zOY9feA1z2njfgWSG6DveS7s2gHI0TcPxyw0IwPVt7ik0xB3LF/N6EmGxFG4C84x3v4KMf/SixWIyXv/zlANx33338y7/8C29/+9uneXZCFG4iGqKdeOKJWJbdl9vh19PVfY/lPE3Asfvv/SsUHz9/KUvqymiKnUDSdGPwg5f8GNf1aHnxEMYoVCDAbT//OXU187ADIYyCq/71P9i9qwkLg1JZkj1prGCCdCBA0Anwpz/eTzrRRVdnhuVrV3Fw9x6yXoZAqcX8mnnUVlRQUzefeZWVVNZUo7OamoX1dDV3My8a5eWnn0Y0Vk7l+a8gWllBS+thTjnjNLLGULugnqa/PUpj44m0dXYSTjvEwmFqqmuJJxLs3beP8uoYv7zjbmrmL+LM019GdUOUeHeaHlcjxJGmemtPMSrmQK6Y35sQk6loA5AvfvGL7N69m1e+8pU4jv82tdZceumlXHtt4R2NhZhOE1Vrfv6COqwjeuYdme9gjBkoQwvYtsWtf0vgkuHCf8ixSCs8pQloh/wqiQKwHGzLIhAI8U//9F5uv/12yLrMm1dPe1snuA5JnUXrLI5lkU16eAGLrDG0HjrEksUNnLBsPutf+jK6O9pwAg6g+/uSGGOwLEN7awc1tdW0t7fTULeQ9atXUVoSApOhbl4llhWmsnElyUwaMjkc26a2ugI3l8OyIBB2qK4oJRaNogEvm0FlFSEngEqnSfUmKCkNEo3YKEsKYQkxGYo5kCvm9ybEZCnaACQYDHLbbbfxn//5nzz55JOUlJSwdu1alixZMt1TE5PgWPMjZrqJqjVv22BZFn7ooPp+D6qvA7hlDTTAcD2N52WJlkToaIuzwHMxfZWjjlgmwbIsVF/TQmMMb3rTm9DG8NUbbuTyf3ofba0pHAcsyw8mbNtfgbGUwz/+41uwQzZPPvEc7e2tBPKPWU5/BS7bdgCFrQwBJ4jlKJSbpLK8DBVWhANBDBrLtjAKPM+jxAmRyaYoiVaQ6O0lncuhgUhpCelEHNsJEgnafvPBlEtn8z4OVy/Eyyo8bWM8CT+EEEKIyVa0AUheY2MjjY2N0z2NSfOd73yHr33taxw6dIhTTjmFb33rW7zkJS+Z7mlNqePJj5jpJqTWvAE7GCActkmnTX/QYVv+hb4CLAaCNcexaO9o5Ts/+QK744bWHr/zueu6Qxr1GYwB21YY+kIbpahvWMSLLzZha422HTAKpWxspfpaJvqNDjPpLFsef4pTTlnVn4uCckEpvyu70ViWTbSslEQyywsv7GLZmaehHYVXEsAuqaSkJEIum8MORdCAawcIR8OgFLZqJ6wVye4OPBMnbBu8cBjXpFFGga3AAowCbbBVbtxGhEIIIYQ4ftb4Q8RMddttt3HVVVfx2c9+lscff5xTTjmFCy+8kNbW1ume2pTJ50cMXSXI50c0bdk8TTObGBNWa970dTy36F9hgIHfGwa2YIXDIT7wwUv57d2/54UXmtBao4zBKH3E/qT8OQye5/qHLQsD1FZVcqilsz/JxBjQGP8cWqNxMcrDUQqtFG7Oz0nxPA+FjdEKo/2gRWvDwYMHaW3rxBiYV1WO57lY2sEohTYWdlkVqqYeJ1xGMFKGKokRiJRRGiunNBbDwuBpxaknLaezvYWS0kD/+1YEQFkYLDxP9l8JIYQQU0ECkFns+uuv55//+Z95z3vew6pVq7jxxhspLS3lRz/60XRPbUoUmh+htTdFM5p4+VrzYxmv1rwBbDuA0RAIDd+W5udcmP6b/8lEilt/ciu/+vXvaGlux7IsjOeSc7NDzuqzLKuvSpbBsiyikSiHDx8G/GpbeVqb/q1feRUVFf3H8ufof4W+il2VFZX09PQQjpaw7qQTyaoM8XSOrmyGhDbY0VK/nHAkhosNoQiOCtKVytCRTJHJaSzbYWHNPLKJHkLGxrIsLEthOw7hULj/tYQQQggx+SQAmaWy2SyPPfYYr3rVq/qPWZbFq171Kh5++OERn5PJZIjH44O+ZrOjyY+YrfK15scybq15BVplMMpf8cjnYrgYdF/ux5E9+IKhEK8471W8/NxXkkwm+rdsDe3TZwD6jtt9QYTWGqU8bMfFsjX9gYpRoEx/F/K86uqKI74f/rjWGld7BC1IppKUljgkdA47GmPX/v082fQsTzz0IE0PP4KbS+H29LDricfYvOWvbH76UdqySboNeMbgeArQrFm0FN0Xa4SCAQKBEOAHUbIFSwghhJh8EoDMUm1tbXieR11d3aDjdXV1HDp0aMTnXHfddZSXl/d/LVq0aCqmOmkmJD9iFsjXmh+6EhKrrimoBC/Qd8e/78ddeWB5/jHbxhiD4wSOWNMweB4oA/Xz67FtB1drhkYgGoOrPYyyMH3btCzLRpks2XSyb1OX3z/ED0yU30vkCN3xTpRlUMqgtdcffOQDEWMMEduwbl41KpchWBrESkGiuY2oKSezL0FHczuBsEOmp4v2w81kert4/tlnSe7rJtHSCeksz+94HnCojUThhcP+ezFgK4Wl7IHVj+PdgqU92PUAPPMr/9dZvPomhBBCTJaiS0Jva2sjkUgMqna1detW/uu//otEIsEb3/hG3vnOd07jDKfPpz/9aa666qr+7+Px+KwOQiYsP2IWON5a857rorV/oe04FlprNKA9DxvI5XKDxiu/dBWWBZ6r0cagPD3o+jy/MnLk99oYtEmjTdZf9cBvhGhZfhJ7IBBAWVZ/QBKLRQGN3Zc/kq+qdWSeiuMqvvDhq3j7Z6/B1YoSp4SWXTsIlFQSdhwyGZftf3+CCxbMJ1aiePqRFwi7Dm60hr889jyvWXkC9dW1KGVz+ro1vOLU89j6zK+xbEU8HieVSRANhFiQ2wvRQ/SmFd1UHf0f0rZNcNfVED84cKxsAVz0FVi18ejPJ4QQQhSpogtAPvKRj7BgwQL++7//G4DW1lbOPfdcFixYwPLly7n88svxPI93v/vd0zzT41NTU4Nt27S0tAw63tLSQn19/YjPCYVChEKhqZjelMjnR4y1DWu8/IiZKn7XXbz4xc9jZQcCg4GLfUUXhi7o3xrlP3TE/iEFinKUKscY+Bd2DDr/SPkOm1e+nkzQ/33+4j8YDGGMwfM8tHGPPAMBx8aybIxRWMr4ORW2IhC0Ubj9wY6f7K2x7QBgwOi+ClyacCCHm8viWopgMIw2OZRysG0bz/NXaVzPItWdYc3JJxIOxXCCDkbvY/Nhza/v+i3/+qqX0ji/jHSim3R3F13NB3GzQTZ372dv0sX6419ZdfqJLFjcQHlPKYHSUjw0nmswxmJJ+jlemXiEqI5D34Jir9fkBxSFBg7bNsHtlzJsCSXe7B9/660ShAghhBB9ii4AeeSRR7j55pv7v7/11lupqqriySefxHEc/uu//ovvfOc7sz4ACQaDnHHGGdx999288Y1vBPxtK3fffTcf/vCHp3dyUySfHzFSl/C8cfMjZqjD3/wWofauCTlXwWkNZngX8EAogLL84DWbdhl0gW1clLHB8iMgZSssy+8jkk5lcQI2lgVKGWxlYymrP/kbwLaDxLsOEXSCBIIOTsDCcw09LQo3ZXBKLKK1Bu0o9h04xIkLGygPRcAz6KzL5W97LZlkGwtryimrjdDd2oLJuSxbtohIuIqV0Wp0Js2Tf/sTQVzqKmIc2Guxt2svQWWRtQ1nlvayMfenYe87YqULDxy05698jLh/q69A8V2fghUXwyz8uyiEEEJMtKILQA4dOsTSpUv7v7/nnnv4x3/8x/5u6Bs3buS6666bptlNrKuuuorLLruMM888k5e85CXccMMNJBIJ3vOe90z31KZMPj9iaB+QWHUN5182e/uA6EQCAKMUbrQUGGHVoq+vRt83RxweHnIMHDrysaHny1ejgkzaX31QjgWmr0eHGf11BhLHbdycIZHOku8TYoymr7l5f15HfvtWZWVFf6Wsthc1e7YosomBQChYCiesV5QHbOZXlOPYHuFoCVXzyok//FdeM7+SmrIw+3bv4cSliwk5JRit6U0lCCZTqEwXtbXzqJlfg+tp3EyGPzx1HyoMtqV4a83BkT6Jgc+rkMBhz+bB266GMRA/4I9bdu4Y44QQQoi5oegCkLKyMrq6uvpzQP72t79xxRVX9D+ulCKTyUzX9CbU2972Ng4fPsx//Md/cOjQIU499VTuuuuuYYnpxe548yNmMjdays6PvwelFMGgvz8q3y3ccRwUAx3EbdtfjbAsC1vlk84tv+qVlR9nDcrdUCrQ/1rmZylIgqc9DhxqQSnF2nAUz/PzNVxv8AqIUjYGD5sABg8LjWUgl0mQzdrYygX8OQ48J191y6B1lgP7WnDWB2nfbdh13/D3n03Cc/caVi2tw9L7UF4GEyjjhDWnkevqoaauDkqDBKIWud4ELlkaqup5sSuEXVpJ+cIQS9LNKCdDtqsN5UK2zMbzXE4Kx6l0csNfdOATKSxw6G0Z/bFjGSeEEEIUuaILQM4++2y++c1v8v3vf5877riDnp4eLrjggv7HX3jhhVmdeD3Uhz/84Tmz5WoslmWzaPW66Z7GpLEsC8/zCAQCQ44rlBqocJWvdmX1rWbYtt/zQvUFHvkxA4EA/c/1jxkUiu6WfZRGIn5TQA9KS0vp7e4Ytsso/1y7b4nDsiwMhtLS0nHfjxOwWXfKOoyG/Y869G9XGsGO5joqohmyuSwlyiIQDlNSH8BNZThwYB/ljoMdLmHXwRK2HV5MVof7n1sSWk7jslbINpPNZiEMtu1Qbg/fcjai8QKHaIEBf6HjhBBCiCJXdGV4v/jFL7Jp0yZKSkp429vexic/+UkqKweqIP3iF7/gvPPOm8YZCnF08sGC3Vcy17Ks/l4e+Z1Pg4MKM+jYkV+Dgw2GrYjkj6054yzcVIpsRpNK91BSGgN9ZCPCgVK5fuUq/2JeG7+XR3d3HK31sDnk55f/evTRv9N7GHJJxVjZKtmMg/LqcHM5lIaQ45CO9+Amkyyoq8PShpaOcp5saSSrBxdaSGUUTz9XR0dnhV9OuE+3LrAgw3iBw5INfrWrUeevoKzBHyeEEEKI4lsBWbduHdu3b+ehhx6ivr6e9evXD3r87W9/O6tWrZqm2QlxlNTAKgMMDyryuRlGaT8oMRa2ZYOlwLL6flV96R0GpY5sGKgAF2P8rVr97QANpHSOpWtPJVJZTdoEMelOPM87clqARhHEw+Co/AqGXyABz5+n1rq/SaHnaT8B3fZXSQJGYdthcsnCmm8kcgFyPUncZIZAqIRgJkNJWQ0mqGjds4/HDywfNLtBHyKGlsQaMup+lPZfb2cmQpwSYqRGCR2UH1iMFzhYtl9q9/ZL+19r8GsDF31ZEtCFEEKIPkW3AgJ+idp/+Id/GBZ8AFx88cUsW7ZsGmYlxLHLb6UaSjGw/WnQ8b7gZOjWrKG/B/AsyA05hdKGXA6Mm8FRLrbtDOpQnv9df8PAI56bTqdJJZP932vd14gQBp3DsiwWLlyIFSpsK5SnE1jKJptK0tvVSSRQgYpUkkvnONjskXZDjLUKkdMloOYf8R4Uf9SnD3o//Y/lDxQaOKza6FfMKps/+HjZAinBO4do7bFv69Nsf+g+9m19Gi2NKIUQYkRFtwIC/gXPzTffzB133MHu3btRSrFs2TLe8pa38O53v3vEKkFCzFSDLvyPqCA1tAmgUgqFGpbzkW/qlx+T/31+S5eNwjIDFbWUUhit0DqLZRmUHcCOKmz6+nj4M+k/l21ZGN13/r45lpQckQOSbypo5XNE+pLQjeH+++/npWedSzAC2cToOSCBCNiqHc+rIZdOknCzqPJ6vJ4EKpEEu7Bmk9oq6f8cDbBdL+CvtW/nrK7fE/Xi/eMSuoToO246usBh1Ua/YtaezX7eSLTOXz2RlY85oWnL5mHV+KJVNVxw+eytxieEEJOl6AIQYwwbN27k97//Paeccgpr167FGMP27du5/PLLueOOO7jzzjune5pijtLaO8pqXQMrGVp72Ha+EpaFshyUMqA0FjZog3L87VgK/znKAAaU8YMTpQY6lvuBjY01wkKo67r9AYYxhkBg6D8VCq3BcUCbLI4KYikHW4OyAzTMn48igAX0hUVAXzDl+Xks2vV41Stfg1KG2jPgwP2j3xhYsh7aDi4gQYaoriAQDGOHHXKJdkIYlCpsFcUli8YmzCKCOkogW8Xu0hr2hFdSl92NfvZRvxN6+ASuPJZVC8uWUrtzUNOWzSP2I+rtaGPT9dey8aprJAgRQogjFF0AcvPNN3P//fdz9913c/755w967J577uGNb3wjt956K5deeuk0zVDMVcd2h9SApTAKUBZG4X8BRmuMZbAtG6PAsq3+BHUsf6zWfm7I0C1GR3ZVH+k1I5EIruuSTCYJl5X5JXe1HqXXnoWy/HwPlIUyhr179/LS9YPzIfJzyf8+bTwefvzvnLrmdLTzPIGTLNxdizG5geTwQKlh0ZmaqkWKqsq1pLZvJRXOUBKKkM3l8DCkEkkW1tm80JrB1cFR35OtkmgVZLnzLwRUuX84DqmnsgQWHeJQ1TI6E3sxmSzRsKySisJo7XHPzTeNOebeW25i+Vnri6I0uBBCTISiC0B+/vOfc8011wwLPgAuuOACPvWpT/HTn/5UAhAxpca7Q/r6j3+K0lhZ/8rIoOt8S+GZvot3pTCAZ4yfNm5sDA4ag8Kg8jkZNljGYCuFxmD1FZkyGBRgHXGRnt+SNUDh2Yag5dDTeRjPLsfLeeTI+YFQflR+hQS7P6ndsyDsBOhKJfs6nhswhkAwQDabHbQVLGBZnLZ6LW4gwkK1AuznyK58gSXLGzmw7zCHu5oJlKdoS9u0bXMoCUQIdcVpqJmPHXDAtkgkk4Qc8IIWq1ckeWpbkOHlfP1P07Z2MS/2xmF/BiYbILtz0QjPm92OfrVNHIsD27cOuqkwkp72Ng5s31rUpcKFEOJoFF0A8vTTT/PVr3511Mdf+9rX8s1vfnMKZyTmukLukP7uhq9izMA2onBtKavSEaq1Iud62LaN1h4Bx0IZhaUMoLFsv/qUwq+GZdsBf6VBK2yUX0UL8Gw/ELDtgWpXNmDj4WEPWtkwRqOzObTj0NvbgxfqYeue5wjY1qBxGpt8KGMsC638jVYaC4sARoUJBnJkszmy2exADoploY3G0jZNO3ezorqFL/zgMUw0QlVViJqGu3nDxSt51asWoHIleJ6i+eBhDhzYT4Uqoa2rndJoOZgUSTuHmytBRR1qKwyrMl3s3BslkxvolxIOetRVNLG31S8+MTwHzA+UcvvmUywBiOQjTJ3ers4JHSeEEHNB0QUgHR0dY3YCr6uro7NT/kMgpk4hd0iPDD4A0pbi8SV1NO47zOd/8Gu01oRKYmjPI58XEggE+qtjubk4wWAQ7cH8gI1tPFzbod04OMEgQRcCgQCRSBjHsYlEyiiLRHnL619L2E30Ny4EMNrD9gxW0OrPBbGV4SS7hZNiLaRzDs16Xv/4I5PdAernV2MvtMi6nXiujVJ+0JPffhWLVvurJTrNylUns/2RB/lgGRxs2UNjaQ1vuf4ztPQaDu5/iupqi6DSLGmcT83CKC/ueZJQ2iYQCJCzNFWxcnTKo6JmAe3d3axZFWT5Cd3s3dNLMgNlsQB1FVmefT6FIcLo9ScUJhtEWfMx7DqqP9+ZRvIRpla0orACCIWOE0KIuaDoAhDP83Cc0d+Wbdu4rjuFMxJz3THd+VQKjGFPfRV2PIkyBjIpP5XbBjzQ5DA5UJbCtiLUZHKcGsxRkm8Y6GZJYfOCKaGjrBKCQdySUoKlpeiSUnRpKb998CnetuFEv2dIH+NpbOOSzigC2SwnZZ/mY9FfU0kv9BW36nFDPNZdQ3PFuv6Sv/lO6qWlQVxX9yW9+1+2NZD70dPTRSAQIJtLUlVVTuSCWp58agf14VN4/HCG52/8AZe/7a3MX7iSF3ftIBwqRVmK3pRNd05T3rfNDEvR09XNb394J2effyEvvLCTFScuo6O3l9IQ2OE0VTXL0AaSmcIqjisVOfo/qxlE8hGmXsPK1USrasa8yRCrrqFh5eopnJUQQsxsRReAGGO4/PLLCYVG7nKcyWSmeEZirjvmO59KkQ06VAZKOJQFj4BfPQqD0RpL2TiOg6UU9XaWs+3csFOE8ViXbmGro+gJVRGwQRmXgAVB2yJUGsMzevDGIwU7n36SNS/ZQKPXxDt7Hh7+nuwM5zXfxgMEaak+HaPB0/T1C1FosnjagGWjUOh8mV5tsEwOrT0ymQzRSIxNv/oNb774FTz06FOcsm41KePyox/8hMOHuzi0/yDV8+pZs+Z0UHFMdwvzIhW0dh6idn4dVjDAaac1Eu1JcVHjClwMddEIj217hkhjNW4uQcpYpNyegj5yoxPH9mc1Q0g+wtSzLJsLLr9yxFWnvPMvu1ICPiGEOELRNSK87LLLmDdvHuXl5SN+zZs3TxLQxZTK3yE9VlFLEw4GweRQuDhogjaEAhYWHrZxOb0v+Bi6xSj/7YnJtv6O5xaK5e5O1iQfZUn6OTB6UK8RAMeDpx68j/8TfXLQefrP23fgjMObyKR6SafTeJ6H53l0dyXZ/WIbbtYi0XyI7hd30XuwGc91/f4fGrQG1/PwtGb5icv49a/uZO2KBlK5dladvJCli+bR1bafrJfh9HVrWFRXzdZtB4iUVJBxsyQzaRK9CQKOQ83i+VQsrqP0pCU4i+ZjSiLUnLCAJcsWk0om6WjvIOs1k3G7hr3PPGMMaa8LY5qP+c9pJpB8hOnRuH4DG6+6ZtjPeay6Rra8CSHECIpuBeTHP/7xdE9BiEEKuUM6lrZ4D6W1MToOtFJbW0swGKS7u5tkMkF1dTU1SlOqRu+4rICwdinLJjiVZi7V91CZ7Gu61w259hpaTvkwcCrQ1yQQw5l1hkorNeZ5I243NYkdtMVOxvM8jPHo7clS4Voc+N1v8VLp/vFOaQnzzjqTymUrwYDnuXiuy2lnnEC03CJQFsPOuvR2dFNbVs36U9djBwM88+RTHFpymMO9HoEqRUt7G6UlDrFYjFwyjV0RYnfLYcyuQ7g5l4ANrTpBSaKLrmQvHg6uMjRn/h9LSi8doeqXQSl4rPk21pQmCanZe19G8hGmT+P6DSw/a71UHhNCiALM3v/SCjGL5O+QRiLRwQ8YvzrViIwhmHXpshQvf9kG1r/kTEIBm1Q6QVksSqQkxOIlC7Ey6ZGfP8QqDvBR+04qiA867qTbaNjyOZY6mwE/mdwzhupQYRWh0u0vsnf/VvYf3MZzTc9Q6nbTkHJxU4Pn5SZTHLzvAbr3vAAqQ09Pkq7DPfzsV3ewYME69u1P4gZqSKkgB3t6SIRDvNiR4UDCcLATnFAQywnSnuwi3p2gpa2ddC5HaayGxUvmEworPFyC0RCnn7qSrkSKnFG0dnZyuCdOe/JJdsZvIWu6B7+BgIu1dB+veP0ZjNzoZPYoZLVN8hEmj2XZLFq9jpUvPY9Fq9dJ8CGEEKMouhWQf/qnfypo3I9+9KNJnokQg9V19/Lyh5+mozREJuAQyrlkHZsnltT5QciRd+X7gpIlzR3YkQiezvFC007OOes0Hnr8CdKeBjTdPb0EwxFg/CDktaVbgRG2U+Ffdp8d+hEv8BJsJ4jnBGnLFJYP0W155Ew38+uXkEpqSrcr1CgX8gbY++D9JA/PI5lIUVE2n107nuaFXX9HUYIVtPn7MwcJBC08FeaFF/ZgULS2thEIllJSUoqFjWfbtHa0szTYhW2CBCMNLFm+iiAhtMnS2rabjOuRMB7tPQm27nkRt7Qcq7yDJ1uupbJiFScuP5uSaAQV7cV1NRYl2JYzekA4C0g+ghBCiNmg6AKQm2++mSVLlnDaaaeNut9biKlmPI+Wa69DGUN1YnCwoPa0sG1BDengwI9jWBtW7Wsl0JPCC5fS05MgFHR49Iln0J5HKBQhle5h9YqVbNnyKEkDJQzPAQH/ol9bilWRQ6OWoVVA1GpjfnA7L6aXoFUpTx32aE271IbdUXqLQyZUxuLzX8syJ4Qxhu5drTTlRv+5U4DKac48eQWtpFnYcCK5UBkd3VlyuSxNOw/Skc2QacuSyHYSjlRTWVlB88F92I6hqzNBfd1CKjLPc469hWguCX1xkheoIt1wKfHQSZisIZPT7O/soiuZY8u2A5z16gvZ3ZnEsYPgtbL90N04dgCnr5eJAmpHnfnskV9tG9oHJFZdw/mXSR8QIYQQ06/oApAPfOAD/PznP2fXrl285z3v4V3vehdVVVXTPS0xxyX//hjuoUMjPlbfnaCuO0FHJEz0ox+h+swzSX3wo3jdCdotC88zPPbY47ieR44AgYBDRruEQiHuv/evZLThmYjDSyxv+EJK/jflyu+GPo6I1Ykxi3FLwiRbm/nWCzV8Yd2h/vNqAweS5fS6QSJOlsw5byISK8NCY1kOCa+woP+h+54mUTGfv/99O4lclnQ6zcKFDbR3xEklDMoOEA5pHCdI8+GDaGOTy1m0JdJcUN7OGcl7hy3lWLkOSnffQHfFO2lJ1dCb9Th0uIenm54jXLGQvS/uo6K2nmw2RbtVSQ/g2A7VZeDk2jF2CDPLt2DlST6CEEKImazockC+853v0NzczCc/+Ul+85vfsGjRIt761rfyxz/+UVZExLRxDx8e83EFVCfSLKuuY9HqdYOurSPRMBk3RxYPy8phsLC0i63C5OwAgUCAPZ7DQ66DFwwOOm8am6fD84iXFNbfIqErUShiFeWcfNJJHKg8i1tL3kmnidAUr+b7O17C7XvX8fuDK/jl3nX88VcH6XzuACUlEUpKbUqiI5e/HqrXqaE1bmjtSdPdlaK8rIr9+5vxXMikcyiliEQidHf1YCkHz/NQSvHszj2szfjBx0hbyQCqun9LezLN7x7azOFEnMbGRqrn1aO1AWPT0wupbIDeRIDObnhub5IDPTGwKkbokj57ST6CEEKImaroVkAAQqEQ73jHO3jHO97Bnj17uPnmm/ngBz+I67ps3bqVaDQ6/kmEmEBObWGbe4aOU4BJpwkGAmQ9j0DQwlIGrSBkWzi2jVYKZRva7RB/1BZVlkVQWbiOQ6cdIRgOk9LltOsolap3xJUQAyR0Dc3ZlWjdw/4du4gtmsfyxSewPVjH0/sN81v3Dbvoz8RTPHv7wzz33AssP2cJkUgYQhZk9PAX6XudjLLpVEGClkMm202srJTeRC+WcnBdD6VstNakUim0Z2HZFuFwmEwmh92+jZAevaeHAsImzu4X/kpd/QJKSkoIWw6BkEdvspOeeBInECSZSlFVXUE8HiedyhAKlrLjQIYGB5yxYhDtwZ7N0NsC0TpYsgGK5MJea09WTIQQQkyJogxAjpTv0GyMwfNGL1UqxGQqPfMMnPp63JaWkZOclcKpq6P0zDMGHS6PRfnixz+A1ppsNosxBisQAqVQyuFrt/4P//dDH0ClkjiOQzgWRRmFEwwQCoVJJDPkci6JRJpnm2O8fM83MAxePcjP5pH0FRhsLMvi1HUnoJSiM95GaUUNte2HwIyw7NDH3p2ifmMjAdvi9LeEePyn9w4bk3+d5rIFpJNpwG+m6Loaxw6TyWUx2sZxDJ7ngMqSzqSoqKyhJ91DOBLkpGV1QPu4n/eS+nJ6esoJ2ZoAAdIWWE6QQEiRzrjYtk17WyfBYIiKilqef24H5ZUxdJ016ntk2ya462qIHxw4VrYALvoKrNo47pxmsqYtm4fljESrarjgcskZEUIIMfGKMgDJZDLccccd/OhHP+LBBx/k9a9/Pd/+9re56KKLsKyi23UmZgFl29Rd82kO/MvH/GSKI4OQvm0/ddd8GmUPvuPc3RXns5/4HBVl5aQzabLZLGeffY4fsCgbYyzsbAKLLLZx8XqzBINBvIxDLp2ixA5Q6ihqamKo2teyq76chU9/l2BqYEuYW1LL/rX/zDN3riDY9+ORTCYBSO3dyZpYNQHPHf3CHMjEkzS/0ElkQT1q3mKWv/489t//GJl478Dr2EGanHK6dAClDEpZlJaW4eZcMm4W2woR70lSGgkSDAboTfTiui6ZTAbHccjmPNyKpcC2cT/vYKSWxSV1WJkUe9sThAIlqHCMTNp/H6lUioryWpyAg1KGxYuXkUj0gPKAEVZvtm2C2y9lWJneeLN//K23ztogpGnL5hGrZvV2tLHp+mulkZ4QQogJV3QByAc/+EF+8YtfsGjRIv7pn/6Jn//859TUHHsXaiEmStlrXgPfuIGWa68blJDu1NVRd82n/ceHiJWXce0X/gPbtsnmMqRTaRKJHG2tbTz8l7uxoyGUUv1fWhuM8Vf+LMvC8zyCwSDGGGzbpqP+pcQbXkZVfAfBTCduSRVdJYvBslC6FSzI5fyu6tFolKamJk6Zd1pB76/5+b0EEx633HwLC5Y04joRIpEwsWAJnakkyUAtqUwvsUDAX5F0DZl0Ds/zVyiDpQEikQiul8Yxhmg0QltrJ57nEQ6HySWTvGifTMZ+iKDXPWplrpSKkQouZV4oQjxuSDs5SktLcdM9oCGdS/m9Tjyw7b6O7K4hFApjdA8M3XWkPX/lY8QE9b71pLs+BSsunnXbsbT2uOfmm8Ycc+8tN7H8rPWyHUsIIcSEKboA5MYbb2Tx4sWccMIJ3Hfffdx3330jjrvjjjumeGZC+EFI7JWv9KtiHT6MU1tL6ZlnDFv5yPM8l8MdLWSzWWpqaoiUlWIHM0TKFtC2/2T27dqJ9jy8XI5HH32U3p40ixcvIRKJkEwmWbr0BIwxRCIRqqqqsHEo2bGbXE+ORLQOe9EqnN44rutSWlJCLgfBYIC62iqeenI7Jy5eRFnmBDTPjvvessqBRBaXMDnCJHoz6EiM7qyhI25RWaaJlUTIZiGXcwkEQniuSzAQwbZDZHM5wiVB0mmXXDaN7WjC4TBlZZX09HQRC0ZIJpLsW/BOlu/77qhbyQ7UvIk6U4MycPjgAZ558RC58gWkelNgktjhGMYYjAU5rTF4WI5FLuv1rUYNCTT2bB687WoYA/ED/rhl5477Oc0kB7ZvHbTtaiQ97W0c2L6VRavXTdGshBBCFLuiC0AuvfTSoqpkI4qPsm0i619S0FjbtgmVhAmHQuRyHrmcn+vhODbPPvos1EWwbQftWZxxxhlEIlGUUgQCARy7BKUGcqD05kco+elt6I5Osn3n96qrCb7xbGInV9JQEmNPbiWWpci4GZYsX0jUXkDAPoGMioLpHX2igTDVvVmCzbt5eWUdj8eT9GYUsVgJtmUTCIBrXEw20LdKYDDazzfJ5XJYVhitNbms9hPPLYtgQFFamiObzZJK5SCkMFrxlTt38el/+GcWtfyKQK6zfwo5p4LdlRvxas6mtKuLnmwaEwqTDpYCECopwfU8MA5uLocxhmw2SyAQIJ1J41gBMMnh7623pbA/2ELHzSC9XZ3jDzqKcUIIIUQhii4Aufnmm6d7CkJMGGOMXz6678u2/QpRlqVI53J4nofBEAqF0Fqjte5/nrZttDaUlJQQfOwJwt+6cfgLtLeR/eFvqX1pJxcvStMTquaB3ndzX1sXr3r1+ejOWtRui0Dp+eQSvxl1nos7Qqz5+x8AWAVc7Dj8pLKBJzIHCQTCxMqryHpZHAIElIXCxnGCZDIZQqEQyUQapRQZL00gEEBrDytnU11dTXd3nLJYBclUHEOQtkApTv0F7Kg+i/LEThy3E1VSQ7L0RHKJJNlkkqAdJJ3roSRaTi6QIJtMEggFObj3MKeueyn79u3Dtm2CwSCpZAZLOaN2bydaV9gfVqHjZpBoReWEjhNCCCEKIRnZQsxwyWQSrTWu62JZFoG+HIr6hQv8PA/XJZvN8txzz/UHIIGAg1IKx3HwcjkCt/4MGCmP3D/S8kQZRkPUaue1ZTfwwQsaSWaS2GEXADvYSCDyBlBDSlirGIHIG1jQMbg0boXr8pHDe3gpOWwniOdlMdohnXLJZPyv7u64H1dpB0+75NwMWApXe9gBh2xOk8okUZYhlUnSm8gQDgcxpTEC0RJs4+CVryVX+zJ6oidhqwABK0A4XErO1mitSAUjeK5BKUVJuIzyshr27N+HazS5rEcmnSOV6MHLZdBq5CwPlmzwq12NmoWvoKzBHzdVtAe7HoBnfuX/qo+twl/DytVEq8bOkYtV19CwcvUxnV8IIYQYiQQgQsxwB/buA/zkcMdxSKfTgOLAwf1YlupPDi4tjZFOuViWws0pOjs7sCxwXngBp2vkpG2fwk06JA8H+7uon932V2prqghWJSGY9pPYg42Eyt9LIHoJgcjrCEQvIVT2T5Tqaiq7dgw5o+9NB18kFishHI5iKUUum+1fqUkm0qSSGYwxKCws5ZDLeiQTaZKJNJ5rSKdccjmD4zhUV1YRCgTZu78NO1KKHQpih4IYo3A8RU9PD54COxREKQfbCnC4M4WbS/qVwVywbQtjcliW7i/Nbds2gWAQx3FQI31Klu2X2h30zoa804u+PHUJ6Ns2wQ1r4JbXw6+v8H+9YY1//ChZls0Fl1855pjzL7tSEtCFEEJMqKLbgiVEsVm4cCGe55FIJOju7qa+vh6lFBWVlXTncgQcB4PLiSc24uY8PM/DsaG9vZ3y8nKCXfGCXsdN+xeZSkFMJ4i2NdFbczLWSbtIPrMCYzRKWdiBRf4T+koJN+741YjblxRQ7eW4uPM52mNRtPZQQQXa7yeiIgqDQSV2gwFl+UsQxu6rhusCyl+9IAfaGEgYVs2DW/77S0RKS/vnYLTxz9UXQWmtMQZ0OsPFVQalegCFrjMoXLTW2HZH/xY3pVIAhK1RtmGt2uiX2h2xD8iXp64E7ySUA25cv4GNV10zrA9IrLqG8y+TPiBCCCEmngQgQsxwHR0dLFq0iKqqEJFIhGw2iwIaGhrY17afrJsjqBTxeDcV5VXk3CS5XI5169bR29uLrigr6HWc8OBtPNVBzaHeXnJWF3997j7OWfZWYuGq/seVF2f1c7cxr+2pMc9b5uZI4Patt45ygT+0+JQ54lczZFzf8VRijKT4PqH+Nd4hvT1sa8ixwfMKhkuGn2zVRr/U7nR1Qp/EcsCN6zew/Kz10gldCCHElJAARIgZLpN1ybka27ZJJBJ+Xof2KAnaaKWwNXh4PPHEEyxbtpTGxhPBOH3J6hbeyY3oqkpUR+co27AMTqlHaW120NGu589CuasIoli/pAelFKlcLyq3H0u/QHnnDua17Rx//oEoyo75KygjFs71jxljQPmrGYXwFzv6VlEGjvrnMH0xjTFDquL5v7csRWl5cMTzBsMlvPRt7xr5RS37uErtau0d+0X+JJcDtixbSu0KIYSYEhKACDHDxWIxlFJYlnVEtSuXJ594GlNfifY8lDKcdNJJ9PR0kcvlcHM5du3axdKlS9HAgde9moX/c/uw3hn5IKDutDiqb7XAGOjVNTSnTiHfla+8NDTwlMAKYAWpiCa9/zOEMl2jNgXMhCpJLvw4IWWB0VR07SCUjZMJltFVcSL9LzrFKutLeefnzp7S12zasnnYNqdoVQ0XXF7gNqciLgcshBBibpEARIgZrrm5mZqaGlzX9cvrar9B36tfdSE/feoRHCcACurq6qipqfJL8xqrvxu6UoqeNatIfuT9lPz0NlTHQE8Hp9Sj7rQ4ZYvSwMCaxObEuwgGPbLZFJ7n55UYZeHYDq7r99CwLZudJ/0Dq565ZdSmgDtWvIl0ejsV8RdY1vwE9V3t/eMywTJeXHoxHTVrobycrt50/+qFMR5g9a9yDN12ZDDUOGkspf1ViWh9wZ9nIKQ44ZQs2x+6b8q2GjVt2cym668ddry3o41N11/LxquuGT8IKeJywEIIIeYWCUCEmOHOPPNMstksTjBAIpEgFomitea++/6IU11O1ssRsOHRR7dw2mmnkclkKCkt48STGkknU1iWxQlLl5Gun493xmkEXtiB6o4TM/tZ1HsnoWy6/7XccC2tp7wPtfVFXnnCc3z5uz+mMhChJhZj68FmGuoX0nroIMl0DwsaFrKtq4cF551GZMuzBNO5/vPoinJ2vXwDzYcfhWSSriA8saSC8Pwoqw62Ud+dIJiNs/KFn8OBTcS+9xPe/aXvo4IlpBMp4om9lITrsCwXJ1iGbfztZIlshqBtkfM8frPuV9QFkxBbAJ/YXtBnmV+FeOgXx7gKcQy09rjn5pvGHHPvLTex/Kz1YwdC+XLA8WZGzgNR/uNTWQ5YCCGEOAYSgAgxAxmgPRImEQnz9IMPsPy00/CMJhQK4bougUAQ2wmDActxwLjEYjHAIhgMorUmHo+TSaUpLy8nHo9j2zZ2MIi78mRsJ0CXMWQC76Dk0KMEMu24oSrSVafg4mG27iWdy+FmNYvWriN78DCvPfmlJNMp1p22kJZD7TS1tZJLJMmdtJinw4auZ3ZysH0fuqKSs97yVvY8eM+w95UO2Dy+pI7T97RQ353wDyZ7mffHN/DLVUm0MViW5VfM6lv4yGd45Du653+tDqSO6jOdkFWIY3Bg+9ZB265G0tPexoHtW8fOwciXA779UoavCk1DOeAidly5OkIIIcYlAYgQM0zTls38ubaUdL3f9K90z05aWg9SunINbnkFDfMXALB06WIOdBzC0x6OpVi7di2eq8jlcgTDfm5FeXk54FfSqqurG+iU7ro4jo3rGZK1p2A8FxTYxkIbi/a0S6Q3Tlksxhnltdy7ax8NZ56IEyvliWf+zu6uDl57zku576m/E4qUkkpneA6X3WGPU9au5ODjW0Z+c8rfY7VtQTV13Qn/stkocvu7qanLjvyc8YSi4w6ZsFWIY9Db1Tn+oELHzZRywEXsuHN1hBBCjEsCECFmkP679NbgtG6dStH7+KPUn3d+X56EBmOwbIWNwhiNpz0UQYLBEKavD4ZrXJxAAANks1lKSkrwPK+vd4i/qqBdF3+dwX/NAAFaO5PUVGbo7U3hVec4e149DRlo62xlvV3PCYsMpSGX2gULaOtoJ5vLsr+9DS9ks6RuMb3PNo3+JpUiHQzQEQlTnfC3f7leDEoAOwhqhJR2Y8DLgvFA2QPjQlE4/9/G/VwnbBXiGEQrKid03LSXAy5i07VKJoQQc40EIELMEIPu0o90EQ4cfnQLscVL8TyXF1/cj1cdwFYWWTdNT1svlRW1WJaFY9l42k8c1waqa6r9zt9GYxS4novywHYgYFlYBozWaKPRXo6cKqf1UDtOMIqjDeFVC3GiZUTSpahMklBnEs+GQ/tfpHHh6cR7enh85z5WrakgWlrB+B06IBMY+OfHsXsgle27k/+VwXfyt23y7/j3tg8cG2ncGCZ0FeIoNaxcTbSqZswAKFZdQ8PK1YWf9DjLAYvhpnOVTAgh5prpqYEphBimkLv0XjJJ/MB+UNB4YiOWpfBcD6Us9u7dy4EDB9Fa4zgOO3bsAPxeGD09PTiO3xvE8zy/lG9fPoXWur/CFoCyNZHFq+hNZygtr+DgwcMEyyJs3vkkf3riPra3PE+wNIgVcgjFIrR3ddLW20uvXYLlBYhU1hb0fkM5f+XFKXUHepDkO3pv2+R/n+/8PbT/xdBx45jwVYijYFk2F1x+5Zhjzr/sSrmonWZHs0omhBDi+EgAIsQ4tPbYt/Vptj90H/u2Po3W3vhPOgaF3n33UknA7wtitMEO2DiOw9JlS1mwYD5aa3LZLLlcrj9hu729nVzOL58bDAb7m/Nls1mMBtu2+t6rJqA9Duc0+9vbeHb3iyxesgwrkyYZ76SrrZXFC+shYJPOZIj39JDOZUmn0mRMGSUVSymtrSdQGhn9DRhDOJujKuEnkR/Zg6Q/sfquT4GbHafzd9+4Av48GlauJhyNjTkmHCs7ulWIo9C4fgMbr7qGaFXNoOOx6hrZ1jNDTOcqmRBCzDWyBUuIMUxlQmqhd99Ly6swWrH9uW1YtWFSuRQlwQCHW9qJRSpRSpHThlVr1mJZ/grI4sWL+1c7crmcH7wYA5a/Rcv1FBqFshRp7WF64yxftJy77tvKoXg786vKWXbiCn7/14d43fnr0ZZHa0+SsA1b/vZ3Fi9Zhh1S/OnRgwRu+gpvu/jt7Lr37uGT71tlWXWwncCQHiRHDPI7ej/6/Unt/D3a3CZL4/oNLD9rvVRXmqGmc5VMCCHmGlkBEWIU+YTUodsy8gmpTVs2T+jr5XMFxuJEImRCIbSnOfmkk1FG4dghPM/jwIED/U0DPc8jmUySzWbxPA/bttFa+3kgfVuw8iVtLW1Am/4mh9lsluv/+/v0JLIsXryIvz78GK1dCfa3HKZxxWraupPsauvhmV0HaOvpZV5NLUFjc9ml7ySdtnh0WxOJTJZFLz0fp6R00PxtNCt0Cy85fQ8nvr51hODjCJ27C/vgCuj8fWD7VtK9PWOOSff2TPr2GsuyWbR6HStfeh6LVq+T4GMGKeTn76hzdYQQQoxIAhAhRlBoQupEbscalCswyt34ytPOJBwuwWA42HyQnKfJZV0AVq1a1T9OKUUwGPADDMvi4MGDA6seMCgXxOpPePd/feaF/VixMnbs2s3BffvY29JFa1eSXfv2s/X5FzjY1smWp57nyR17ONBymPn19WgvR3NLEy992Wnsa67ltttuJLJoIctfdzFu/Hm83t1EA3HKwl3YNTkiddkjtl2NonJpYR9cAZ2/ZXuNGI/k6gghxNSRAESIEUxXQmo+VyCsBwcgVkkJFS85h2D9/P6E8fb2NozjYbSH9myi0TIMOQw5QoEgzQf39K9opFIJcrmMn3ze96WUwrYdslqjLYWDTcDYfPI/rken01QvWErQ8mjp7aUnY3hu335cBQ8+8zzP7d9Nb0cnp56wHMuzcD1NqjfDqy54JZaVYMvzHTz20O9RVhSdTYPbhqNyWFi0JCMkXGeMHU8KyhrgrH/2q10xckWw/nEFdP6W7TWiEJKrI4QQU0NyQIQYwXTeMW9cvwFzOElrbze9sSgH//EN2FXVBAIBjDFYfUsHF154IT/buhnHsfF0pm+Fw0YpRSrdQ33dQrTW2LZNQ0PDoE7i4OeGuG6OAP62LFvl+PpNvyad8fi3T3yI9u0P8Z63X8JNP/9fvvOTn1M/r4pEIkFFRRXnLltOJBQCwE1liYUiLCJNToMNtLnVbL73j5y1/rVgdF8DQvxeJUqxpb2e8+ftx5ihFYeP6OjtBCes8/eklMIVRUlydYQQYvLJCogQIyj0Tniyq3NSqmMpoDqRpr43zZO7dg/K3fA8D2MMjz76KMZoctkcxmh038W9zwP8LVf557qu2x+E+Dkg/kpI/rLe8gL87x/uxdOQy8YJOA7l4QCvWH8GPdkk+w63UVtewan1tZQGg8Pm20iGcFcrkXCImGfz4PM9/OEPP0eR8MdYA4HP7t4oux+pwk0N+SeobIHf6Tvf3yPf+bts/tjjxiHba8TRkFwdIYSYXLICIsQICrljriyLv976g/7vJ6s61vLly/sDCa01AcdBa8PelmashbVoC2xtsOyBHA/LCuHqHI4TxBiFZTn9wQf4OSK5nEtA2YCDR4ZTXnMZJaUx3JzL9qceoTbVi7OsjhOqwvz7B97HgZbDRHsT+F3Th3wWfecONG/jotecxy82/YXSYCUPP/UkbysPYNkWHg625a/UaM/Dy1q0PlVGsKaU2qs/D7H5I3f0nqDO3/ntNUOrmsWqazj/son/cxNCCCHEyCQAEWIE+Tvmm66/dtQxRutB3+erY03sXnHD3r17WbNmjZ8w3pdI7nmaxYsa2GH8KlfK+Inopi/pXHs5bNvGdV2CwSC6b66WZQ2skhjIGQNuhk9e81Vq59XR2dnNWWesZN8zz7L0lCVYWlERq6bXzVEXCJMeo8e5UgrlZplfEUKhyGRybH1O8ZOSHt59eimBXDcmUMKSSA9nVTYTPdHte2YX/OWz/nar0YKKCer8PS3ba7R33MGTEEIIUUxkC5YQoxgtIVVZY//YTHR1rEAg0B9AALiu30E8FA7iurn+wOTI0rr58cYYcrkcnudhWRau65LL5fxeILZFWXQeb3rnh9m+o5V0Oo1SitdtfBXlFVEcy0VnXYJOGJNKY4+WCz5EiW0RdAIYY5Mix/bucr7/RJZD3SkWlXTzitp9lNgu+xLlbO+uZV+iHN19dJ3Nj8eUbq/ZtgluWAO3vB5+fYX/6w1rpuR9CiGEEDOVrIAIMYahd8yTXZ2Dtl2NJF8da9HqdRMyh2VLlqIMGM/fhoXyAMXuF/eg5lX66dnGYPUFRrlcjkDAwfPs/gRvpfw+IGjQtkeAIFf/x1d4cWcLmYxC2VmUqwkGwswri2DbIaqjUbpTHUTsClCGQDBU0HwzSpHNZcBShEwIgh57kzH+84+7OXh1lKaeau5tWU6vO3C+qJPhgroXabzrU/52q2JYIdi2qS+Bfki5r3hfsHUUOSxCTAStPUmuF0LMCBKACDGO/B1zgO0P3VfQcyayOtaOHTs4+eSTsW1/lSMUCuK5LgsXzufZdAJDflUEbGNwHAfX9bCUxrb9VQ/bVriui+XY3P7zu/jzn+6jO+knrweCYVDg5Vy0cel4sYmXLa1HJw2tyXagHcu2iVbVoCwbM8rqjjFggiGqliwnHA6TSvvJ51p7GJNj/bIyWtJl/ObAyuGflxtk04EVbGQ7jRPV2Xw6aQ/uupphwQf0HVNQTMGWmPGatmwelv80WXlrQggxHtmCJcRRmOp+ElprAoEAAJ7nEQ6H6enp8RPSTQ7Hcchms2itcRynP1E9/9xcLjcogf2f3/sJfn/XQ3QmPYz2V01yuVz/662qjRLY+RzOkAtn7XnED7cQK6sYfbIK3IaTSWczfrDTl69i2/7Z5scU97QsHxg89MnAvS0noOPNx/GJzRB7NkP84BgDDMQP+OOEmGRNWzaz6fprhxXVyOetNW2Rv4dCiKklAYgQRyFfHWssE9lPQimLsrIyPM9fdUilUpRGohgUhw7FcXNxPKPQQNb1MJ7n3333AJPDVhplPLSb5rs/vI2uhCaZSqPdDMoCywmgDWhtsDW8dkXtmPNJJXqY37AU2x68eKosi2TVQoK1CyGT9rurexrPy/pJ7zqItir7tl2N3liwxw1z4HBulMd9Wnvs2/r0pJQ/njC9LRM7TohjpLXHPTffNOaYic5bE0KI8cgWLCGOQiHVsSa2n4QhnU5jjGH//v2Ew2Hq6utRSrFs2RJa2vfwvf+5nVwqiee5BG2HysoqqmvKOemkRhbWzaesrJyqsnoe/dt2lFJ4rte/KuI4Drmcv8qyKBagIhwYcza5XBbPaErLa3BzfqCR9TycSBle/TIsW6G18bu1aw34W7+UZXixy+YlBbzj3tCCUR+bNdtIonUTO06IY3Rg+9Yxy4nDxOetCSHEeCQAEeIoTW0/CUU4HCYejzN//nw/gPA8FLBn724C5RZe1hCOlvvbsAIhkhqSrQkOtj+D9p7Cti22P/ECqWwO27LQyqA9v6FhJpMB/CT20kBhC6LpbAY7FMIpCZBMJrEDJWSNhbYDxOPx/kaJyrKw+nZyKWXoSmUKOn+0qnrE4/ltJENNTvnj47Rkg98sMd7MyHkgyn98yQyZryhaheajTWTemhBCjEcCECGOwdT1kzDEYpG+HA6/lK7ngeM4/vYmtxRb+Z3ObdvGczPYdpCc8dAKlA0B7ZDoTWMyObSlCYVCYBwCpWGyGY3yXCwCJLzCApCgE8SyHFwvCcYmGAjQbZdjchCMRsmm2jDGwsJDGw+lwFKwu62brlSW8nDgiI7tg422fa3QbSTLz1o/M6r6WLbf1+T2S/G3nB0ZhPS994u+LAnoYtJNdd6aEEIUQnJAhDhGU9VP4sgeIPmtU57rsXz5cjzPRWuNbdv9fUCMMTj4ORhGG57fvh3LBtv2mxSm0+m++VsEgk5flSrDzrYeutO5Ee/X5ynLJpP1K25lc4ZMzsOJlBOdX+eXCNYGhQHlX3Lrvm1YANoYfvP0vv73MZLRtq8dzTaSGWPVRr/Ubtn8wcfLFkgJXjFlpjpvTQghCiErIELMYOFEkpf9+Od93ymOXDhYk0hymaXyjwBgMP2/z995z1k5qHTo/3HvqwILfYFNWYn/+2iQzoNtvLisvu/pR7xYX8CwZl8LtVt3DaxgKAvN02DZKKX6V2peNb8ECB/xTkzfy3p0vtjMvkW15IID+SbjbV+btdtIVm30S+1KJ3QxTaY+b00IIcYnAYgQfWZSk66qyy+n9StfAfwgZCQhAG+s9Yo+duELnXU9SSr2tLBtQQ3p4MA/D+Gcy6qD7dR3Jwo6T8RRjFbtqq43xcnb99IRCZMJOERq5/GSn/9wzM96Vm8jsezZ39dEzGpTm7cmhBDjkwBECGZedaXq91wOQMfNN0/5ay8EGjrStAdt0pYirA3VWQ8VjkI4OmGvUwdYkQi1H/rouIFefhvJWNuwZBuJEKOburw1IYQYnzKjbcYWRS8ej1NeXk53dzdlZWXTPZ1pM1p1pbwZVV1pDpM/JyGEECOR65nZR5LQxZwmTbpmj/w2kqEJtbHqmmMLPrQHux6AZ37l/yp/xkIIIcSUkC1YYk6b6iZdMynPZDaasG0k2zbBXVdD/ODAsbIFfulcqU41KeTvvhBCiDwJQMScNpXVlWZanslslS9/fMy2berrzzFk92m82T8uJXInnPzdF0IIcSTZgiXmtKmqrpTPXxi62pLv4t20ZfNxnV8USHv+yseI3U76jt31KdmONYHk774QQoihJAARc9pUNOmSPJMZZM/mwduuhjEQP+CPE8dN/u4LIYQYiQQgYk7LN+kay/E26ZqVXbyLVW/LxI4TY5K/+0IIIUYiAYiY8ya8utIQs7aLdzGK1k3sODEm+bsvhBBiJJKELgST26RrVnfxngza87c49bb4F/pLNvjdwqfCkg1+tat4MyPngSj/8SWSGD0R5O++EEKIkUgAIkSf466uNIqCu3iHO/2eFH0X5RqKr2zpdJe/tWz/tW6/FFAMDkKU/8tFX566gKjISQd7IYQQI5FO6HOYdA6dOuN28W48RKPTNDDebeSeluX0xhP9x2Z92dLRyt/mL/ynsvztiIFQgx98SAneCSUd7IUQk02uZ2YfCUDmMPmBnVoj9UKIlUU4P/Z3GssGjjXFq9l0YGXfd2rYeWblBZv24IY1Y1Sg6tv69LFnpm71YYStYEW56jQDjPh3v7qG8y+bxQG1EGLGkOuZ2UcCkDlMfmCn3qBu0OXlNPzxHVg9Axfl2sD3d7yEXjfISMEH+Bdu7/32D2fXhfGuB+CW148/7rLfwrJzJ38+I5BmeZNLOqELISaLXM/MPpIDIsQUGpRnsusB6Bm8InAgWU6vGxrzHPmypWPlq8y4i70ZXv52tG1C+WZ5s3LVaYaZrBwrIYQQs48EIEJMlxEutv2VjwKeOkbZ0hl5J38Gl7913Sx/+v63xxxz7y03sfys9XLHXgghhJgA0gdEiOkywsV21MkW9tRRypbm7+QPrTqUv5PftGWaOnwv2QAlVWMMUH4S+BSXv23aspmbPnA56Z74mOOkWZ4QQggxcSQAEWK65HtSHJHr0VDaTdTJMHKPCt9oZUu19rjn5pvGfMl7b7kJrb1jnfGxe+53kOoYY4CZ8vK3+WAtFR87+MiTZnlCCCHExJAARIjpku9JAeSDEEvBBXU7+46NHIScf9mVI24FOrB965j9FmCa7uRrzy95O5aSKlhx8dTMh8KCtaGkWZ4QQggxMSQAEWI6rdro978om482sC9RjmssNjR0EolFBg2NVdeMmQxd6B36Kb+Tv2fzGOV3+6Q6/HFTpJBg7UjSLE8IIYSYOJKELsR0W7WRpngV9/zoO/R29/QfjlaVsOGSN1Ixv6GgSlaF3qEfcdwIPTEmbDtUoZWtdt03Oa8/0pSOMggbbdVJCCGEEEdPAhAhplnTls1s+vqXhx3v7Whn8y9/xsarrimofGnDytVEq2rGvLM/4p38EbuCL/C3h01EV/BCK1vd/7XJef2RplRgsFZSVsar3/thKcErhBBCTCDZgjUNli5dilJq0NeXvzz4AvTpp5/m3HPPJRwOs2jRIr761a8OO88vf/lLVqxYQTgcZu3atfz+97+fqrcgJshEJo5bls0Fl1855phhd/K3bYLbLx2+RSre7B/ftmnc1x3XCMn245rI1x9BPlgbS0lZOVd+92YJPoQQQogJJgHINPnCF75Ac3Nz/9dHPvKR/sfi8Tivec1rWLJkCY899hhf+9rX+NznPsdNNw1cqG7evJl3vOMdXHHFFTzxxBO88Y1v5I1vfCPPPvvsdLwdcYwmOnG8cf0GNl51zbCL6xHzR/qTw0dKdu87dten/HHHY4Rk+/FN4OuPNKUCgrVXv/dDOE5hfVmEEEIIUTjZgjVNYrEY9fX1Iz7205/+lGw2y49+9COCwSCrV6/mySef5Prrr+fKK/2Lpm984xtcdNFF/Ou//isAX/ziF/nzn//Mt7/9bW688cYpex/i+ExG4njj+g0sP2v9+J3Qx00ONxA/4I9bdm7Brz+ifLL90K1eY5rA1x9BPlgb2rQxVl3D+ZdNY9NGIYQQoshJADJNvvzlL/PFL36RxYsX8853vpOPf/zjOI7/x/Hwww/z8pe/nGBw4O7rhRdeyFe+8hU6OzuprKzk4Ycf5qqrrhp0zgsvvJA777xzKt+GOE7HlTg+Bsuyx88bKTQ5vNBx41m10S+1m092b30OHvja+M+bqNcfQT5Y27ftGfZvfQYDLFq1lkWr107aawohhBBznQQg0+CjH/0op59+OlVVVWzevJlPf/rTNDc3c/311wNw6NAhli1bNug5dXV1/Y9VVlZy6NCh/mNHjjl06NCor5vJZMhkMv3fxwtswCYmzzEnjk+EQpPDCx1XCMseWM3Y9UBhAchEvv4Idj66ZdAqyJY7biNaVcMFl0/TKshkViQTQgghZgDJAZkgn/rUp4Yllg/9eu655wC46qqreMUrXsG6det4//vfz3//93/zrW99a1BwMBmuu+46ysvL+78WLVo0qa8nxndMieMTZdzkcAVlDf640WjPDySe+ZX/69Hka0zE6x+nfDf0oQFgb0cbm66/lqYtU9ebBPCT7m9YA7e8Hn59hf/rDWsmLRlfCCGEmA4SgEyQT3ziE2zfvn3MrxNOOGHE565fvx7Xddm9ezcA9fX1tLQM3naS/z6fNzLamNHySgA+/elP093d3f+1b9++Y327YgIdVeL4RBozObzv+4u+PPrd9+O9WB7y+vlGjNu7a9mXqECbcV7/OE1kBbIJMRUVyYQQQogZQLZgTZDa2lpqa2uP6blPPvkklmUxb948AM455xz+7d/+jVwuRyAQAODPf/4zJ598MpWVlf1j7r77bj72sY/1n+fPf/4z55xzzqivEwqFCIVCxzRHMbkKThyfaKMlh5ct8C/+R+vDkb9YHlpBK3+x/NZbC+vh0ff6TT/7AvfsqqTXHfj7GS2LcEFPDY1H/64KcjQVyArpw3Jcxq1IpvyKYCsunrLtWFp7U//3UQghxJwgAcgUe/jhh9myZQvnn38+sViMhx9+mI9//OO8613v6g8u3vnOd/L5z3+eK664gquvvppnn32Wb3zjG3z961/vP8+//Mu/cN555/Hf//3fXHzxxfziF7/g73//+6BSvWJ2KShxfDIMTQ4fL+9ggi+Wm3pq2NQ0fOWuN55g0/XXTtoq0GRUIDtmU1mRrABNWzYPqw42rXkxQgghiopswZpioVCIX/ziF5x33nmsXr2aL33pS3z84x8fFDiUl5fzpz/9iV27dnHGGWfwiU98gv/4j//oL8ELsGHDBn72s59x0003ccopp/CrX/2KO++8kzVr1kzH2xKzXT45fO1b/F/HChyO5mJ5CK099m19mu0P3ce+rU/jutlp2wY1WRXIjslUVyQbw4zLixFCCFF0ZAVkip1++uk88sgj445bt24dDzzwwJhjLrnkEi655JKJmpoQhTnGi+WR7qqHY2Wke8auxjZZ26CmtQLZUNNRkWwEhebFLD9rvWzHEkIIccxkBUQIcXSO4WJ5tLvq4wUfeZOxDWpaK5ANNQMqgsHR5cUIIYQQx0oCECHE0TnKi+VC7qqPJN5FIQAAUENJREFUZ7K2QU1bBbKhjrci2QSZUXkxQgghipZswRJCHJ38xfLtl+JfHB+ZjD78YrmQu+pjmextUNNWgWyoY61INoFmVF6MEEKIoiUBiBDi6B3FxfLx3i2fim1Q01aBbKijrUg2wWZUXowQQoiiJQGIEOLYFHixXOjd8pKyMlLxgZyQWHUN518298q+auBAspzeuCZqldPA1O2VzefFbLr+2lHHTFlejBBCiKIlAYgQU2CmN3U75vnly/eOodC76v/0zZtofv65GfsZTYWZ0H8jnxczdB5zNSAUQggx8ZQxZqRuYmIOiMfjlJeX093dTVlZ2XRPp2jNhIvKsUzF/PJVsEYzpQnfM9REfUYTFezO9KBZCCHy5Hpm9pEAZA6TH9jJN9MvvKdyfiMFOnJX3ae1x/c/dMW4q0Tv/fYPxwwCZnqwK4QQk0GuZ2Yf2YIlxCSZ6U3dpnp+M6ba1Ax0NP03RkuWHy2YzHcwn+5gVxQHWRkTQkwECUCEmCQTcVE5maZjfjOm2tQMc7z9N2Z6sCuKg6ywCSEmijQiFGKSzPSmbjN9fnPJ8fbfkA7mYrLlV9iG/j3Lr7A1bdk8TTMTQsxGEoAIMUlmelO3mT6/uSRfKWwsY/XfkGBSTKZCV9i09qZoRkKI2U62YAkxSWZ6U7ejmd8fd/+R7zz5HRK5xBTOcGpFAhE+fOqHec3S10z5ax9v/w0JJsVkmunbSYUQs48EIEJMkpne1O1o5vedJ7/Dru5dUzi76fHtJ789LQEIHF//jZke7IrZTVbYhBATTQIQISbRTG/qVuj88isfyihKKfV/nx+s+n9HaUkJqVRq2PH+oYO+UWCMf3ToUDP0W/+A0Zp4PI6yFGVl5QwuIt43xoAxuu8lFG4uRyaTwRjQWqO1AQVOIOCfVylUiUFZTPsKz7FWCpvpwa6Y3WSFTQgx0SQAEWKSzfTys0czv1JKea93uf+NUji2jVJg2zaWZfHG17+W//ebP2FZFrZt9w1Tg74wmtpEE2G3m0yggvbYyagjXuvI1kTGGLTWKG3oRmGhIJjEaI/Pf+7fCYVCXPNvnyGpXUzWDzCUBeCRyWRIplPoTA7XgJdRhEsgm1F898bvUrFsMcZS5IJBSt/cARE9iZ9y4Y61UthMD3bF7CUrbEKIiSYBiBD/f3v3Hh9XXed//HXOmUsuk3vapk2vtKU3KFCEShGVi7ZatrjrD3B/CC3uLoroLpZFWFZlZRcERdyfK6K4K63uKqKL2kWoi7QFpFC5FXqjlNJraJLm1mRymZlzzvf3x0mmnebStE2mTfN+Ph55JHPme86cOYTp+eT7/Xw+WXCyl589mvOzjEkHF2CwHAdjBfMPbW3tOCEbCxtjTEbg4dg2FQ2vcOben5GbOrhUoz1cwqbxn6a67DwsgoAFSO9vOw4eHrmpFM1t7URjRbipFP/4z9+kta2VdS/9iRW/epxoboR/+pd/obEjidvegev55NpRvCikXB8rbBHJzcUJe+REIsRy8/ABNxzGw3SbhBmKTvZgV4YmzbCJyEBTACIiR8XHYBEEIZYdBBe2HQQcrusGP/vBrMihAUhFwyuct+PBbsfLSTVy7vZ/4zXn76gtPQ84GHx0zYY4jkPIGJZ9/0HGjizmQPMB6muaaHTb+djCK7j72/fSkvR5d9sO/vPnj3D9jTcTssO0puLYjsHuPIdUKonrmvTMCrZNKBTCM91Oa8g62YNdGZo0wyYiA0kBiIj0m8Gwx66i3eqgkALGW+OwoDPoMDQ2NgEHgw/Sz3mcufdnQPd0D4tg9mTmzv+ktuRcOtdQYds2nnewrKdj2+RYLqnWA+RYPqNHxBhtxXj35Rd465XnSSVcPBtG50b54b9+i/z8fC760CWcceYMDhxoIRwOg23TNXkTCoVwfT+YzTkVpj9EBplm2ERkoCgAEZF+a6edXzsrggcGYm6MS+wPc0ZoBpFIhNb2dmwbbMvOmMEY0botY9nV4SwgN1lP+L2XaSicgWVZFBUVYTwL1wY8C89yCPkG4/lgOpdMGTC+S8gYnBD4voXn+JxWlofrptiy9g9s+uP/ct5HFjBm7CQsLFw/geelwAmS4HMiUdrTYZCI9EUzbCIyENSIUESOqMPtAA5Wo+oSJ84K/wne8t7GGMP+2ioswsHYQ3JAoqmmfr1Oav8Otm56k9wQdMQb8d0ktvGwjEfYDl67a2al67sTsrCdg8nrh8+c+L5PQawA2z44s2LbNn7X7IcCDxERkaxSACIywHzfY8+mN9nywrPs2fTmkO8O7Pke8VQ8eNDLUqU/pFbhei4pNwkczP3outlPRkv79VpPrn6JA/v389jPfsKu7VtJdbTiJjvAS2Hh4/t+OrAJSur6+H4KY1yMMdi2nX7dLpZlkR/LBzqDE98n0dGRnqExRgGIiIhINmkJlsgA2rZubbckzVhpOZcsGbpJmq/VvoZv+i5R22xa2EsVFU1FxApzACcdDGCFaSiYQXuklJxkQ48xjG+gutXiyfX1FFc9R344zNgRJRTH8vGdEJHcGPnFI+nwEhQ6OVgWpNxE0ErED9af25aP7yXT8xldQQpALFZAwvXwvSAhHTuEwcL3PZJGCSAiIiLZpBkQkQGybd1aVjxwT7da+fGGOlY8cA/b1q09QWd2fPa37e/XuBa/hVDo4N80Di7BMji2xVvjrwGCYONQXY/v+qNDXn4R8ZZ2du+tYeOmrbzyx+fZ/sY66muqsNwkyQ4X33i4nkvIsYO+IL6H5QeFdD3fBI0GDxGcw8GfAVzX7exhYpFyXbQMS0REJHs0AyIyAHzfY9Wyh/scs3r5w0w+b+6QqxgzIm9Ev8YV2gXgB0GH4zjp5U2+camt2suTL+/BfjuP28/toOKQpn81bTbfeiWPJ99pp3J0ITv37sa2QuzY+R4drW3MmDKGwrIDHKivZeFVV9JQV49t27QfaKamupo9u3fgeS4OPjmRKDnRKJZFZ+8RC++QZVscUpnL7+pnYlkwUEnovge71kK8BmKjYMI86Ou/99GOFxEROQUoABEZAFVbNvXZJRigpb6Oqi2bhlwFmTkj52Bbdp/LsAqtQiY4k3C9Fhw7lM6rMMYQMRFGjh3Dmw9t4t3dKZ7YEubs0T6TiiO02TFerXYwnmF0RRHVtdUU5OdT39yEsQvY/V4dk8eNomrXW3hWiMmTT2fGjLMwvsGzIRqNEo1GcF2Xmqr32L59Ow31dRg/RVNDI9XVe6mursZzLWwDPh4W0Op14FgGY4VwDRxX8NEVRGx9Et78BbTVH3JhxsCC+2Dmou77bV4BK2+D5vf6N15EROQUoQBEZADEm3ovMXss406IXv4abwETm4oxrR20Rz1qShMcnjaxMP9jRMIRbKJAsOSpq1t6MtFGJC/Cjj27MI6NCYfZ3BTmlb2teF4d+fl5VI6qYHfVXkaWlrF//34qR5XTnmjFscOsfeNtLjpnIvXb32TCxPHYdgGhSIiEmyKZaKMtHsf3fXJzc5k2fTpJz+Cm3GApluURjkTwkslgBsQEQVEqlQqS0P2uJPRjnAHpKYg4VPM+eOw6uOonmUHF5hXB9sNfs7fxIiIipxAFICIDIFZcMqDjsq6Xv8Zvm/A5Vv3hdT7YUAAUANCa47JuZgO7K9optAr5WO58ZkVm4nkmnWMBpLuiRyIRWlvbSfkedihMvKOdvFiUvLw82tvb8TyPmpoaysrKsD1DaXEJbR0JDsSTFOSFML5NfXM7YcuicX8NlUUj8X0X2/iEbAs7FEpXxLJti3AqSQIbjMHzffBSmM5O7V33+6FQCIuuKl0Hz9k2BnY8378lUb0FERk6g5uVt8P0hcGxfC+41j3u18N4ERGRU4wCEJEBUDljFrHS8j6XYRWUlVM5Y1YWz6qfermR3rY3yYp1/8vhtXfzOkJc/NpIrAtmMWHCHMKhMOFwhMIih5amFL7v4TgOjuPg+z6t7e3c8/W7MED8QDMjS8voSCXIz8unpTVOLCdGQUEeJcXF7NixnbEjRtFWE6coN4+8WD7NBw7QlrDxcNn02ouEwrmUjTs9qKBhDJYdlOi18PE9A06YCG5QAcsKbuCN6+PZFpYJEQr5GGPhO2HwOsDKwQIubW3jjj1vwubLD77Z3pZE9RlEHM5Ac1UwuzTpouB7bzMmPY0XERE5xagKlsgAsG2HS5bc0OeYixffcPIloPdyI+0bWFVzWo+7dKVsO2/sJBIKEw6H8VyPtrY2IpEI4XAYxwnK8IZCIXJzcznQ3EzUCVFaWEQIm7xwDm5HktNPm0LUcYg3NdFUXUcOBsc22L5FbjSHlqYD5ESi7N5TTcpL4Saaqdq9DbejHd8k8U0Kz/Pwfb9z9sXHsrz0TIzdOfPR9T1IivcJh8J4XtA7xPM8Lu1o5YHaOka4qcw327UkavOKzO1HDCJ6EK/J/N7f8ScD3wtmhjb8Kvg+xHvbiIjIiaUZEJEBMnXuPBYtvaNbH5CCsnIuXnyS9gHp5Ua6qq2IuBvtc1evrZX22mqKxk0AByzbIuxEaOtIpW/4w+EwrW1tdLS3EzI2ifYOcvJDOLZFcVEJxvMoLiqgox0cN8mFM8+kqTVOycSx7K2pIxUKkxOOkEwmSPk+uU4uyWRr5w3wIUFFZ7+P4LuP8bu6nQc3yl1J8UFlLIdwJIxjwTkFzRRHm/n7liBxvHtHkF6WRB1LcBAblfm9v+NPNCXLi4jIAFMAIjKAps6dx+Tz5gZVsZoaiRWXUDlj1sk389GllxvpuBvp1+5uogOiIcKehe+62LaV7gUSDodxk4bH/uunhC2I5YaJlpaSEwlRV7cf036AKeMnEgrZjBs1mZaWWs6ZOo76ujp27tpF+fhR7GpPsqeunpZkHONX4DsJGqvraG2ppThndDC70XkuPgbbtvBSLr7VFXgEQYpvmSBoMT6RUJhPTnP4lzP/xKhIMti5z5VUPSyJOqrgwApu2Cd0BqAT5gWPm/f18sKHjT+RlCwvIiKDQAGIyACzbWfolNrt5UY6Fkr2a/dwXj4m5RHJzceJWrS3dxAORwiFQriuS05ODvtrayjIj5EbjhB1wMHlw2dO5/xpMzApj7qmaiZNmsRZMy5n97s7uficc3j55T9SVVtHUz1UYZGfG6O+Mcm4igjGS9J6oImi8op0fw/f98G2OhPR7fSyLOOTXnZlWUHS+YTWjdx4UfPRX6tDg7UjBhGHWXDvwdkT2wlmDx67ju7Vt6yM8b7vnbhgVsnyIiIySBSAiAxnvdxIV+YdIBZKdM6EdF+YBBDOj1FcOQ5jgqVP0YhDLD8frDCJzrK3KTdFbXUNsUgekydMwmtpZHRBIVNKcpk/u4CqrW9SNGUyky/9c6rf2cNZ7zuTLS+/xrQpUygpG8U76/5Ew/4GIkUxautaGDuqFNtyiTcHS9y6gg/L6mw46B9cjgV0/9n3uKh1JQB2z2+rd4cGa30GEYcorAyCicNnCWYuCmYPelzaFIzftm5tt+V8sdJyLlmSpeV8SpYXEZFBogBE5BTU77+c93IjbVtwyah3WVE1vdfXGDV3HlYohOOEKCwqIdlRRySniOrGJopj+XgdHVghn3AoApZF3f73uPSM6cwrb+b8gleJ7HmWMXlA80uYJ1dSMe16qmqLOG3SaSSS7YSjESpHj2LM6P20dKQIRXOxXI+U7XKgsR7bdXHxcX0HcAjZFp4BHzBJF2zSsyGWb7ANVKR2UkhLbzFVL3pZEtVbEJFXDrOvgmkf77uM78xFwezB4b1XgG3/8++s+M/fdNsl3lDHigfuYdHSOwY/CBmKyfIiIjIkKAAROcUc9V/Oe7mRnjo2yqILP8qqP7yecSw7N5cR75tL8bRphMIRQk4I27ZpajrA6IpSSoqLSXW0B31AQhbhcJiC/AKmTRjDhaNamZf7YvcJg0Q9vHE/zaE/p8WuwApDQV4OUyZMYHaHxcuvv46NBxhC2HS0twc9PmxwCPI9XM/H8zxMysUyFvgGQwqDh2+CMdHUgaO8mplLonq8dj0FEf1dkmQ7mbMHm1fgP3Ubq14bC/Q++7R6+cNMPm/u4C7HGmrJ8iIiMmQoABE5hWxbt5YVD9zTbfsR/3Ley430VNth8p97XP3QAhLNzRCJcM34T2EA34JwJIJloLSsjOr3tlFUVESi6QDhvDw83ycUtigqKsJPuowZUcT7cv8AdL+tfqe5jFU1k4m7dUAQ7OREI4wYW0FdTRWzz5jFlrc2Ydv5uJ5Hqj2Bm0rhRMPgd+Z7WDY2YNkOnudjewbfMQTRThDxdISLoP0oLughS6J6dXgQcaw6E76rWguPWIGspb6Oqi2bBjfXaCgly4uIyJCiAETkFOH7HquWPdznmD7/ct7LjbRtOzSM9KmNtRHDxvNS2LkRkq3tWLkFhMNhQtEw8XgDvkkRDufgp9rJz8ujraOVnHCI6oYDTLPriNLa7fjbmstYUTWj2/aORJI923dTFgrx5rbtRMI2NmFsbIzl4ZoUIRPFGJ8gB93g+wbX93BtDx8fY2wsy0rnilQ549mfCFMWSfWYA+IDdl45LPgGFIw+utmM43FIwnd/K5C988q6wQ1AjiJZXkRE5GioEaHIKaJqy6Y+O7HDwb+cHysLiIRzMZ5FXl4eoZBDKBSiJd5AU2MLyWQS13VxXRfP87Btm7bWOF5HO2OLu/+9I2h4OPmQo3c3pbycWE4OEcfCkMTgAi5AsOTKeFiW6fzZYCygs++H7/vpXiHGGFzfcPer+Vidr51xLl1ncPl3ghyOSRdl7+b6kITv/lYge+3J37Jt3drBPKuDy/MKR2duLxyjErwiInLMNAMicoqINzUO6LjeGGMTCQcdz3Nycmlra6MwlIfvQTwexwrHCIVCpFJBQ8KO9jbwU7T74W5/8uhPw0OMIZxKkLJ9fN8FLELhIPAxxoDldzYcdPCM37kcq6sClh1UyTI+landRFJxXmrq4B+3TeHmibsZGTl4s1/jOPxgzES+fiJuqg9J5O5PBbIuWckFOd48FxERkcMoABE5RcSKSwZ0XE8MEI7a2DakUh51dXXk5+eTaPXIzzdYThjfbSflBgnhNjZ50Rj79tWyJ1FBq5NHntWWvq3u73KjqONjEha2FcH3IeREsHwbyzIkXQPY4HvYxmCMT3q5kPGY1PEWH2h9hpjfAsDCj0NNYjf/b+9pxMnD6djP7g+leDs/TFFOPl/zPZxs31wfksgdVCDb3uOytMNlJRcEBi7PRUREBC3BEjllVM6YRay0vM8xBWXlVM6YdRyvYujo6CCVSpFKdeA4Qadx1/PIyclJL73yPI9wOIxvHAodQ0k0TMJP8l7ZxzuPEujvcqNUMsXt13waGzCdTQV930/3+ehaYtW15AqCGZBJHVuZ3/Ib8juDjy4jIkn+ZdJbtI7u4H8/bLM1FsFYFk2JJub/93z+sOsPx3GNjkFXwndnaDa1sJ45JVX92vV4Z7RERESyTQGIyCnCth0uWXJDn2MuXnzDcS/XSSaTeJ6H6yVpbGygpaWF1nicESPKaWtrIzc3l2QySXt7G4lkir/+879gVHkRjQca2bY/xnMHLqSDGHBwuVFf3cQdxyGnIJ9ywiSNj4VFU1MT8XhrOtiAznyPzoDE9TzwPebFe666ZVvwdF4u62a0QF7ma9e21bJ0zdLsBiFdCd9A19lOKWjo167HM6MlIiJyIigAETmFTJ07j0VL7+g2E1JQVj7gzetMis4Gfz4d7e3k54XwPI+mpqagC3rKxUvFCSVamTV1OlOmziAvL4eW8RfzkdWz2X/Jj9iTezmTJ4ykr1yH06dNZt7009m2Y0fQbDBsCBswfjPGOTgTYiwwIRvPBseHyuReYn5Lj0f2gG+WBzfu1mEDTGcwdN+f7sPzvYG5WP1xWMJ3f4Kz45/REhERyT7lgIicYqbOncfk8+b2rxP6MfB9H9d1MX4HjuOQTCYJOw7FxSUcaAuCgfb2BAAhE+L0s87l1e3vcNrYSmqqtpPXmmJGSTF7d1p02FOwctu44PypvPL6elIpN/06jmUxbmwFU6dNpmr3HtxwMLPhGYODBYZ0iV0IlmH5xtBVXzfPj/f6Hl7LiVIT6v3jz2CobqvmtdrXOK/ivIG4bP1zSMK3Ha/hkp1NPXZE7zIQM1oiIiLZpgBE5BRk287gJCYbcF0Xy7IwTrA8ynVdTCJBLL8c122kvaMDxw7h+T5hO4wXySWKh+8nyYvlUbdrG//n7HG0vvcGexsbGVdcRGkkhw+cfx5NbS6J5gYK8nNI5UQYPaII09ICyQTJ3Fw844NlYXxwQg6e63a+34OTub7vYwPtTkGvb2O/07+b9v1t+4/rch2TQxK+p54Ji0bO7NbZvqCsnIsX99LZXkRE5CSnAERkgPm+N2izDyeawWA8HxyDFQbLtoJSu8kEBfl5eMlawpaNbUHIsUl5bexsaIQUJDtaSbQZwtFiSkoKidohTgtHoOkAxmklkpdPSV6Y4rGzGTm2kpr9e/Hw8ToacF2XvPwYvmUI+4aUHSISLcXBxsfHcz1sLPANlmXh2ob3ouNosWLETLzbMqwRXv+WVo3IGzHwF/EoDfaMloiISLYpABEZQNvWre321+pYaTmXLDk1/lptjOnM70gRjkZIJZNgIOn7RHNySKVSQQDgukSjURzHwS+MkUwmWPf8yyQSXVWvthGNRJhx+hRGRnOIhMI0tbQycsIEOtwExk9SXFBKQ0M1ydZ2fOPT2NqCZ3w8z6KwqAjHcdLVrywrCISCZVg+BoPr+fwx/xIWxFdgyMwyObs9wSjXpcYJ9Zh+YmExKm8Uc0bOycJVPbJBm9ESERE5AZSELjJAtq1by4oH7unWjTzeUMeKB+4Z/K7VWWARBB9deSDxeBue55FIJnAcJ/2c53m0tbWRSqXYt/NdQo5zSPARSCSTrN+4mZqGBtricRzXJ9dYFIaiNL/3HnaLCykftz1BKBJm576gLK1thygsLQuWgXWW3j3UodvejZzOU/mLiFuxjDENqQjjNuV07tD9PQLcdv5t2e8Hcjjfgx3Pw4ZfBd+zmRQvIiIySDQDIjIAfN9j1bKH+xyTla7Vg87Q0dFGOBwmFAmD5eN6KSzLByeEbzxcz2ATzEgkOtqpf+1lDCZ9Y3+4bbU1TC2t4L22RoiGSDV7hG0bL9lEorUF24Db4VPrNuL44SDHI+TgGTCdx/R9Hx+Dj8HzPCwneDVjDNuc09heOIWK5G5CHXF+9sQa3htxFpbnYLcl8GfXQ/7BIGZU3ihuO/82LptwWTYuaO82r4CVt0Hzewe3FY4JyvWeiG7tIiIiA0QzICIDoGrLpm4zH4fr6lo9lBnAdnws28NNpvBcl46ODozrY2GT7EhgvKAZYDKZpGN/LV57e7pSVU/aUknaRpSRbHN59U+vMmLSROxwmLZUEjeRwoqGSYYs6JzVsG2bnJycdAUs27YzZkNCoVBGY0LLssB2qAqPZ7Mzgz/uMWDbwX7v5eH8pgw6go/C4mgxKz+58uQIPh67LjP4AGjeF2zfvOLEnJeIiMgAUAAiMgD624361OhabQCDY8C2grwLy/fpiLdg+wa3I0EymcR1XZKtvZfCPdSBuibIieA2N3HgQC3RnCjhSJhEezvYFgnLx+ZgyV2ns4qVZVl4nQnldmdQ4XleRkd0IB2I2LaFY9t0PWVbFr7rY/nBcSNO5ORYdrXyNnru/9G5beXtWo4lIiJDlgIQkQHQ327UQ75rtTFgDMb3SfkJPC8Jvofvp9i9dxcuBt+28DurUtmRSL8Ou/O9HYwaM4qZM2YRwWCF8/BSLr7xqD/QjG8MCRMENUHkE8YyBF+OjWeC/iOeDYQdHGMRMhbGt/C9IFDxvSBpPZVKgTGk7BS+ZwFWX30Qs2/X2u4zHxkMNFcF40RERIYgBSAiA6Byxqxu3ccPd2p0rT7YedzzUnheCtdL4rkeKdfFGEMikcD3fVKpFHZxMXZOTp9HjEaiTD/rLBriTbR0tFFXu582vx0vbBHJy8H1PKxwCKdzBsTtfB0Az/PSVbC6ll0Z32A5Nq7v4ThOulpW+h0c0rjQwiLsOH01G8++eM3AjhMRETnJKAARGQC27XDJkhv6HHNqdK02B5c3WQZjPHzfBStYApVKpdJNAbvyM4qOUD528unTaUkkIBSl2aRobI/TTgo/Ykh6Lq7xaWppxnQGPr4x6dcIhUKEDutobowfNCx07IzAA4KAxXVdPM8PjmEFEyp9pKhkX2zUwI4TERE5ySgAERkgU+fOY9HSO7rNhBSUlbNo6R2nRB8QID2jEORVAMbH9ZK0t6ewDPiuh+slSaY6gqTwUWUUzJnT7S4/Go1y/nnnMevsOcTGjKJk7DhyCkuJ5Edp62gjnBvDxdDW1kZrexOpzlgiZEI44QI84+P6Hr4PluVg2zZhbGzHwbLtYJbGuJjOzulgEw2HafNdLAt8z8OxHVxMdidAjlRad8K8oNpVr+vCLCisDMaJiIgMQSrDKzKAhkPX6lQqheM4mZWtfEN7ezuu62LbNo5lpcf4lkVexRiaC95ifKyQEWPHYEgSMSFa3ztAycgU48eN472q3eQUFFEb309eqADX9kn6HqGcKB1uEicErjH4joUVOji7YTmdSeW2he8dTD7vqpIFNpYNpjMXpOusu4Io3wTFfLMShPSntK7tBI8fuw66nVnn2S+4NxgnIiIyBGkGRGSAdXWtnnHhhxg3a/YpFXx03Qp35YCYzvYZvucRb2nB89308103+IZgWVR9oo2GA02MGVdBcVkRHS0dRBO5NFZVs33VOhrf3M6fVj5Da30jWIaWZCutboKmjlaMY2PZIZywRX5BAeFoJJ3f4QM+4Bof3zrYrb2rUpYxBtuy8DrL+PomWH5lWw7GeIRCTvaCj/6W1p25CK76CRSOzhxbOCbYrj4gIiIyhGkGRET6rau5XzCz4ON5NgaX3FCUhqYmbAcMDr5n0jMkEccGy+fsi+fT/sZ6mg8cwLJ8onkWTrFNtKyIRCiM1+Yz6fTxlIwZQby5iXiyg5TrUtfShm9ckikbE3IpzCsiP6cAus7FtjrPzcEYH8sOqnQd2gvE931cYxPyLWzj4PudpXwtML4/+DMgRyytawWldacvPDizMXNR8HjX2iDhPDYqWHZ1CgW0IiIyPCkAERmCfN87Icu8DEEit23bdLQbLLuB/PwiDNDW1oYxufjGw7KCyVXHcfB8l3DYwQX2tbZQ0dRIQWEeubF8GhNx3q7fSUdbikiuhRVyiLe3ESdJ0ngY4/D27t1BlSvA+A7F5aPAOfjRdWjfD2MMvvFxOvuBdJ1113KstlQCK9w5M+L7WLY1cIGH7/UeLBxNad1JFx3cbDuZj0VERE4BCkBEhpht69ayatnDGZ3XY6XlXLLkhqwkuncloYdCYXJzLVzPxQpFSSSSWHYuXZWyupr/OZ0lcj3Lorm9ndr6OnDKCOfEmFhZwYHmDpywQ/WIDlojKVKNjUyljHhLC61tSRrjcWKFBoyF44TJLyzCDkfAdzO6nXueh2WBjUUymcQ+LOnd931a4nHCnWWBjWURrCEbgBDkSLkdKq0rIiKSpgBEZAjZtm4tKx64p9v2eEMdKx64JyvVtrpmGmzb52c/fZS/vPZ6CBm8ZIiwZeH7KUJObkaSujGGUBjCjk+L6xNtSREmRWFhDjtGt/D95NPUmRZIAvlQ5OXw4cax5NS5TB4zjg1tHqP8XZSXV5JbVIzv+vi+i+ME1a+MMWAbHB/wDFE7hOd5RLBJWB6ub2EZi8aGRvLy87Asg+sbPN/F5jj7EHbldhweyHTldlz1E5XWFREROYSS0EWGCN/3WLXs4T7HrF7+MP7hZV0HkoFkMhkEFE6Eq66+FicUwfd9bCuncxYiaFYIZAYhXpRYSQXVdc28t7+J6to6XnZ3clfi8SD4OMQBu4PfVr7Dppx6xo4cQU2ykg4rSu2+PfhtrdgETQa7Zj+6eo6Yzh4hXdu6Zki6NDY2kJef37lkyyeZSOD7qWOPQI6Y20GQ2zFurkrrioiIdFIAIjJEVG3ZlLHsqict9XVUbdk0eCdhQSQSwbbtoJlfKAQE+RaOHckIPHwT3OSbziVZP/6PX9Ect0j5UNvYhIfDj8zzPd+7d96nvzung1TKxQ4lSZgxWJ7Lhtdex3SW37Id+2CAcchxuvJCbNtOByS+59PQ0EBOTk66g7pt2/jGPfbr0d/cjj3rguVYh765w9+sSuuKiMgwoQBEZIiINzUO6Lhj5fs+oVCISMghFLIxfpL6+v0YEulZB/AJWRE8L4mHhWOHaEiF2dvUyOiRpeTlR1gb30aj3dbnpEBbNMX+iiQR12Vfu0972NB24F3e27MDFwOdS7AAQsbGN4DlY/DA8sHy8X3A87BCNnV19YTDwcpTg08ikSRiH8dK1KPJ7egqrVtQkflcwWiV1hURkWFFAYjIEBErLhnQccfqYJABeD5hbFri8XTfjSABPUXKSwBgfItQuIhYrJB3tr9LFCgpK4bySL9ez82FwhwLIiXsahhDwiojHm88JPG8a7mVi/Hd9LIsOFixyxiD53nE4y04TijdJNG2bRxzHBkgx5LbcVhy/PEloIiIiAw9CkBEhojKGbOIlZb3OaagrJzKGbMG9TwsyyIUDgc3+gSdxdtbW9NBiTFg2WDhYlkWeTn5PLLsZxgSeEmHovw8yspKGFdS0fcLdZrGAc4rbiBlUnj5ZexpHcc7O/fR3tFBVxHdoOFh8NUVWNiOg9O5pKkraEokkji2nT53z/Wwj7UJiO8FX7l9BXyH5HYcTSNCERGRU5gCEJEhwrYdLllyQ59jLl58w6D2A7EIbuaTySS2DZ7lk8Ql0ZwgYVyMb4EBz/XxnRx+8z/P8f8efpy4yYWUxZzzZmFCNiHXZ7oZTaHJ7f3m3xgqXJclyVf5+pRXeGLuS1xUuIeUHeatGofH/nsNz619FVIelmnHwgGC3A58g+UbbM/H+IaU6zHeVLHoNJezC1sJWYBxsGwPPwJYRxmBbF4B/3oG/PQKaO9tydshuR3Qv2T1wSwgICIicpJQGV6RIWTq3HksWnpHtz4gBWXlXLx48PuAGDq7j3eW4jW+h4VNaVkZNhYeBsu2+Z+nXqAh4dPR5mJZIcKuS8i3iEWDpPDc3FyM5/NJ/zwecZ7r9jpW52zKbfWNdIVTIyIdfOvs7dy6MZ9VNWXECbNxexM1+1Zz4fmnU1kxGt+2MT6dzRAtbMtmSmobH0yuopA4iz8CsI2aRJhv75zEbxNRQk6I5NFchN7K7h6ucEwQfMxcBDueP7ZGhCIiIqcgBSAiQ8zUufOYfN7cE9IJHci47/Z9n5DtcMlll/HWzu0kPYdHf/E0HakwIXyMbZNTkI9JJsjLj1EQDlNSPoJEWxsjy8qpcEZQFCngp4nnqPcPluId5XncVt/IZW3t6W22Bb6BW09/m+cb55FIuSQ7UjS0etQ/t51xhW/xgfefQUFBPiljY7CYlHybi9u7L20aEUlx7+lv09JRyQYzmn4nYvRZdrdTbglcuRwmfuBgVSs1IhQREUlTACIyBNm2w7hZs7P/wgboTPJ2jU9reyv5+YVEckv58bJvE3JiJIjiGRfHdrBsi7q6BkrycjC2RV5uPrGCEhJtLoYIjvG4uOgsLi/4AK82bqWhYSPTqn7HnI4EPYVTtgUV0Q5mFzTxcmMxRaWl1NfuI1Zcyt62Bn71xFrmzpnIGadNJBWC81tXAd3Di65g5qvTalm8fSzx/r7/I5bdJViSZdmZJXXViFBERCRNAYiIHDVjDI7jEM0p4Kf/+T/88vGXwCkllJ+Pn0oRsSM4BlK+h9/Zs8N4PnnFI/BSEHaieJ4hVlBMMpnEaWtjuhlN1N1FZUfiiK9fkedhHwiqWxWXjaSlLUHSj3KgLYc/rm9g354aPnFWlJjpPbSwLRiTk+KcWCv/298s9GOdyZgwL1iS1byPXhufFI5RI0IRERkWlIQuIv1mQbqBXyKR4MmnVuObAtqTHXiWR3sqAXj4xiORSpJIpsjLyQUsYrEYW9/dQUFhPoWFheCB63r4vqG1pQ3P9SCnrF/nsT8ZOdj/IxwlFI4SCUUZMbqcVjeHve257N/1Tr+ONTLH76zl1Q/HOpNhO2pEKCIi0kkBiIj0m7HAcRwMsGXrO7S0WjghByccwbJChCyHVMrHeIZQOMKoijHkhiN4xlDb1Mym7TvxLZ9YQQzjeuSEQjhuCCdl4xobt2gWbrik1/kI30BtMo+X64rSvTxCoQgdiTZc18UyEXLzHN7bH+ethvx+vaf6VLjv+Q/fC5LIN/wq+LlwDH12T+wqu3u4rkaEhaMztxeOUSNCEREZVrQES0T6rd3p4Jcjfh/0/jg/iTkfLCy6evm5BLfmvgEfqLd2AQYLi4RtUWMMX2r+AZZl4+f52HGCPYyBhIXVanNRaYy7ahrxyfwLid859N6RRaSufhc3HQN0NfKw6MCAgQjwjOdR3egw0vd6/EuLD9TYDr9/3wG8qN/zG968Ikg6PzTvI7ck/XqZy6n6MZMxcxFMXxjkksRrgpmSCfM08yEiIsOKAhAROaLrZl7H/a/cDwRBCACx4Nuht+C9tvQ45LlGEz/44NAdOmOA3+RZtIws5/b6Riq8g30xahyH+8pKeCY/DLj9ytq41ynhgdq6noMZ4L7yElK5B4OP/PAhsya9ldttbwq+55ZAe8PB7YeW3YVgtqSnQMN2VGpXRESGNQUgInJEi2ctBuAnm3+SldfbkAfXlk/gzLYWSt0UDaEwG/IK8C2LkT3tYCzKm8aRk4jREY1TV7wHLMOGPPh6tIib9u1mpJtKD68LhXlw9Hg2FJakj5cfzucLZ38heNBnud3O2Y9QDly3Alr3d5/J6GnmpHBMkAeipVYiIjLMWcaYo2wBLKeK5uZmioqKOHDgQJAULDIEbX+9lud/sY3WpoPVs/KLo1x09VQmn9MZXvQ2G9GbHc/D8suP/OKLn+g+m9Fro8LOJVrK9xARGVC6nxl6lIQuIkPW9tdrWfnDjRnBB0BrU4KVP9zI9tdrgw1dy57O/D/B9yPlXBxrud0jzpwAK28PxomIiAxTCkBEZEjyfcPzv9jW55g/PrYN3z+GSd5jLbd7xEaFBpqrgnEiIiLDlAIQERmS9m1r6jbzcbh4Y4J925qO/uBdjQOPttzusc6ciIiIDCMKQAbY3Xffzbx588jLy6O4uLjHMbt372bhwoXk5eUxcuRIbr31VlzXzRizZs0a5syZQzQaZcqUKSxbtqzbcR588EEmTpxITk4Oc+fO5U9/+tMgvCORk1Nr85E7ph/NuAzH2jjwWGdOREREhhEFIAMsmUxy5ZVXcuONN/b4vOd5LFy4kGQyydq1a1m+fDnLli3ja1/7WnrMjh07WLhwIRdffDHr16/n5ptv5q//+q/5/e9/nx7zi1/8gqVLl3LnnXfy2muvcdZZZzF//nxqa2sH/T2KnAzyC6MDOq6bY2kceKwzJyIiIsOIqmANkmXLlnHzzTfT1NSUsf2pp57i8ssv57333mPUqOCvoD/4wQ+47bbb2L9/P5FIhNtuu43f/e53bNy4Mb3fpz71KZqamli5ciUAc+fO5bzzzuN73/seAL7vM27cOL74xS9y++239+scVTVChjLfN/zkjrV9LsOKlUS59u552HZvAUF/XugoK2ilq2BBj40KVQVLRGRA6X5m6NEMSJa9+OKLnHnmmengA2D+/Pk0NzezadOm9JjLLrssY7/58+fz4osvAsEsy6uvvpoxxrZtLrvssvSYniQSCZqbmzO+RIYq27a46OqpfY75wFVTjy/4gKOvoHUsMyciIiLDiBoRZll1dXVG8AGkH1dXV/c5prm5mfb2dhobG/E8r8cxb731Vq+v/Y1vfIOvf/3rA/E2RE4Kk88ZyYLPntGtD0isJMoHrjqkD0i2zVwE0xce3cyJiIjIMKEApB9uv/127rvvvj7HbNmyhenTp2fpjI7NP/zDP7B06dL04+bmZsaNG3cCz0jk+E0+ZySTzhoRVMVqTpBfGGX01OLjn/k4Xl0zJyIiIpJBAUg/3HLLLSxZsqTPMaeddlq/jlVRUdGtWlVNTU36ua7vXdsOHVNYWEhubi6O4+A4To9juo7Rk2g0SjR6jAm5Iicx27aonFZyok9DRERE+kEBSD+MGDGCESNGDMixLrjgAu6++25qa2sZOTJYHvL0009TWFjIzJkz02OefPLJjP2efvppLrjgAgAikQjnnnsuzzzzDJ/4xCeAIAn9mWee4Qtf+MKAnKeIiIiIyGBQEvoA2717N+vXr2f37t14nsf69etZv3498XgcgI9+9KPMnDmTa6+9ljfeeIPf//73fOUrX+Gmm25Kz0587nOf49133+XLX/4yb731Ft///vd57LHH+NKXvpR+naVLl/KjH/2I5cuXs2XLFm688UZaW1u5/vrrT8j7FhERERHpD5XhHWBLlixh+fLl3bavXr2aD3/4wwDs2rWLG2+8kTVr1pCfn8/ixYu59957CYUOTkitWbOGL33pS2zevJmxY8fy1a9+tdsysO9973t861vforq6mrPPPpvvfve7zJ07t9/nqrJ1MiwcbRldEREZUnQ/M/QoABnG9D+snPI2r4CVt0Hzewe3FY4JupyrHK6IyClB9zNDj5Zgicipqash4KHBB0DzvmD75hUn5rxERESGOQUgInLq8b1g5oOeJng7t628PRgnIiIiWaUARESOi+977Nn0JlteeJY9m97EPxlu6net7T7zkcFAc1UwTkRERLJKZXhF5JhtW7eWVcseJt5Ql94WKy3nkiU3MHXuvBN3YvGaI485mnEiIiIyYDQDIiLHZNu6tax44J6M4AMg3lDHigfuYdu6Ezi7EBs1sONERERkwCgAEZGj5vseq5Y93OeY1csfPnHLsSbMC6pdYfUywILCymCciIiIZJUCEBE5alVbNnWb+ThcS30dVVs2ZemMDmM7QaldoHsQ0vl4wb3qByIiInICKAARkaMWb2oc0HGDYuYiuOonUDg6c3vhmGC7+oCIiIicEEpCF5GjFisuGdBxg2bmIpi+UJ3QRURETiIKQETkqFXOmEWstLzPZVgFZeVUzpiVxbPqhe3ApItO9FmIiIhIJy3BEpGjZtsOlyy5oc8xFy++AVszDSIiInIYBSAickymzp3HoqV3ECstz9heUFbOoqV3nNg+INnme7Djedjwq+D7ydCMUURE5CSlJVgicsymzp3H5PPmBlWxmhqJFZdQOWPW8Jr52LwCVt6W2Xm9cExQhUuJ7iIiIt0oABGR42LbDuNmzT5hr+/73okLgDavgMeuA0zm9uZ9wXZV2xIREelGAYiIDFnb1q1l1bKHM5LhY6XlXLLkhsFfAuZ7wczH4cEHdG6zYOXtQRWu4TQjJCIicgTKARGRIWnburWseOCebpW44g11rHjgHratWzu4J7Brbeayq24MNFcF40RERCRNAYiIDDm+77Fq2cN9jlm9/GH8wUwGj9cM7DgREZFhQgGIiAw5VVs29dmDBKClvo6qLZsG7yRiowZ2nIiIyDChAEREhpx4U+OAjjsmE+YF1a6wehlgQWFlME5ERETSFICIyMnvsD4bsaKifu0WKy4ZvHOynaDULtA9COl8vOBeJaCLiIgcRlWwROTk1kOfjcqCMcQKZxNvbu11t4KycipnzBrcc5u5KCi122MfkHtVgldERKQHCkBEhhLfC6oqxWuC3IIJ807tv7D30mfDbtnHJQVJVjTP6HXXixffAMCeTW8Obo+QmYuCUrvD6b+LiIjIcVAAIjJUDLeO20foszG1sJ5FedWsqp9FvKE+/UxBWXk6+PjRTX+VnR4htgOTLhrYY4qIiJyiLGNMT/+6yzDQ3NxMUVERBw4coLCw8ESfjvSlt47bXbkGp2LH7R3Pw/LLjzjMv3YFVR0lGbMc219ex4oH7ul1n0VL7xj8RoUiIpIVup8ZepSELnKyO2LHbYKO24PZ8+JE6Gf/DLttP+NmzWbGhR9i3KzZACe+R4iIiIj0SgGIyMluuHbcPsY+GydFjxARERHplQIQkZPdcO24fYx9Nk6KHiEiIiLSKwUgIie74dpx+xj7bPS398eg9ggRERGRXikAETnZDeeO2119NgpHZ24vHBNsn74wo0EhvkfljFnESsv7PGxWeoSIiIhIj1SGV+Rk1zUT8Nh1BEHIocnow6Djdm99Nt76HfzrGd3KEtsL7uOSJTf0WQXr4sU3DHw/EBEREekXleEdxlS2bojpsQ9I5fDsuN2PssTbWspZtezhjIT0rh4hKsErInLq0P3M0KMAZBjT/7BD0HDrhN4T3+s+85HBCpZo3bwBn86qWIPZCV1ERE4o3c8MPVqCJTKUqOP2UZUltiddlO4NIiIiIicHJaGLyNAyXMsSi4iInCIUgIjI0DJcyxKLiIicIhSAiMjQMpzLEouIiJwCFICIyNByjA0KRURE5OSgAEREjorve+zZ9CZbXniWPZvexPe97J/EkRoUDreyxCIiIkOIqmCJSL9tW7e2W2+NWGk5lyw5Ab01emtQqJkPERGRk5r6gAxjqpstR2PburV9dhdftPQONfgTEZGs0/3M0KMlWCJyRL7vsWrZw32OWb384ROzHEtERESGFAUgInJEVVs2ZSy76klLfR1VWzZl6YxERERkqFIAIiJHFG9qHNBxIiIiMnwpABGRI4oVlwzoOBERERm+FICIyBFVzphFrLS8zzEFZeVUzpiVpTMSERGRoUoBiIgckW07XLLkhj7HXLz4BuyhXALX92DH87DhV8F3JdSLiIgMCvUBEZF+mTp3HouW3tGtD0hBWTkXLz4BfUAG0uYVsPI2aH7v4LbCMUHHdTU1FBERGVDqAzKMqW62HAvf94KqWE2NxIpLqJwxa2jPfGxeAY9dBxz+UWgF39RZXUTkpKb7maFHMyAiclRs22HcrNkn+jQGhu8FMx/dgg86t1mw8vag4/pQDrJEREROIsoBEZHha9fazGVX3RhorgrGiYiIyIBQACIiw1e8ZmDHiYiIyBEpABGR4Ss2amDHiYiIyBEpABGR4WvCvKDaVVfCeTcWFFYG40RERGRAKAARkcF3svbYsJ2g1C7QPQjpfLzgXiWgi4iIDCBVwRKRwXWy99iYuSgotdvjOd57cpyjiIjIKUR9QIYx1c2WQTeUemz4XlDtKl4T5HxMmKeZDxGRIUD3M0OPZkBEZHAMtR4btgOTLjrRZyEiInLKUw6IiAwO9dgQERGRHigAEZHBoR4bIiIi0gMFICIyONRjQ0RERHqgAEREBod6bIiIiEgPFICIyODIdo+Nk7XXiIiIiGRQFSwRGTzZ6rFxsvcaERERkTT1ARnGVDdbsmYwe2wMpV4jIiIy4HQ/M/RoBkREBt9g9dgYar1GRERERDkgIjKEqdeIiIjIkKMARESGLvUaERERGXIUgIjI0KVeIyIiIkOOAhARGbrUa0RERGTIUQAiIkNXtnuNiIiIyHFTACIiQ1tXr5HC0ZnbC8eoBK+IiMhJSGV4RWTom7koKLU7WL1GREREZMAoABGRU8Ng9RoRERGRAaUlWCIiIiIikjUKQEREREREJGsUgIiIiIiISNYoABERERERkaxRACIiIiIiIlmjAERERERERLJGAYiIiIiIiGSN+oCIiBwN31PDQxERkeOgAEREpL82r4CVt0Hzewe3FY6BBfcF3dhFRETkiLQES0SkPzavgMeuyww+AJr3Bds3rzgx5yUiIjLEKAARETkS3wtmPjA9PNm5beXtwTgRERHpk5ZgDWPGBDdOzc3NJ/hMRE5yO9fC/qo+BhjYvxc2Pg0T52XttERE5OB9TNd9jZz8LKP/WsPW3r17GTdu3Ik+DREREZHjtmfPHsaOHXuiT0P6QQHIMOb7Plu3bmXmzJns2bOHwsLCE31Kp7zm5mbGjRun650FutbZpeudXbre2aNrnV3Hcr2NMbS0tDBmzBhsW9kFQ4GWYA1jtm1TWVkJQGFhoT5Ys0jXO3t0rbNL1zu7dL2zR9c6u472ehcVFQ3i2chAU5goIiIiIiJZowBERERERESyRgHIMBeNRrnzzjuJRqMn+lSGBV3v7NG1zi5d7+zS9c4eXevs0vUeHpSELiIiIiIiWaMZEBERERERyRoFICIiIiIikjUKQEREREREJGsUgIiIiIiISNYoADlF3X333cybN4+8vDyKi4t7HLN7924WLlxIXl4eI0eO5NZbb8V13Ywxa9asYc6cOUSjUaZMmcKyZcu6HefBBx9k4sSJ5OTkMHfuXP70pz8NwjsaWiZOnIhlWRlf9957b8aYN998k4suuoicnBzGjRvHN7/5zW7H+eUvf8n06dPJycnhzDPP5Mknn8zWWxjy9Ht5/P7pn/6p2+/x9OnT0893dHRw0003UVZWRiwW45Of/CQ1NTUZx+jP58xw9dxzz/Fnf/ZnjBkzBsuy+M1vfpPxvDGGr33ta4wePZrc3Fwuu+wytm3bljGmoaGBa665hsLCQoqLi/mrv/or4vF4xpj+fNac6o50rZcsWdLtd33BggUZY3St++8b3/gG5513HgUFBYwcOZJPfOITbN26NWPMQH1+9Oc+RU5CRk5JX/va18wDDzxgli5daoqKiro977quOeOMM8xll11mXn/9dfPkk0+a8vJy8w//8A/pMe+++67Jy8szS5cuNZs3bzb/9m//ZhzHMStXrkyPefTRR00kEjE//vGPzaZNm8zf/M3fmOLiYlNTU5ONt3nSmjBhgrnrrrvMvn370l/xeDz9/IEDB8yoUaPMNddcYzZu3Gh+/vOfm9zcXPPDH/4wPeaFF14wjuOYb37zm2bz5s3mK1/5igmHw2bDhg0n4i0NKfq9HBh33nmnmTVrVsbv8f79+9PPf+5znzPjxo0zzzzzjHnllVfM+9//fjNv3rz08/35nBnOnnzySfOP//iP5vHHHzeA+fWvf53x/L333muKiorMb37zG/PGG2+YRYsWmUmTJpn29vb0mAULFpizzjrLvPTSS+b55583U6ZMMX/5l3+Zfr4/nzXDwZGu9eLFi82CBQsyftcbGhoyxuha99/8+fPNI488YjZu3GjWr19vPv7xj5vx48dn/Ds4EJ8f/blPkZOTApBT3COPPNJjAPLkk08a27ZNdXV1ettDDz1kCgsLTSKRMMYY8+Uvf9nMmjUrY7+rr77azJ8/P/34/PPPNzfddFP6sed5ZsyYMeYb3/jGAL+ToWXChAnmO9/5Tq/Pf//73zclJSXpa22MMbfddpuZNm1a+vFVV11lFi5cmLHf3LlzzWc/+9kBP99TjX4vB8add95pzjrrrB6fa2pqMuFw2Pzyl79Mb9uyZYsBzIsvvmiM6d/njAQOvyn2fd9UVFSYb33rW+ltTU1NJhqNmp///OfGGGM2b95sAPPyyy+nxzz11FPGsixTVVVljOnfZ81w01sAcsUVV/S6j6718amtrTWAefbZZ40xA/f50Z/7FDk5aQnWMPXiiy9y5plnMmrUqPS2+fPn09zczKZNm9JjLrvssoz95s+fz4svvghAMpnk1VdfzRhj2zaXXXZZesxwdu+991JWVsY555zDt771rYxp4xdffJEPfvCDRCKR9Lb58+ezdetWGhsb02P6uv7SM/1eDqxt27YxZswYTjvtNK655hp2794NwKuvvkoqlcq4ztOnT2f8+PHp69yfzxnp2Y4dO6iurs64vkVFRcydOzfj+hYXF/O+970vPeayyy7Dtm3WrVuXHnOkzxoJrFmzhpEjRzJt2jRuvPFG6uvr08/pWh+fAwcOAFBaWgoM3OeH/p0cuhSADFPV1dUZ/1MD6cfV1dV9jmlubqa9vZ26ujo8z+txTNcxhqu//du/5dFHH2X16tV89rOf5Z577uHLX/5y+vnjuf7D/doeiX4vB87cuXNZtmwZK1eu5KGHHmLHjh1cdNFFtLS0UF1dTSQS6ZZjduh17s/vufSs6/r09XtcXV3NyJEjM54PhUKUlpbqv8FRWrBgAT/5yU945plnuO+++3j22Wf52Mc+hud5gK718fB9n5tvvpkLL7yQM844A2DAPj+OdJ8iJ6/QiT4B6b/bb7+d++67r88xW7ZsyUgSlYFzNNd/6dKl6W2zZ88mEonw2c9+lm984xtEo9HBPlWRAfGxj30s/fPs2bOZO3cuEyZM4LHHHiM3N/cEnpnIwPrUpz6V/vnMM89k9uzZTJ48mTVr1nDppZeewDMb+m666SY2btzIH//4xxN9KnISUQAyhNxyyy0sWbKkzzGnnXZav45VUVHRrSpQV/WJioqK9PfDK1LU1NRQWFhIbm4ujuPgOE6PY7qOcSo5nus/d+5cXNdl586dTJs2rddrC0e+/qfitR1I5eXlw+r3MpuKi4s5/fTTeeedd/jIRz5CMpmkqakp46+Yh17n/nzOSM+6rk9NTQ2jR49Ob6+pqeHss89Oj6mtrc3Yz3VdGhoajvg5cuhrSHennXYa5eXlvPPOO1x66aW61sfoC1/4Ak888QTPPfccY8eOTW+vqKgYkM+PI92nyMlLS7CGkBEjRjB9+vQ+vw5de9qXCy64gA0bNmR8oD799NMUFhYyc+bM9JhnnnkmY7+nn36aCy64AIBIJMK5556bMcb3fZ555pn0mFPJ8Vz/9evXY9t2egr/ggsu4LnnniOVSqXHPP3000ybNo2SkpL0mL6uv/RsuP1eZlM8Hmf79u2MHj2ac889l3A4nHGdt27dyu7du9PXuT+fM9KzSZMmUVFRkXF9m5ubWbduXcb1bWpq4tVXX02PWbVqFb7vM3fu3PSYI33WSHd79+6lvr4+HfzpWh8dYwxf+MIX+PWvf82qVauYNGlSxvMD9fmhfyeHsBOdBS+DY9euXeb11183X//6100sFjOvv/66ef31101LS4sx5mB5u49+9KNm/fr1ZuXKlWbEiBE9lre79dZbzZYtW8yDDz7YYxneaDRqli1bZjZv3mxuuOEGU1xcnFG1YrhZu3at+c53vmPWr19vtm/fbv7zP//TjBgxwlx33XXpMU1NTWbUqFHm2muvNRs3bjSPPvqoycvL61aGNxQKmfvvv99s2bLF3HnnnSrD20/6vRwYt9xyi1mzZo3ZsWOHeeGFF8xll11mysvLTW1trTEmKKM5fvx4s2rVKvPKK6+YCy64wFxwwQXp/fvzOTOctbS0pD+bAfPAAw+Y119/3ezatcsYE5ThLS4uNr/97W/Nm2++aa644ooey/Cec845Zt26deaPf/yjmTp1akZp2P581gwHfV3rlpYW8/d///fmxRdfNDt27DB/+MMfzJw5c8zUqVNNR0dH+hi61v134403mqKiIrNmzZqM0sZtbW3pMQPx+dGf+xQ5OSkAOUUtXrzYAN2+Vq9enR6zc+dO87GPfczk5uaa8vJyc8stt5hUKpVxnNWrV5uzzz7bRCIRc9ppp5lHHnmk22v927/9mxk/fryJRCLm/PPPNy+99NIgv7uT26uvvmrmzp1rioqKTE5OjpkxY4a55557Mv4hM8aYN954w3zgAx8w0WjUVFZWmnvvvbfbsR577DFz+umnm0gkYmbNmmV+97vfZettDHn6vTx+V199tRk9erSJRCKmsrLSXH311eadd95JP9/e3m4+//nPm5KSEpOXl2f+/M//3Ozbty/jGP35nBmuVq9e3ePn9OLFi40xQSner371q2bUqFEmGo2aSy+91GzdujXjGPX19eYv//IvTSwWM4WFheb6669P/6GpS38+a051fV3rtrY289GPftSMGDHChMNhM2HCBPM3f/M33f5goWvdfz1dayDjHmKgPj/6c58iJx/LGGOyOOEiIiIiIiLDmHJAREREREQkaxSAiIiIiIhI1igAERERERGRrFEAIiIiIiIiWaMAREREREREskYBiIiIiIiIZI0CEBERERERyRoFICIiIiIikjUKQEREsmDJkiVYlsXnPve5bs/ddNNNWJbFkiVLuo23LItwOMyoUaP4yEc+wo9//GN838/Y/4033mDRokWMHDmSnJwcJk6cyNVXX01tbe1gv61T2sSJE/nXf/3XI457+OGH+fCHP0xhYSGWZdHU1DTo5yYiMpQpABERyZJx48bx6KOP0t7ent7W0dHBz372M8aPH99t/IIFC9i3bx87d+7kqaee4uKLL+bv/u7vuPzyy3FdF4D9+/dz6aWXUlpayu9//3u2bNnCI488wpgxY2htbc3aexvO2traWLBgAXfccceJPhURkSFBAYiISJbMmTOHcePG8fjjj6e3Pf7444wfP55zzjmn2/hoNEpFRQWVlZXMmTOHO+64g9/+9rc89dRTLFu2DIAXXniBAwcO8O///u+cc845TJo0iYsvvpjvfOc7TJo0qddzSSQS3HbbbYwbN45oNMqUKVP4j//4j/Tzzz77LOeffz7RaJTRo0dz++23p4MegA9/+MN88Ytf5Oabb6akpIRRo0bxox/9iNbWVq6//noKCgqYMmUKTz31VHqfNWvWYFkWv/vd75g9ezY5OTm8//3vZ+PGjRnn9t///d/MmjWLaDTKxIkT+fa3v53x/MSJE7nnnnv4zGc+Q0FBAePHj+fhhx/OGLNnzx6uuuoqiouLKS0t5YorrmDnzp3p55csWcInPvEJ7r//fkaPHk1ZWRk33XQTqVQq/f527drFl770pfRMVG9uvvlmbr/9dt7//vf3OkZERA5SACIikkWf+cxneOSRR9KPf/zjH3P99df3e/9LLrmEs846Kx3EVFRU4Louv/71rzHG9Ps41113HT//+c/57ne/y5YtW/jhD39ILBYDoKqqio9//OOcd955vPHGGzz00EP8x3/8B//yL/+ScYzly5dTXl7On/70J774xS9y4403cuWVVzJv3jxee+01PvrRj3LttdfS1taWsd+tt97Kt7/9bV5++WVGjBjBn/3Zn6Vv/F999VWuuuoqPvWpT7Fhwwb+6Z/+ia9+9avpgKvLt7/9bd73vvfx+uuv8/nPf54bb7yRrVu3ApBKpZg/fz4FBQU8//zzvPDCC8RiMRYsWEAymUwfY/Xq1Wzfvp3Vq1ezfPlyli1bln6dxx9/nLFjx3LXXXexb98+9u3b1+9rKyIiR2BERGTQLV682FxxxRWmtrbWRKNRs3PnTrNz506Tk5Nj9u/fb6644gqzePHibuN7cvXVV5sZM2akH99xxx0mFAqZ0tJSs2DBAvPNb37TVFdX93ouW7duNYB5+umne3z+jjvuMNOmTTO+76e3PfjggyYWixnP84wxxnzoQx8yH/jAB9LPu65r8vPzzbXXXpvetm/fPgOYF1980RhjzOrVqw1gHn300fSY+vp6k5uba37xi18YY4z5v//3/5qPfOQjGedz6623mpkzZ6YfT5gwwXz6059OP/Z934wcOdI89NBDxhhjfvrTn3Y7/0QiYXJzc83vf/97Y0xwfSdMmGBc102PufLKK83VV1+d8Trf+c53erxGPel6f42Njf3eR0RkONIMiIhIFo0YMYKFCxeybNkyHnnkERYuXEh5eflRHcMYk7Ek6O6776a6upof/OAHzJo1ix/84AdMnz6dDRs29Lj/+vXrcRyHD33oQz0+v2XLFi644IKM17jwwguJx+Ps3bs3vW327Nnpnx3HoaysjDPPPDO9bdSoUQDdkuEvuOCC9M+lpaVMmzaNLVu2pF/7wgsvzBh/4YUXsm3bNjzP6/G1LcuioqIi/TpvvPEG77zzDgUFBcRiMWKxGKWlpXR0dLB9+/b0frNmzcJxnPTj0aNHK3FfRCQLQif6BEREhpvPfOYzfOELXwDgwQcfPOr9t2zZ0i2/o6ysjCuvvJIrr7ySe+65h3POOYf777+f5cuXd9s/Nzf32E78MOFwOONxV8WuQx8D3ap2DdZrd71OPB7n3HPP5b/+67+67TdixIh+HUNERAaPZkBERLKsKxehK1fhaKxatYoNGzbwyU9+stcxkUiEyZMn91oF68wzz8T3fZ599tken58xYwYvvvhiRk7JCy+8QEFBAWPHjj2q8+3JSy+9lP65sbGRt99+mxkzZqRf+4UXXsgY/8ILL3D66adnzFb0Zc6cOWzbto2RI0cyZcqUjK+ioqJ+n2ckEsmYdRERkYGhAEREJMscx2HLli1s3ry5z5vqRCJBdXU1VVVVvPbaa9xzzz1cccUVXH755Vx33XUAPPHEE3z605/miSee4O2332br1q3cf//9PPnkk1xxxRU9HnfixIksXryYz3zmM/zmN79hx44drFmzhsceewyAz3/+8+zZs4cvfvGLvPXWW/z2t7/lzjvvZOnSpdj28f+zcdddd/HMM8+wceNGlixZQnl5OZ/4xCcAuOWWW3jmmWf453/+Z95++22WL1/O9773Pf7+7/++38e/5pprKC8v54orruD5559Pv7+//du/zVhCdiQTJ07kueeeo6qqirq6ul7HVVdXs379et555x0ANmzYwPr162loaOj3a4mIDCdagiUicgIUFhYecczKlSsZPXo0oVCIkpISzjrrLL773e+yePHidCAwc+ZM8vLyuOWWW9izZw/RaJSpU6fy7//+71x77bW9Hvuhhx7ijjvu4POf/zz19fWMHz8+3ceisrKSJ598kltvvZWzzjqL0tJS/uqv/oqvfOUrA/Le7733Xv7u7/6Obdu2cfbZZ/M///M/RCIRIJi9eOyxx/ja177GP//zPzN69GjuuuuujCaNR5KXl8dzzz3Hbbfdxl/8xV/Q0tJCZWUll156ab+ue5e77rqLz372s0yePJlEItFrlbEf/OAHfP3rX08//uAHPwjAI488clTnLSIyXFimt09UERGRAbRmzRouvvhiGhsbKS4uPtGnIyIiJ4iWYImIiIiISNYoABERERERkazREiwREREREckazYCIiIiIiEjWKAAREREREZGsUQAiIiIiIiJZowBERERERESyRgGIiIiIiIhkjQIQERERERHJGgUgIiIiIiKSNQpAREREREQkaxSAiIiIiIhI1igAERERERGRrFEAIiIiIiIiWaMAREREREREskYBiIiIiIiIZI0CEBERERERyRoFICIiIiIikjUKQEREREREJGsUgIiIiIiISNYoABERERERkaxRACIiIiIiIlmjAERERERERLJGAYiIiIiIiGSNAhAREREREckaBSAiIiIiIpI1CkBERERERCRrFICIiIiIiEjWKAAREREREZGsUQAiIiIiIiJZowBERERERESyRgGIiIiIiIhkjQIQERERERHJGgUgIiIiIiKSNQpAREREREQkaxSAiIiIiIhI1igAERERERGRrFEAIiIiIiIiWaMAREREREREskYBiIiIiIiIZI0CEBERERERyRoFICIiIiIikjUKQEREREREJGsUgIiIiIiISNYoABERERERkaxRACIiIiIiIlmjAERERERERLLm/wMT1KpE3jyp0wAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label: 1\n", + "Epsilon: 0.11154326813785193 \tMinPts: 7\n", + "Clusters: {-1.0: 32, 1.0: 154, 2.0: 11, 3.0: 4, 4.0: 8, 5.0: 8}\n", + "No. of clusters: 5\n", + "Noise points: 32\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2983666d8a5c4e1788d25bb556891755", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADS7klEQVR4nOzdeVxUVf8H8M/MyCI7yCoSImIK7qa4ZpgKadpii7a4pj2WWlnPz7JMzZJ8KrOsx+2ptCy1Pc3E3UolrZBMxUJyRRAFAYFEnbm/P6YZGWbf7p3l8369eBV3ztx7ZhjwfO855/uVCYIggIiIiIiISARyqTtARERERETegwEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIERERERGJhgEIEbmsEydOQCaTYeXKlVJ3xWPNmTMHMplM6m7YpGXLlhg7dqzU3SAiIisxACFyoJUrV0Imk2m//P390bx5c2RmZuLtt9/GpUuX9J6jGQBqvuRyOeLi4nD77bfjp59+0mv/+++/45577kFiYiL8/f0RHx+PQYMGYfHixXptlUolPvjgA9xyyy2IiIiAn58fWrZsiXHjxuGXX34x+Br++9//QiaTIT093ejr1PT1jTfeMPoeGDu/Kzly5AjmzJmDEydOSN0Vj/Xdd99hzpw5UnfDofbu3Ys5c+agsrLSoefdvn07xo8fjzZt2iAgIACtWrXCI488gpKSEovP0fBvSZMmTRAREYFu3brhiSeewJEjRyw+T8uWLSGTyTBw4ECDj69YsUJ7nYa/643/ngUEBOCGG27AsGHD8MEHH6C+vt7g+TZs2ID+/fsjOjpa+9rvu+8+5OTkWNxnInIfDECInOCll17CRx99hCVLlmDq1KkAgCeffBIdOnTAwYMHDT5nyZIl+Oijj7By5UpMmTIFhw4dws0334z8/Hxtm7179+Kmm27Cb7/9hokTJ+Kdd97BI488ArlcjrfeekvnfH///Tduv/12jB8/HoIgYObMmViyZAlGjx6N3Nxc9OjRA2fOnNHrx8cff4yWLVti//79OHbsmMnX+dprr6Gurs7Kd8d1HDlyBHPnzvXqAOSFF17A33//7bTzf/fdd5g7d67Tzi+FvXv3Yu7cuQ4PQGbMmIFdu3bhrrvuwttvv42RI0fi008/RZcuXVBaWmrxeQYNGoSPPvoIH3zwAV566SV07doVq1atQqdOnbBw4UKLz+Pv74+dO3cavPbHH38Mf39/o8/V/D1bvHgxHnnkEVRUVGD8+PHo0aMHTp8+rdP29ddfx/DhwyGTyfDcc8/hzTffxIgRI1BYWIi1a9da3F8iciMCETnMBx98IAAQfv75Z73Htm/fLjRt2lRITEwU6urqtMdnz54tABDOnz+v0/7QoUMCAGHmzJnaY0OGDBGioqKEixcv6p3/3LlzOt8//vjjAgDhzTff1Gt77do14bXXXhNOnz6tc/yvv/4SAAhffvmlEBUVJcyZM8fg6wQgdO7cWQAgvPHGGxa/B9Y6fvy4AED44IMP7D6XIZ999pkAQNi5c6dDz1tTU+PQ81nj77//FpRKpWTXb0zzOXSGxMREYcyYMU45tymvvfaaAEA4fvy4Q8/7/fff6/3svv/+ewGA8Pzzz1t0DgDC448/rnf8woULQq9evQQAwsaNG82eJzExUbj11luFkJAQYdGiRTqPnT59WpDL5cKIESP0fteN/T0TBEFYvXq1IJfLhfT0dO2xq1evCiEhIcKgQYMM9qPx3zUi8gycASESyYABAzBr1iycPHkSq1evNts+NjYWANCkSRPtsaKiIqSlpSEsLEyvfXR0tPb/z5w5g2XLlmHQoEF48skn9doqFAo888wzaNGihc7xjz/+GOHh4Rg6dCjuuecefPzxx0b716dPHwwYMAD/+c9/bL6DXllZiaeeegotW7aEn58fWrRogdGjR+PChQtGn3PLLbfglltu0Ts+duxYtGzZUufY2rVr0a1bNwQHByMkJAQdOnTQzhStXLkS9957LwAgIyNDu2Rk165d2udv2rQJ/fr1Q2BgIIKDgzF06FAcPnxY77pBQUEoKirCkCFDEBwcjAcffBAAUFhYiBEjRiA2Nhb+/v5o0aIFRo4ciaqqKpPvyy233IL27dvj119/Re/evdG0aVMkJSVh6dKlOu127doFmUyGtWvX4oUXXkB8fDwCAgJQXV0NAPjss8/QrVs3NG3aFJGRkXjooYdQXFyscw5je0BWr16tfW5ERARGjhypd+caAPbt24chQ4YgPDwcgYGB6Nixo/Y9Hjt2LN59910AukuDNFQqFRYtWoS0tDT4+/sjJiYGjz76KC5evKhzDUEQ8PLLL6NFixYICAhARkaG3s/BlNraWjz99NNISEiAn58fbrzxRrz++usQBEGnnUwmw5QpU/D111+jffv28PPzQ1pams4yoDlz5uDf//43ACApKUn7mjSzaNeuXcO8efOQnJysXfI4c+ZMo0uPGrr55pshl8v1jkVERKCgoMDi12tIs2bNsHbtWjRp0gSvvPKKRc/x9/fH3XffjU8++UTn+Jo1axAeHo7MzEyr+vDggw/ikUcewb59+7B161YAwIULF1BdXY0+ffoYfE7Dv2vGbN26FX379kVYWBiCgoJw4403YubMmdrHNb8n69atw8yZMxEbG4vAwEAMHz5c7zP9448/4t5778UNN9wAPz8/JCQk4KmnnjL4N+7o0aO47777EBUVhaZNm+LGG2/E888/r9OmuLgY48ePR0xMjPbz9P7775t9TUSeron5JkTkKA8//DBmzpyJLVu2YOLEiTqPVVRUAFAPyoqLizFv3jz4+/vjvvvu07ZJTExEbm4uDh06hPbt2xu9zqZNm3Dt2jU8/PDDVvXv448/xt133w1fX1+MGjUKS5Yswc8//4zu3bsbbD9nzhzcfPPNWLJkCaZPn27VtWpqatCvXz8UFBRg/Pjx6Nq1Ky5cuID169fjzJkziIyMtOp8jW3duhWjRo3CrbfeigULFgAACgoKsGfPHjzxxBO4+eabMW3aNLz99tuYOXMm2rVrBwDa/3700UcYM2YMMjMzsWDBAtTV1WHJkiXo27cvDhw4oBPsXLt2DZmZmejbty9ef/11BAQE4MqVK8jMzER9fT2mTp2K2NhYFBcX49tvv0VlZSVCQ0NN9v/ixYsYMmQI7rvvPowaNQqffvopJk+eDF9fX4wfP16n7bx58+Dr64tnnnkG9fX18PX1xcqVKzFu3Dh0794d2dnZOHfuHN566y3s2bMHBw4cMBjEarzyyiuYNWsW7rvvPjzyyCM4f/48Fi9ejJtvvlnnuVu3bsXtt9+OuLg4PPHEE4iNjUVBQQG+/fZbPPHEE3j00Udx9uxZbN26FR999JHedR599FFtP6dNm4bjx4/jnXfewYEDB7Bnzx74+PgAAF588UW8/PLLGDJkCIYMGYK8vDwMHjwYV65cMfkeAurgZfjw4di5cycmTJiAzp07Y/Pmzfj3v/+N4uJivPnmmzrtd+/ejS+//BKPPfYYgoOD8fbbb2PEiBE4deoUmjVrhrvvvht//vkn1qxZgzfffFP7OY2KigIAPPLII1i1ahXuuecePP3009i3bx+ys7NRUFCAr776ymx/G6upqUFNTY3dvw8AcMMNN6B///7YuXMnqqurERISYvY5DzzwAAYPHoyioiIkJycDAD755BPcc8892p+PNR5++GEsX74cW7ZswaBBgxAdHY2mTZtiw4YNmDp1KiIiIqw63+HDh3H77bejY8eOeOmll+Dn54djx45hz549em1feeUVyGQyzJgxA2VlZVi0aBEGDhyI/Px8NG3aFIA6aK+rq8PkyZPRrFkz7N+/H4sXL8aZM2fw2Wefac918OBB9OvXDz4+Ppg0aRJatmyJoqIibNiwQRvgnTt3Dj179tQGtlFRUdi0aRMmTJiA6upqgzeHiLyGxDMwRB7FkuVHoaGhQpcuXbTfa5YsNP4KCwsTcnJydJ67ZcsWQaFQCAqFQujVq5fwf//3f8LmzZuFK1eu6LR76qmnBADCgQMHLO77L7/8IgAQtm7dKgiCIKhUKqFFixbCE088odcWDZZ5ZGRkCLGxsdplZZYuwXrxxRe1y70aU6lUgiAYXoLVv39/oX///nrPGTNmjJCYmKj9/oknnhBCQkKEa9euGe2DsSVYly5dEsLCwoSJEyfqHC8tLRVCQ0N1jo8ZM0YAIDz77LM6bQ8cOCAAED777DOj1zemf//+esvb6uvrhc6dOwvR0dHan/fOnTsFAEKrVq10lvVduXJFiI6OFtq3by/8/fff2uPffvutAEB48cUXtcc0nz+NEydOCAqFQnjllVd0+vT7778LTZo00R6/du2akJSUJCQmJuotCdT8/ATB+BKsH3/8UQAgfPzxxzrHc3JydI6XlZUJvr6+wtChQ3XOO3PmTAGA2SVYX3/9tQBAePnll3WO33PPPYJMJhOOHTumPQZA8PX11Tn222+/CQCExYsXa48ZW4KVn58vABAeeeQRnePPPPOMAEDYsWOHyb4aMm/ePAGAsH37dovaN/zdNOSJJ54QAAi//fabyfMkJiYKQ4cOFa5duybExsYK8+bNEwRBEI4cOSIAEL7//nuDv+umlmAJgiBcvHhRACDcdddd2mOavwWBgYHCbbfdJrzyyivCr7/+atHrffPNN01eTxCu/57Ex8cL1dXV2uOffvqpAEB46623tMca/h5pZGdnCzKZTDh58qT22M033ywEBwfrHBME3c/+hAkThLi4OOHChQs6bUaOHCmEhoYavBaRt+ASLCKRBQUFGcyG9cUXX2Dr1q3YsmULPvjgA7Rp0wYjRozA3r17tW0GDRqE3NxcDB8+HL/99hv+85//IDMzE/Hx8Vi/fr22nWYJTnBwsMX9+vjjjxETE4OMjAwA6uUo999/P9auXQulUmn0eXPmzEFpaane8iBzvvjiC3Tq1Al33XWX3mOOSAsbFhaG2tpa7VIPa2zduhWVlZUYNWoULly4oP1SKBRIT0/Hzp079Z4zefJkne81MxybN2+2aaN+kyZN8Oijj2q/9/X1xaOPPoqysjL8+uuvOm3HjBmjvYMLAL/88gvKysrw2GOP6WwUHjp0KNq2bYuNGzcave6XX34JlUqF++67T+e1x8bGIiUlRfvaDxw4gOPHj+PJJ5/Um02x5Of32WefITQ0FIMGDdK5Trdu3RAUFKS9zrZt23DlyhVMnTpV57yW3j3+7rvvoFAoMG3aNJ3jTz/9NARBwKZNm3SODxw4UHunHwA6duyIkJAQ/PXXXxZdC4DebODTTz8NACbfd0N++OEHzJ07F/fddx8GDBhg1XONCQoKAgCDf4MMUSgUuO+++7BmzRoA6r8TCQkJ6Nevn8OuP3fuXHzyySfo0qULNm/ejOeffx7dunVD165dzS4903z2vvnmG6hUKpNtR48erfM38Z577kFcXJz25wZA5/eotrYWFy5cQO/evSEIAg4cOAAAOH/+PH744QeMHz8eN9xwg841NJ9RQRDwxRdfYNiwYRAEQecznpmZiaqqKuTl5ZnsL5EnYwBCJLKamhqDgcHNN9+MgQMHYtCgQRg7diy2b9+O4OBgbRYtje7du+PLL7/ExYsXsX//fjz33HO4dOkS7rnnHm2aTc3SCksHGUqlEmvXrkVGRgaOHz+OY8eO4dixY0hPT8e5c+ewfft2o8+9+eabkZGRYfVekKKiIpPLyOz12GOPoU2bNrjtttvQokULjB8/3uKUnoWFhQDU+3aioqJ0vrZs2YKysjKd9k2aNNHbT5OUlITp06fjf//7HyIjI5GZmYl3333X7P4PjebNmyMwMFDnWJs2bQBAL2tXUlKSzvcnT54EANx44416523btq32cUMKCwshCAJSUlL0XntBQYH2tRcVFQGAzT/DwsJCVFVVITo6Wu86NTU12uto+pqSkqLz/KioKISHh5u9zsmTJ9G8eXO93znNUrvG70XjASUAhIeH6+1LMXYtuVyO1q1b6xyPjY1FWFiYyfe9saNHj+Kuu+5C+/bt8b///U/nsYqKCpSWlmq/LP1MAeq/P4B1NyceeOABHDlyBL/99hs++eQTjBw50uabBMauP2rUKPz444+4ePEitmzZggceeAAHDhzAsGHDcPnyZaPnu//++9GnTx888sgjiImJ0WYOMxSMNP4MyWQytG7dWuf36dSpUxg7diwiIiIQFBSEqKgo9O/fHwC077MmGDX12T9//jwqKyuxfPlyvc/3uHHjAEDv7wiRN+EeECIRnTlzBlVVVXoDFEOCgoKQnp6Ob775BrW1tXqDUV9fX3Tv3h3du3dHmzZtMG7cOHz22WeYPXs22rZtC0BdM6Rz585mr7Vjxw6UlJRg7dq1BtNefvzxxxg8eLDR58+ePRu33HILli1bZnJvgSPIZDK9zcMA9GZpoqOjkZ+fj82bN2PTpk3YtGkTPvjgA4wePRqrVq0yeQ3N4OWjjz7SJgNoqGFiAADw8/PT2zwMAG+88QbGjh2Lb775Blu2bMG0adOQnZ2Nn376SS9gsUfDu7b2UqlUkMlk2LRpExQKhd7jmjvYjrhOdHS00UQHmj0VYjP0mgEY/MwZY+8M3unTpzF48GCEhobiu+++0xus33333fj++++1348ZM8biYp2HDh2CQqHQC1pNSU9PR3JyMp588kkcP34cDzzwgMXPNXR9AEb/BoaEhGDQoEEYNGgQfHx8sGrVKuzbt08bBDTWtGlT/PDDD9i5cyc2btyInJwcrFu3DgMGDMCWLVuM/jwNUSqVGDRoECoqKjBjxgy0bdsWgYGBKC4uxtixY83OsDSkafvQQw9hzJgxBtt07NjR4vMReRoGIEQi0mzEtTR7zLVr1wCo7xo2DkAauummmwBAW7Dstttug0KhwOrVqy3aiP7xxx8jOjpam7GooS+//BJfffUVli5danSg279/f9xyyy1YsGABXnzxRbPXA4Dk5GTtYMQa4eHhBpfDGLq77Ovri2HDhmHYsGFQqVR47LHHsGzZMsyaNQutW7c2OlDULMGJjo42WojNUh06dECHDh3wwgsvYO/evejTpw+WLl2Kl19+2eTzzp49qxd4/vnnnwCgl+2rscTERADAH3/8obd0548//tA+bkhycjIEQUBSUpJ2xsVYO0A9oDT1Hpl6j7dt24Y+ffqYDKA0fS0sLESrVq20x8+fP2/RrERiYiK2bduGS5cu6Qzkjx49qnN+axh7TYmJiVCpVCgsLNTOsADqzciVlZUWXau8vByDBw9GfX09tm/fjri4OL02b7zxhs5rb968uUX9PnXqFL7//nv06tXLqhkQQD1D8fLLL6Ndu3YW3dQwxpq/gTfddBNWrVplthCjXC7HrbfeiltvvRULFy7E/Pnz8fzzz2Pnzp06n03NzKaGIAg4duyYNhD4/fff8eeff2LVqlUYPXq0tl3jZZyaz6Gpv19RUVEIDg6GUqm0+28IkSfiEiwikezYsQPz5s1DUlKSNk2rKRUVFdi7dy9iY2O1qSh37txp8E6sZg2zZslNQkICJk6ciC1bthiskK5SqfDGG2/gzJkz+Pvvv/Hll1/i9ttvxz333KP3NWXKFFy6dElnj4khmr0gy5cvN/vaAGDEiBH47bffDGYGMnW3OTk5GUePHsX58+e1x3777Te9rDfl5eU638vlcu1AQ5MSVTO4b1xQLjMzEyEhIZg/fz6uXr2q14eG1zamurpaG0BqdOjQAXK53KKUrNeuXcOyZcu031+5cgXLli1DVFQUunXrZvK5N910E6Kjo7F06VKda23atAkFBQUYOnSo0efefffdUCgUmDt3rt7PQRAE7fvatWtXJCUlYdGiRXrvX8PnGXuP77vvPiiVSsybN8/ga9e0HzhwIHx8fLB48WKd8y5atMjoa2hoyJAhUCqVeOedd3SOv/nmm5DJZLjtttssOk9Dxl7TkCFDDPZNU/zP1PsOqPccDBkyBMXFxfjuu+/0lgxpdOvWDQMHDtR+paammu1zRUUFRo0aBaVSqZcq1hKPPPIIZs+ejTfeeMPq52p88skn+N///odevXrh1ltvBQDU1dUhNzfXYHvN/hxDSwk1NNkDG9IESI1/zz788EOdZamff/45SkpKtJ8BzWxJw8+ZIAh6RV6joqJw88034/3338epU6d0HtM8V6FQYMSIEfjiiy8MBiqW/A0h8mScASFygk2bNuHo0aO4du0azp07hx07dmDr1q1ITEzE+vXrDVYQ/vzzzxEUFARBEHD27Fm89957uHjxIpYuXaq94zp16lTU1dXhrrvuQtu2bXHlyhXs3bsX69atQ8uWLbVriwH1XdKioiJMmzZNG2CEh4fj1KlT+Oyzz3D06FGMHDkS69evx6VLlzB8+HCDr6Vnz56IiorCxx9/jPvvv9/oa+7fvz/69++vszTElH//+9/4/PPPce+992L8+PHo1q0bKioqsH79eixduhSdOnUy+Lzx48dj4cKFyMzMxIQJE1BWVoalS5ciLS1Nu/kegLb68oABA9CiRQucPHkSixcvRufOnbV3pzt37gyFQoEFCxagqqoKfn5+GDBgAKKjo7FkyRI8/PDD6Nq1K0aOHImoqCicOnUKGzduRJ8+ffQGtI3t2LEDU6ZMwb333os2bdrg2rVr+Oijj7QDE3OaN2+OBQsW4MSJE2jTpg3WrVuH/Px8LF++3Gz6Ux8fHyxYsADjxo1D//79MWrUKG0a3pYtW+Kpp54y+tzk5GS8/PLLeO6553DixAnceeedCA4OxvHjx/HVV19h0qRJeOaZZyCXy7FkyRIMGzYMnTt3xrhx4xAXF4ejR4/i8OHD2Lx5MwBog6Vp06YhMzMTCoUCI0eORP/+/fHoo48iOzsb+fn5GDx4MHx8fFBYWIjPPvsMb731Fu655x5ERUXhmWeeQXZ2Nm6//XYMGTIEBw4cwKZNmyxKTTts2DBkZGTg+eefx4kTJ9CpUyds2bIF33zzDZ588kmdDeeW0rym559/HiNHjoSPjw+GDRuGTp06YcyYMVi+fDkqKyvRv39/7N+/H6tWrcKdd96pTfBgzIMPPoj9+/dj/PjxKCgo0NmAHRQUhDvvvNOi/v35559YvXo1BEFAdXU1fvvtN3z22WeoqanBwoULkZWVZfVrTkxMxJw5cyxur/l7duXKFRQXF2Pz5s3Ys2cPOnXqpJPOtq6uDr1790bPnj2RlZWFhIQEVFZW4uuvv8aPP/6IO++8E126dDF6nZdeegk//PADhg4disTERJSVleG///0vWrRogb59++q0jYiIQN++fTFu3DicO3cOixYtQuvWrbUp0du2bYvk5GQ888wzKC4uRkhICL744guDM21vv/02+vbti65du2LSpElISkrCiRMnsHHjRuTn5wMAXn31VezcuRPp6emYOHEiUlNTUVFRgby8PGzbts1g8ETkNcRNukXk2TRpKTVfvr6+QmxsrDBo0CDhrbfe0kkBqWEoDW9gYKDQq1cv4dNPP9Vpu2nTJmH8+PFC27ZthaCgIMHX11do3bq1MHXqVIMVg69duyb873//E/r16yeEhoYKPj4+QmJiojBu3Dhtit5hw4YJ/v7+Qm1trdHXNXbsWMHHx0ebThJGUn1q0l3Cwkro5eXlwpQpU4T4+HjB19dXaNGihTBmzBjtdYxVQl+9erXQqlUrwdfXV+jcubOwefNmvTS8n3/+uTB48GAhOjpa8PX1FW644Qbh0UcfFUpKSnTOtWLFCqFVq1aCQqHQS8m7c+dOITMzUwgNDRX8/f2F5ORkYezYscIvv/yibTNmzBghMDBQ77X99ddfwvjx44Xk5GTB399fiIiIEDIyMoRt27aZfV/69+8vpKWlCb/88ovQq1cvwd/fX0hMTBTeeecdnXaa99tYqt9169YJXbp0Efz8/ISIiAjhwQcfFM6cOaPTpnEaXo0vvvhC6Nu3rxAYGCgEBgYKbdu2FR5//HHhjz/+0Gm3e/duYdCgQUJwcLAQGBgodOzYUSdl7bVr14SpU6cKUVFRgkwm07vW8uXLhW7duglNmzYVgoODhQ4dOgj/93//J5w9e1bbRqlUCnPnzhXi4uKEpk2bCrfccotw6NAhiyuhX7p0SXjqqaeE5s2bCz4+PkJKSorw2muv6aRMFQTjn2tD15k3b54QHx8vyOVynZS8V69eFebOnSskJSUJPj4+QkJCgvDcc88Jly9fNtvPxMREgym5Aeh8tk1p+By5XC6EhYUJXbp0EZ544gnh8OHDFp1D05ehQ4eabGMqDa/my9/fX2jRooVw++23C++//77e+3D16lVhxYoVwp133ikkJiYKfn5+QkBAgNClSxfhtddeE+rr6032Yfv27cIdd9whNG/eXPD19RWaN28ujBo1Svjzzz+1bTS/J2vWrBGee+45ITo6WmjatKkwdOhQvTS6R44cEQYOHCgEBQUJkZGRwsSJE7WpmBv/HTp06JBw1113CWFhYYK/v79w4403CrNmzdJpc+7cOeHxxx8XEhISBB8fHyE2Nla49dZbheXLl5t8XUSeTiYIVuysIyIip7vllltw4cIFm/bIWGvWrFnIzs7WWy5G5Cl27dqFjIwMfPbZZ7jnnnuk7g4RgXtAiIi8WklJiUOqbBMREVmKe0CIiLzQX3/9ha+++gqfffYZbr/9dqm7Q0REXoQzIEREXkhTZbt///7aLE1ERERi4B4QIiIiIiISDWdAiIiIiIhINAxAiIiIiIhINNyE7kJUKhXOnj2L4OBgbeE5IiIiInIdgiDg0qVLaN68OeRy3su3BQMQF3L27FkkJCRI3Q0iIiIiMuP06dNo0aKF1N1wSwxAXEhwcDAA9Qc6JCRE4t4QERERUWPV1dVISEjQjtvIegxAXIhm2VVISAgDECIiIiIXxuXytuPCNSIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEg0DECIiIiIiEo3XBiDvvvsuWrZsCX9/f6Snp2P//v1G2x4+fBgjRoxAy5YtIZPJsGjRIr02c+bMgUwm0/lq27atE18BEREREZH78coAZN26dZg+fTpmz56NvLw8dOrUCZmZmSgrKzPYvq6uDq1atcKrr76K2NhYo+dNS0tDSUmJ9mv37t3OeglERERERG7JKwOQhQsXYuLEiRg3bhxSU1OxdOlSBAQE4P333zfYvnv37njttdcwcuRI+Pn5GT1vkyZNEBsbq/2KjIx01ksgIiIiInJLXheAXLlyBb/++isGDhyoPSaXyzFw4EDk5ubade7CwkI0b94crVq1woMPPohTp07Z210icmNKlYDconJ8k1+M3KJyKFWC1F0iIiKSXBOpOyC2CxcuQKlUIiYmRud4TEwMjh49avN509PTsXLlStx4440oKSnB3Llz0a9fPxw6dAjBwcEGn1NfX4/6+nrt99XV1TZfn4hcS86hEszdcAQlVZe1x+JC/TF7WCqy2sdJ2DMiIiJped0MiLPcdtttuPfee9GxY0dkZmbiu+++Q2VlJT799FOjz8nOzkZoaKj2KyEhQcQeE5Gz5BwqweTVeTrBBwCUVl3G5NV5yDlUIlHPiIiIpOd1AUhkZCQUCgXOnTunc/zcuXMmN5hbKywsDG3atMGxY8eMtnnuuedQVVWl/Tp9+rTDrk9E0lCqBMzdcASGFltpjs3dcITLsYiIyGt5XQDi6+uLbt26Yfv27dpjKpUK27dvR69evRx2nZqaGhQVFSEuzvhSCz8/P4SEhOh8EZF723+8Qm/moyEBQEnVZew/XiFep4iIiFyI1+0BAYDp06djzJgxuOmmm9CjRw8sWrQItbW1GDduHABg9OjRiI+PR3Z2NgD1xvUjR45o/7+4uBj5+fkICgpC69atAQDPPPMMhg0bhsTERJw9exazZ8+GQqHAqFGjpHmRRCSJskvGgw9b2hEREXkarwxA7r//fpw/fx4vvvgiSktL0blzZ+Tk5Gg3pp86dQpy+fXJobNnz6JLly7a719//XW8/vrr6N+/P3bt2gUAOHPmDEaNGoXy8nJERUWhb9+++OmnnxAVFSXqayMiaUUH+zu0nTlKlYD9xytQdukyooP90SMpAgq5zCHnJiIicgaZIAhciOwiqqurERoaiqqqKi7HInJTSpWAvgt2oLTqssF9IDIAsaH+2D1jgN2BAjNtERGJj+M1+3ndHhAiImdSyGWYPSwVgDrYaEjz/exhqQ4JPphpi4iI3BEDECIiB8tqH4clD3VFbKjuMqvYUH8seair3bMTzLRFRETuzCv3gBAROVtW+zgMSo11yv4MazJt9UpuZvf1NLjfhIiIHIEBCBGRkyjkMocGABpSZNrifhMiInIULsEiInIzYmfa4n4TIiJyJAYgRERupkdSBOJC/fU2uWvIoJ6d6JEUYfe1uN+EiIgcjQEIEZGbESvTFsDK7kRE5HgMQIiI3JCzM21psLI7ERE5GjehExG5KWdm2tIQe78JERF5PgYgRERuzFmZtjQ0+03MVXZ3xH4TIiLyDlyCRURERom538RZlCoBuUXl+Ca/GLlF5dwwT0QkMc6AEBF5GEcXDNTsN2lcByTWDeqAsH4JEZHrkQmCwFtBLqK6uhqhoaGoqqpCSEiI1N0hIjfkzAG3u1VC19QvafyPnKbHjtysT0Teg+M1+zEAcSH8QBORPdxtwO3MgEapEtB3wQ6jKYQ1e1d2zxjg0kEUEbkejtfsxyVYREQewFzBQBnUBQMHpca6xIDb2UujrKlf4sxN/O42a0REJAYGIEREHsBVBtyWMDZTU1p1GZNX5zlkpsYV6pdw/wkRkWHMgkVE5AFcYcBtCXMzNYB6psbeTFVS1y/RBFmNg0JNkJVzqMQp1yUicgcMQIiIPIDUA25LWTNTYw9N/RJji51kUM9GOKN+iVhBFhGRu2IAQkTkAS7W1ptt46wBtzXEmqmRsn6JWEEWEZG7YgBCROTmlCoB8zYWmG03a6j0BQPFnKnR1C+JDdU9V2yov1MzgrnLcjgiIqlwEzoRkZszd8ddIzzQV4TemKZZGlVaddngEiVNelxHzdRktY/DoNRYUTNRuctyOCIiqXAGhIjIzbnTHXcplkYp5DL0Sm6GOzrHo1dyM6fPAkm5/4SIyB0wACEicnPudsddqqVRYpFy/wkRkTvgEiwiIjcn9rImR5BiaZSYNEFW4zogsawDQkQEmSAIzAPoIqqrqxEaGoqqqiqEhIRI3R0iciOauhMAdIIQzXDeE2YW3BEroRN5Ho7X7McAxIXwA01E9mDlbSIi5+N4zX5cgkVE5CE8fVkTERF5BgYgREQeRJPxyR1weRIRkXdiAEJERKLjcjEiIu/FNLxERCQqzYb5xsUTS6suY/LqPOQcKjH4PKVKQG5ROb7JL0ZuUTmUKm5hJCJyR5wBISJyYSqVEsUFh1FTeRFBYeGIb5cGuVwhdbdsplQJmLvhiMF0wQLUWbvmbjiCQamxOsuxOGNCROQ5GIAQEbmown17sWPlctRUXNAeC4qIxICxk5CS3lvCntlu//EKvZmPhgQAJVWXsf94hXYvi2bGpHHQopkxYYphIiL3wiVYREQuqHDfXqxfOF8n+ACAmooLWL9wPgr37ZWoZ/Ypu2Q8+DDUztyMCaCeMeFyLCIi98EAhIjIxahUSuxYudxkm52rlkOlUorUI8eJDva3qp01MyZEROQeGIAQEbmY4oLDejMfjV0qv4DigsMi9chxeiRFIC7UH8aS7cqg3tvRIykCgPUzJkRE5PoYgBARuZiayosObedKFHIZZg9LBQC9IETz/exhqdoN6NbOmBARketjAEJE5GKCwsId2s7VZLWPw5KHuiI2VDdoiA3119tQbu2MCRERuT5mwSIisoJKJaCksBK11fUIDPFDXEoY5A6u3h3fLg1BEZEml2EFN4tEfLs0h15XTFnt4zAoNdZsJXTNjMnk1XmQATqb0Q3NmBARketjAEJEZKGiA2X4cV0haivrtccCw/zQ7/4UJHeJdth15HIFBoydhPUL5xttkzFmklvXAwHUwYUm1a4pmhmTxnVAYlkHhIjILckEQWDuQhdRXV2N0NBQVFVVISQkROruEFEDRQfKkLPskNHHsx5t79AgBDBcByS4WSQyxrhvHRB7KFWC2RkTIiJn43jNfpwBISIyQ6US8OO6QpNtdn9aiKROUQ5djpWS3hvJ3dNdohK6ZvBfWvU3KmqvICLID7Eh4gYBls6YEBGRa2MAQkRkRklhpc6yK0NqLtajpLAS8Tc6dmO4XK5AQlpHh57TWjmHSvSWP2nEcRkUERFZiVmwiIjMqK02HXxY286d5BwqweTVeUaLAZZUXcbk1XnIOVQics+IiMhdMQAhIjIjMMTPoe3chVIlYO6GI7Bko+DcDUegVHFLIRERmccAhIjIjLiUMASGmQ4ugsLVKXk9yf7jFUZnPhoSoJ4J2X+8wvmdIiIit8cAhIjIDLlchn73p5hs0/e+FIfXA5Fa2SXzwYc97YmIyDsxACEiskByl2hkPdpebyYkKNzPKSl4XUF0sL/5Rna0JyIi78QsWEREFkruEo2kTlFOr4TuKnokRSAu1N/sMiwZ1EUBeyRF2HQdMarLExGR62AAQkRkBblc5vBUu65KIZdh9rBUTF6dZ3Yj+uxhqTbVAxGrury3YvFGInJFrITuQlhZk4hckaPrgGgGxSd/O4/yLWeNtjO1tI0Da/MM/dxYt4XIfhyv2Y8BiAvhB5qIXJWjKqFrBsWllZcxqdoPwYIMMhh+flC4Hx5+pbfeciwOrM3T1G9p/A+85p1c8lBXvldENuJ4zX5euwn93XffRcuWLeHv74/09HTs37/faNvDhw9jxIgRaNmyJWQyGRYtWmT3OYmI3IlCLkOv5Ga4q2sLTOjXCnd1iUev5GZWBx+aooYtrskRIsiNBh/A9eryxs7RUCkLImqZqt+iOca6LUQkJa8MQNatW4fp06dj9uzZyMvLQ6dOnZCZmYmysjKD7evq6tCqVSu8+uqriI2Ndcg5iYi8SeNBcaBgWeDSsLo8B9aWMVe/hXVbiEhqXhmALFy4EBMnTsS4ceOQmpqKpUuXIiAgAO+//77B9t27d8drr72GkSNHws/PcDEya89JRORNGg+Ka2WWBQkNq8tzYG0ZS+uxsG4LEUnF6wKQK1eu4Ndff8XAgQO1x+RyOQYOHIjc3FxRz1lfX4/q6mqdLyIiT9R4sHumiQrVMhUEE/m1GleX58DaMpbWY2HdFiKSitcFIBcuXIBSqURMTIzO8ZiYGJSWlop6zuzsbISGhmq/EhISbLo+EZGrazzYFWTAjqZX1f9vJAhpXF2eA2vLaOq3GFvkJoN6076tdVuIiOzldQGIK3nuuedQVVWl/Tp9+rTUXSIicgpDg+JCXxW+CbiCS42WYxmrLi/lwFqpEpBbVI5v8ouRW1Tu0vtMNPVbAOi9V5rvba3bQkTkCF5XiDAyMhIKhQLnzp3TOX7u3DmjG8yddU4/Pz+je0qIiBpy97oXDYsaynB903ihrwpFPvVocU2OqX2S0DstxmgldGPnAJw7sHbHtL9Z7eOw5KGuev2OdfF+E5F38LoAxNfXF926dcP27dtx5513AgBUKhW2b9+OKVOmuMw5iYg03HEAbIixQXFMmD9mWvhaxB5YG6unoUn768r1NLLax2FQaqxbB65E5Jm8LgABgOnTp2PMmDG46aab0KNHDyxatAi1tbUYN24cAGD06NGIj49HdnY2APUm8yNHjmj/v7i4GPn5+QgKCkLr1q0tOicRkS3ceQBsiCMGxWINrM2l/ZVBnfZ3UGqsyw7qNfVbiIhciVcGIPfffz/Onz+PF198EaWlpejcuTNycnK0m8hPnToFufz69pizZ8+iS5cu2u9ff/11vP766+jfvz927dpl0TmJiKzlCQNgQxwxKBZjYG1N2l8O8omILCcTBMF1d9J5merqaoSGhqKqqgohISFSd4eIJJZbVI5RK34y227NxJ4cADvBN/nFeGJtvtl2b43sjDs6xzu/Q0TkEjhesx+zYBERuSjWvZAW0/4SETkHAxAiIhfFAbC0WE+DiMg5GIAQEbkoDoCl5e31NFQqJU4fPoiCPd/j9OGDUKmUUneJiDyEV25CJyJyB1LVvaDrvLWeRuG+vdixcjlqKi5ojwVFRGLA2ElISe8tYc+IyBNwE7oL4aYmIjLEU+qAWMoViy66Yp+cpXDfXqxfON/o48Onz2QQQl6N4zX7cQaEiEhEKpWAksJK1FbXIzDEz2jV74a8qaCcqwZb3lJPQ6VSYsfK5Sbb7Fy1HMnd0yGXK0TqFRF5GgYgREQiKTpQhh/XFaK2sl57LDDMD/3uT0Fyl2iTz/WGAbCnFV10R8UFh3WWXRlyqfwCigsOIyGto0i9IiJPw03oREQOolQJyC0qxzf5xcgtKodSdX0oXXSgDDnLDukEHwBQW1mPnGWHUHSgTOzuuhRzRRcBddHFhu+pFEz9jD1BTeVFh7YjIjKEMyBERA5gaunQ4NRY/Liu0OTzd39aiKROUWaXY3kqd6g67qrLwxwpKCzcoe2IiAzhDAgRkQmW3PHWLB1qPIDWLB36ZkuR3sxHYzUX61FSWOnIrrsVVy+6aO5nnHOoRJJ+OVp8uzQERUSabBPcLBLx7dJE6hEReSLOgBARGWHJHW9zS4dkAD7dfRJ9jVbzuK622nSQ4slcueiiJT/juRuOYFBqrNsnBpDLFRgwdpLJLFgZYyZxAzoR2YUzIEREBlh6x9uSpUNn/r5i0TUDQ/xs7q+7c+Wii9YsD/MEKem9MXz6TL2ZkOBmkUzBS0QOwRkQIqJGrLnjbcmSoDNNVFAENoGy9prRNkHh6pS8nsCWmhmuXHTR1ZeHaTiyVklKem8kd09XZ8WqvIigsHDEt0vjzAcROQQDECKiRqy5423JkiBBBtwwMB7HvzlptE3f+1I8YgO6PRu1XbXquCsvD9NwxgZ5uVzBVLtE5BQMQIiIGrHmjvftHZsjLtQfpVWXDc6YyKAeQGdmtsKJ2GC9OiBB4X7oe5/5OiDuwBF1PFyx6KJmeZi5n7EUy8MA1k8hIvfDAISIqBFr7nhbs3QouUs0kjpFWV0J3R04cqO2qxVddOXlYd60QZ6IPAc3oRMRNWLthmjN0qHYUN3AJTbUX+/us1wuQ/yN4WjTPRbxN4Z7RPABeP5G7YY/Y5mgQvzfxUipKUQH+Xn894HOks0wWPu+q1RKnD58EAV7vsfpwwehUilF6ikR0XWcASEir2Zs4661d7xdcemQmNxlo7Y9strHIanmL2x5byWuVP9TCfw8cGrJLhSOnSRJdihr3vfCfXuxY+Vy1FRc0B4PiojEAIn6TkTeiwEIEbkVR2b6Mbdx19oN0a62dEhM7rBR216F+/bi2zez9Y7XVFzA+oXzJUlRa+n7qTh5COs/Wax3XMq+E5H3YgBCRG7DkZl+LN24682zGtZw9Y3a9lKplNixcrnJNjtXLUdy93RRU9Va9L6H+KI4Z7XJ80jRdyLyXtwDQkRuwdLCgJYwt3EXUG/cVaoE7azGHZ3j0Su5GYMPIzTL1gDo7Z2ReqO2IxQXHNZZumTIpfILKC44LFKP1Cx535/p6IOainKT55Gi70TkvRiAEJHLsyZgsISnb5iWijWb8d1NTeVFh7ZzJHPve2q4ZUGfFH0nIu/EJVhE5PKsCRgs2YPhDRumpeKpy9aCwsId2s7RTL3vpw+ft+gcUvWdiLwPAxAicnmODhi8YcN0Y47cvG+ONZvxxeyXPeLbpSEoItLkMqzgZpGIb5cmYq90GXvf3aHvRORdGIAQkctzdMDg6RumG3Pk5n1v6JchcrkCA8ZOwvqF8422yRgzySU3cbtz34nIM3EPCBG5PGsLA5rj6RumG3Lk5n1v6JcpKem9MXz6TARFROocD24W6fJpbN2570TkeWSCIFi2a5Ocrrq6GqGhoaiqqkJISIjU3SGJuMuSFLFpBqyA4cKAtmxydqc78LZQqgT0XbDD6P4ZzUzP7hkDRP2MuWq/LKVSKdVZsSovIigsHPHt0txm9sCd+07kKjhesx+XYBG5EE8fENvDlsKAlpzTEzdMazh6876n98tScrkCCWkdRb+uI4IHqfpORNQQAxAiF2FpYTxv5oyAwZOrl7tqti9X7ZcrK9y3FztWLtfZSB4UEYkBYydx+RQRuR3uASFyAY6uc+HJWBjQcpFBfha1a7h5X6kSkFtUjm/yi5FbVO6Uz5w3ZiGzR+G+vVi/cL5eFquaigtYv3A+CvftlahnRES24QwIkQtw9yUp5HpyDpVgznrTla0bZ/sSawmgt2Uhs4dKpcSOlctNttm5ajmSu6dzLwcRuQ3OgBC5AC5JIUfSLOcrra432qZxti8xs1J5UxYyexUXHDZZvwMALpVfQHGB6WCTiMiVMAAhcgFckkKOYmo5X0Oxof7afUVSLAHUJBWIDdX9TDfsFwE1lRcd2o6IyBVwCRaRC+CSFDLFmtTM5pbzabx+Tyf0SYm06DnOWgLo6VnIHCEoLNyh7YiIXAEDECIXoFmSMnl1HmQwXOeCS1K8k7X7Mixdpneh9vryLCmXAHpyFjJHiG+XhqCISJPLsIKbRSK+XZqIvRIXa5cQeR4GIEQuwhl1Lsi92ZKa2ZblfFwCaDmxC4XK5QoMGDsJ6xfON9omY8wkjx2Qe1r6YQZTRGqshO5CWFmTAFZCJzVbq4VrnmduOV/D59nyHG8kZaFQQwPx4GaRyBjjngNxS2jSDxszfPpMt3rtnhZMeTOO1+zHAMSF8ANNRBq5ReUYteIns+3WTOypt4RJM3MCGF7OZ2jmxJbneBNjs1Fivj/edPdcpVJixeMTzC49e+Sd99ziPfC0YMrbcbxmP2bBIiKSiEoloPiPi/jz51IU/3ERqgZZpuzZl2FLhinNc2JCmJWqMVcpFCqXK5CQ1hHt+vRHQlpHtxh428qT0g9bWstFpVKK1CMi6XEPCBGRBIoOlOHHdYWorby+GTwwzA/97k9Bcpdou/dl2J5hSncQzUlyFgqVgielH7YmmEpI6yhSr4ikxQCEiEhkRQfKkLPskN7x2sp65Cw7hKxH26NHpyi7UzNbk2HK2BKjc9X1Rje8ewtbZqO8abmUM3hS+mFPCqaIHIUBCBGRiFQqAT+uKzTZZvenhUjqFCVaambNEiMIKsRfLkGAsg51igCc9Y+DIJNDBvUSo0GpsV65Cd3a2ShDm42bhoSgXd8MtL4pncGIBTwp/bAnBVNEjsIAhIhIRCWFlTrLrgypuViPksJK0VIz7z9egYCzRzCmfDeClbXa45cUgfixWV8UBbby6iVG1hQKNbbZ+O/qauR99w3yvvuGmY8s4Enphz0pmCJyFG5CJyISUW216eCjcbus9nHYPWMA1kzsibdGdsaaiT2xe8YAhy6H+uuXvbitbDOCGgQfABCkrMVtZZuRXPsXAOcUInQHmkKhwPXZJ42Gs1EyqMxuNgaAmooLWL9wPgr37XVsRz1MSnpvDJ8+E0ERkTrHg5tFulXWKE0wZYq7BFNEjsIZECIiEQWG+FndzpnVwlUqJSq2fQrA8OBaANCvfA/+Cmjp1YUILZmNOn34oNnNxg3tXLUcyd3TOfA0ISW9N5K7p7v9fhpNMOVttVyIjGEAQkQkAk2ByXO1f8MnyAdXa64abRsU7oe4lDBR+lVccBhXqi/qBR8aMgDByhp0UJSb3PDuDcxlFrN2EzEzH1lGk37Y3XlKMEXkCAxAiIicrHEF7RSVHHfAFzIjw/6+96VALtJmb0sHzQ92DPPKDeiNmZqNsmUTMTMficNVspJ5SjBFZC8GIERETmQovW2hrwrrcQUD/vZBsHB9K15QuB/63qeuAyIWSwfNvTu0cnJPXI9m1srSOiqWbDZu7GSdAm1UAoM7JzKUlYyJAIikxQCEiMhJTFXQ/tNXhWM+9ejo749Xh6QhOEy97EqsmQ8NazL0WDsgd2XmXkvjWSsAiDOTfaxh5iYB+ntqGhIA1CiCMHnbRcT+ssOhWc3oOmNZyTSJANxpMzuRJ2EAQkTkJOYqaKtkQH79ZVyM9EHbZGlqAFia7nTLkTKrB+SuylxwYawoY2nVZbNFGVt174VdLYagW8n3OimNG9Kc98dmfSDI5Badl6ynUinNZiVjIgAiaTANLxGRk9hSQVsK5tKdFgUmYfLqPL1gSjNwzjlUImZ37aIJLoy9lu8OlhidtdIcm7vhCJQqQy3UQefvPolYlfAQvowdjgMhHVEn180eVqMIwqboTBQFtrL4vIaoVEqcPnwQBXu+x+nDB6FSKS1+rjcoLjhsdjmcJhEAEYnLq2dA3n33Xbz22msoLS1Fp06dsHjxYvTo0cNo+88++wyzZs3CiRMnkJKSggULFmDIkCHax8eOHYtVq1bpPCczMxM5OTlOew1E5LqsraAtJWMZegTIMXrBDqMDcneqkm5qSZzmtcz65hDKa68YPYcAmCzKqAkmBZkcxU3jUdw0HnsieqG5gQrz1py3Me5rMM/SDf5MBEAkPq+dAVm3bh2mT5+O2bNnIy8vD506dUJmZibKysoMtt+7dy9GjRqFCRMm4MCBA7jzzjtx55134tChQzrtsrKyUFJSov1as2aNGC+HiFyQpoK2qRS3cf9U0HYFmgw97fr0R0JaR8jlCrPLyBoOnF2dJa/FVPDRkLFZK0PBpCYYKQxKQXHTeL3gw5LzNqTZ19D47j4LHOqyNMGCLdnLiMg+XhuALFy4EBMnTsS4ceOQmpqKpUuXIiAgAO+//77B9m+99RaysrLw73//G+3atcO8efPQtWtXvPPOOzrt/Pz8EBsbq/0KD+cfNiJvZWkFbVeeOXCXZWSWcGQfjc1amQs6bT2vhqX7Grgc63qCBVM0CRaISFxeGYBcuXIFv/76KwYOHKg9JpfLMXDgQOTm5hp8Tm5urk57QL28qnH7Xbt2ITo6GjfeeCMmT56M8vJyo/2or69HdXW1zhcReRZNBe3YUN2BZWyov1tsOnanZWTmWNrHiEAfm2etTAWd5oQH+JidDeO+BstpEiyYkjFmEjegE0nAKwOQCxcuQKlUIiYmRud4TEwMSktLDT6ntLTUbPusrCx8+OGH2L59OxYsWIDvv/8et912G5RKw3eisrOzERoaqv1KSEiw85URkSvKah+H3TMGYM3EnnhrZGesmdgTu2cMcPngA3C/ZWSmWPpaXr6jvfb7xo8D5metjAWdMjMRiSXbz7mvwTrmEixwvwyRNLx6E7qjjRw5Uvv/HTp0QMeOHZGcnIxdu3bh1ltv1Wv/3HPPYfr06drvq6urGYQQeShTFbSdyd7aHZo7+pNX50EG3UGyuywja2hk9xvw5rY/9Y43fC1Z7eOwRC7TS9Uba0Xa4az2cRiUGqt97y9cqse8jQVG28sEFQLLT2Dj1xvR5cYbjFbq5r4G6xlLsMCZDyLpeGUAEhkZCYVCgXPnzukcP3fuHGJjYw0+JzY21qr2ANCqVStERkbi2LFjBgMQPz8/+Pn52fAKiIjMs6WYniGaO/r2DMilZui9aKjxa2kcQNgavGmCzm/yi422S679C/3KdyNYWYvCdUAhjGe0sqZwJF2nSbBARK7BK5dg+fr6olu3bti+fbv2mEqlwvbt29GrVy+Dz+nVq5dOewDYunWr0fYAcObMGZSXlyMuzvX/cSYiz2Ku3oW1tTvceRmZsfdC46mBKQZfiyaAuKNzPHolN7NrlsfY/pPk2r9wW9lmBDUqWmgso5XU+xqUKgG5ReX4Jr8YuUXlVtUtISLS8MoZEACYPn06xowZg5tuugk9evTAokWLUFtbi3HjxgEARo8ejfj4eGRnZwMAnnjiCfTv3x9vvPEGhg4dirVr1+KXX37B8uXqbCQ1NTWYO3cuRowYgdjYWBQVFeH//u//0Lp1a2RmZkr2OonI+1hS78KW2h1SLSOzh6n3AlC/F2t/Po0pA1Kc2g/N/pPSqsvavsgEFfqV79b2wxBDlbo1+xoa1wEJbhaJjDHOqwOSc6gEL60/AkX5FQQKMtTKBCib+eLF4e4xC0ZErsNrA5D7778f58+fx4svvojS0lJ07twZOTk52o3mp06dglx+fYKod+/e+OSTT/DCCy9g5syZSElJwddff4327dWbFRUKBQ4ePIhVq1ahsrISzZs3x+DBgzFv3jwusyIiUVlTu8PdAgprucp7YWgvTfPLJQhuNPPRmCajVePlQ2Lva8g5VIKF7+dj2N8+CBGu/5t2qU6Fhe/nA+PBIISILOa1AQgATJkyBVOmTDH42K5du/SO3Xvvvbj33nsNtm/atCk2b97syO4RkYezd4O4MZ5Uu8NervReNN5LE6Css+h5xjJaibWvQakS8P66Ixhe56v3WJAgw/A6X7y/zvoZNSLyXl4dgBARScVRG8QN8aTaHfaKCvRDwlW5dsnQmSYqCAbGyGK9Fw03t5841BRnP9lm9jlSZ7TaV1SOLhfUi/dkjRaLySCDAAFdLgjYV1SO3immC/8REQFeugmdiEhKjt4g3pgn1e6wR9GBMvz53h8YWeuHYXW+GFnrh0nVfki5cv2fPineC81emvuH9XeLSt2n/7yIEEGuF3xoyCBDiCDH6T9Ze4SILMMAhIhIROY2iAPqDeL2ZBcyVY3bHWt32KLoQBlylh1CbWW9zvFgQYY76nyRckVu13uhUgko/uMi/vy5FMV/XITKhp+X1BmtLBVkaMrIjnZERFyCRUQkIrE2RXtC7Q5bqVQCflxXaPAxzZKhAX/7oDZSZlMGp6IDZfhxXaFOcBMY5od+96cguUu0VeeSKqOVNTq0jsAJnLKoHRGRJRiAEBGJSMxN0Y4opucMztp8r1FSWKk389GQesmQDGvv7owb2lo3aNbMrDRWW1mPnGWHkPVoe5uCEFeu1N2iTTgUQU1wreaqwWVYAgQ0CfJBizasvk5ElmEAQkQkIrE3iItRu0OlUlo8eHbm5nuN2mrjwUdDly9dseq8pmZWNHZ/WoikTlGQWxlQuXKlbrlchkEPtkXOskMQIOgEIZrvBz3Y1urX7G2s+T0h8nQMQIiIRNQjKQJhAT6orLtq8HEZ1Muk3GWDeOG+vXrLh4IiIjFgrP7yIc3m+8a7JTSb75c81NVgEGLtjElgiGW1lyxtp2FuZgUAai7Wo6SwEvE3etZsQHKXaGQ92l5v6VlQuD/63Wf90jNvY83vCZE3YABCRCSirUdKjQYfgHoPiLtsEC/ctxfrF87XO15TcQHrF87H8OkztYMrW6uz2zJjEpcShsAwP5PBQlC4H+JSwix5mVqWzqxY2s7dJHeJRlKnKHUgVl2PwBD1e+gJMx8qlRKnjhzGwT9PoVYRgMTUDkhPjnTI76E1vydE3oIBCBGRSDSDcFPCAnwwKDVWpB7ZTqVSYsfK5Sbb7Fy1HMnd0yGXK2zafG/rjIlcLkO/+1MM7tXQ6HtfitUDZ2fNrLgTuVzmcbM7hfv24rsVS3Dt0vU0wn8oAvFGQgYmPnyHXUsDrf09IfIWTMNLRCQSc4NwAKisu4r9xytE6pHtigsO6ywnMeRS+QUUFxwGYP3me3vTFWuWDAWG6QYDQeF+Nm0UB67PrJhiy8wKSUczO3H1km4NkyBlLXqd+BavLfvcrro81v6eEHkLzoAQEYlEzAxYzlZTaVnROU07azffOyJdsaOXDDlrZoWkoZ6dWKZdAtiQDOrPWL/yPZi7vq3e0kBLWft7QuQtOANCRCQSsTNgOVNQmGXLcDTtrK3O7qhgTbNkqE33WMTfGG53cOCMmRWShnp2otzkZzJYWQP5ueM2z0pa+3tC5C04A0JEJJJuieGICPRBRa37Z8CKb5eGoIhIk8tLgptFIr5dGoDr1dknr87T3l3WMFSR3JWDNU/ejO1NLJ11CFDW2Twrae3vCZG34AwIEZEIcg6VoP9rO00GH4D7ZMCSyxUYMHaSyTYZYybpbKzVVGePDdUNGmJD/fU2lFs7Y+IISpWA3KJyfJNfjNyicqP7SwDHz6yQ+CyddahTBNgc6Nrye0LkDWSCIBj/C0uiqq6uRmhoKKqqqhASEiJ1d4jIQYxlc2rI0cX4HM1YLQ5D9Q2Cm0UiY4zx+gaW1vXQvG+A4RkTY1mwbCFGgURyLSqVEiseH49LRpZhCQBqFEHY3H4Cdj870K4bA7b8npDr4njNfgxAXAg/0ESeR6kS0HfBDpMbqpsF+iL3uVvh28Q1J6XNDc6dWeFZjMDAWIDojECHXIsmC1bjjeiaz8Km6Ez8+9F7HPLzZyV0z8Hxmv0YgLgQfqCJPE9uUTlGrfjJbLs1E3sazeYkJVcYnFtbCd3ac5sKEDX7cnbPGOCwa6pUAvePuBBDdUAuKYLwe8ItdtcBIc/E8Zr9uAmdiMiJ3Dn1rq3Vyx1NIZc5LThzRLpfaxQdKMOP6wp1qrQHhvmh3/0pzKAlkZT03pjaPV2vEvosB1VCJyJ9DECIiJzIlbM5mSP24FwKYgaIRQfKDNYQqa2sR86yQ0zjKyG5XIGW7TuiZfuOUneFyCu45oJjIiIPIUU2J0dx59kbS4kVIKpUAn5cV2iyze5PC6EykXmLiMhTMAAhInIiTf0LwHC1ZcB1U++68+yNKQ3T7aoEAbEhfk4PEEsKK3WWXRlSc7EeJYWVdl2HiMgdSLYES6VSQS7Xj39UKhXOnDmDG264QYJeERE5nqb+ReNsTrF2ZHMSI6OOZvamtOqywX0g7lQ4UcNQVq2wAB/tnhZzBRJtVVttOviwth0RkTsTPQCprq7GI488gg0bNiAkJASPPvooZs+eDYVC/Q/n+fPnkZSUBKVSKXbXiIicJqt9HAalxjokm5OhmgJBEZEYMNaxNQWsrV7u6oxl9KqqUxeHDA3wQWXd9UKR9gSIjQWG+DmsHdO5EpG7Ez0AmTVrFn777Td89NFHqKysxMsvv4y8vDx8+eWX8PX1BQAwMzAReSJHZHPS1C1orKbiAtYvnI/h02c6NAhxxuyNFCzJ6NXUR4F3J3TFhdp6mwJEU+mC41LCEBjmZ3IZVlC4OiWvKWIFn0REziR6HZDExESsWrUKt9xyCwDgwoULGDp0KMLCwrB+/XpUVlaiefPmXjkDwrzSRGSKunLzBJ3BZ2PBzSLxyDvvOfyOuDNrcYjB2fVYLCmYaCwLloa5LFjGgk8NRwefRGQYx2v2E30T+vnz55GYmKj9PjIyEtu2bcOlS5cwZMgQ1NXVid0lIiK3UFxw2GTwAQCXyi+guOCww6+tmb25o3M8eiU3c6vgA3BuRi/N0q7GKYtLqy5j8uo85BwqAQAkd4lG1qPtERimu8wqKNzPbPChUimxY+Vyk/3YuWo5VCrvu3lHRO5H9CVYN9xwAwoKCpCUlKQ9FhwcjC1btmDw4MG46667xO4SkV3c/c4wuY+ayovmG1nRzps4K6OXtcUak7tEI6lTlNWV0K0JPpu368C/SUTk0kQPQAYPHowPPvgAQ4YM0TkeFBSEzZs3Y9CgQWJ3ichmliy7IHKUoLBwh7bzJs7K6GVLsUa5XIb4G637GVkaVO79/S8sWn+ef5OIyKWJvgRr7ty5mDNnjsHHgoODsXXrVuzYsUPcThHZwNJlF0SOEt8uDUERkSbbBDeLRHy7NJF65D7srcfSsHZIblE5lP8UDBSrWKOlQeXi3DL+TSIilyf6DEh4eDjCw43/IQ0ODkb//v1F7BGR9axddiElLhHzHHK5AgPGTjK5ETljzCSLN6B722fD1oxepmY6xSrWqAk+TS3DqvMJQrG//mtwtb9JRESSFSIkcme2LLuQApeIeZ6U9N4YPn2mXirW4GaRyBhjeSpWb/1sWFuPxVjtEM2swrsPdBGlWKMlweeu8D4QZIYXNrjK3yQiIoABCJFNxFp2YQ9zA6clD3X16IGmJ0tJ743k7uk2F6Nr/NmQCSo0v1yCwJo6vLyiCMKEobitY7zzXoDELK3HYslM57yNBZg1NBWPf6JfrFHTbmT3BLv7DJgOPgP7j0DRAfOrqqX8m0REpMEAhMgGYi27sJU7LREj28jlCiSkdbT6eY0/G8m1f6Ff+W4EK2u1bX75zw60mjIVN/bs46DeuidLZzqPlFTjyYEpWLP/FEqr9QsNvrmtEGt/Pu2Q2SVjwee+45XAAfN1TqT6m0RE1JDom9CJPIEmo46xobsM6uUs9i67sJU1S8TIuzT8bCTX/oXbyjYjqEHwAQBNr9bg2zezUbhvrxRddDpjG8obs3S24J2dx/DmtkL8fVWFXkZ+5x25EVwTfLbr0x8JaR0hlytc/m8SEVFDkgUgCoUCZWVlesfLy8uhUDi2gi+Ro9mbUcfZ3GGJGElD8zOXCSr0K9+t/v9GbTTfe2Jhu5xDJei7YAdGrfgJT6zNx6gVP6Hvgh0GAwNrZwuq/r6KXCNBvSbEmbvhiNGAxx6u/jeJiKghyQIQQTD8B7i+vh6+vr4i94bIepqMOrGhuoOU2FB/yfdXuPoSMZKO5mfe/HIJgpW1Ru+YA86rqi4Va1Nnm5tVsJazZx5d+W+SvVQqJU4fPoiCPd/j9OGDHhcYE3kb0feAvP322wAAmUyG//3vfwgKCtI+plQq8cMPP6Bt27Zid4vIJtZm1BGLs4qukfvTfDYCa+osau8pVdVt2RelmVWYvDrPoX1x5syjq/5Nskfhvr16G++DIiIxYKzlWd+IyLWIHoC8+eabANQzIEuXLtVZbuXr64uWLVti6dKlYneLyGaWZtQRU8OBU+PMPFyO4d00n42XVxRZ1N5TqqrbmjpbM6sw86vfUVF71SF9cfbMoyv+TbJV4b69BlMP11RcwPqF8zF8+kwGIURuSPQA5Pjx4wCAjIwMfPnllyaLEhKR7WwtukaeL6t9HIQJQ/HLf3ag6dUao0uMPKmquj37orLax+Hvqyo8tS7frj5448yjPcUuVSoldqxcbrLNzlXLkdw93eIU1ETkGiRLw7tz506pLk3kNTxxOQY5xm0d49FqylR8+2a20TbWVFV3dfbui4oNsW/WwhtnHu0tdllccNhk5Xfg+j4lW1JSE5F0JAtAlEolVq5cie3bt6OsrAwqlUrn8R07dkjUMyLP4knLMdyFPXd9xXRjzz6QO6Cqujuwd1+Uueeb420zj44ohGrp/iNP2adE5E0kC0CeeOIJrFy5EkOHDkX79u0hk7neP85ERNay966v2Oytqu4u7N0XZer5jWkef2pgClpGBrp0EOoMjiqEaun+I0/Zp0TkTWSCsXy4ThYZGYkPP/wQQ4YMkeLyLqm6uhqhoaGoqqpCSEiI1N0hIisZu+urGWK5eypUT2BvgGjo+Y0DElcOOMWQW1SOUSvMV2VfM7GnydlZlUqJFY9PMLkMK7hZJB555z2PC5jJtXG8Zj/JZkB8fX3RunVrqS5PRORQjrrrS85l774oQ8/vlhiOX09edPkld2JxVCFUuVyBAWMnGcyCpeFJ+5SIvIlkAcjTTz+Nt956C++88w6XXxGR27M1zSuJz959UYaez5/pdY4shJqS3hvDvWSfEpE3kSwA2b17N3bu3IlNmzYhLS0NPj4+Oo9/+eWXEvWMiMh6jrrrS+QKbEmkoHlOadXfiAj0xcXaKw4phOot+5SIvIlkAUhYWBjuuusuqS5PRORQjrzrS/ZxlyxkrsqWfTKGnmOIremI5XIFU+0SeRDJApAPPvhAqksTETmcvWleXYFKpXTpu8yWBBbuloXM1diSPtfYcwzxtnTERGSYZAEIAFy7dg27du1CUVERHnjgAQQHB+Ps2bMICQlBUFCQlF0jIjcj9eDZ3jSvUivct1dvnX1QRCQGjHWNdfaNAwuZoEIHRTke7BiG3h1aIb5dGrYcKbO79oQ3syWRgqnnaEQE+mDW7WmIDeFsFBGpSRaAnDx5EllZWTh16hTq6+sxaNAgBAcHY8GCBaivr8fSpUul6hoRuRlXGTxntY/Dkoe66t2Bl+Kur6XLkJQqAZs2bMEfnyzWe6ym4gLWL5yP4dNnWvw+2rr8ydTzGt9hT679C/3KdyNYWYszRcCnXwFBEc2wJaQXBFmC3rmZhcwy1iRS6JEUgf3HK7Dn2Hmzy64qaq8iNsSfG/WJSEvSQoQ33XQTfvvtNzRrdv2P0l133YWJEydK1S0icjOF+/YaTNNpy+DZEexN8+oIli5DyjlUgrnrDyHz0PsIwvWZmsZ2rlqO5O7pZmeUbF3+ZOp5g1Jjde6wJ9f+hdvKNuudo6aiHL0qvkVldCaKAlvpPc4sZOZZmiBh25FSTP8032zgYcu5icg7yKW68I8//ogXXngBvr6+OsdbtmyJ4uJiUfrw7rvvomXLlvD390d6ejr2799vsv1nn32Gtm3bwt/fHx06dMB3332n87ggCHjxxRcRFxeHpk2bYuDAgSgsLHTmSyDyaiqVEjtWLjfZZueq5VCplCL1SE2TpvWOzvHoldxM9OBj8uo8vcGhZhlSzqESnXbyc8cRrKw1GnwAwKXyCyguOOyQ61r7vHd2FOosu+pXvlv9/0b60a98D2SCymg/pRgIK1UCcovK8U1+MXKLyqFUOab+r6PPa2mChPf2nLAq+LDm3ETkHSSbAVGpVFAq9QcFZ86cQXBwsNOvv27dOkyfPh1Lly5Feno6Fi1ahMzMTPzxxx+Ijo7Wa793716MGjUK2dnZuP322/HJJ5/gzjvvRF5eHtq3bw8A+M9//oO3334bq1atQlJSEmbNmoXMzEwcOXIE/v7840vkaMUFh01WSQauD569IYOOpWv4B7SN0bYLUNZZdO6ayot2X7fx8idLnvfBnhPaY80vlyBYWWu0HzIAwcoaNL9cguKm8QbbiD0QdtSm+MZL1C7WXsG8jabPa2pZm6HHLEmkIJMB1sQ57pB8gYjEJ1kAMnjwYCxatAjLl6vvXspkMtTU1GD27NkYMmSI06+/cOFCTJw4EePGjQMALF26FBs3bsT777+PZ599Vq/9W2+9haysLPz73/8GAMybNw9bt27FO++8g6VLl0IQBCxatAgvvPAC7rjjDgDAhx9+iJiYGHz99dcYOXKk018TkbcxNSi2pZ27s3QN/0e51+9g1ykCLDp3UFi43ddtvPzJkudV/n1V+72lwZKhdlIMhG3JKGXsPJakuG14XgBGAx9Tj5lKpCAAEKwMPgDXTr5ARNKQbAnWG2+8gT179iA1NRWXL1/GAw88oF1+tWDBAqde+8qVK/j1118xcOBA7TG5XI6BAwciNzfX4HNyc3N12gNAZmamtv3x48dRWlqq0yY0NBTp6elGz1lfX4/q6mqdLyKynKlBsS3t3J2ly4tOVlwfoJ/1j8MlRaDJLEbBzSIR3y7N7us2bmfp88Ka+kAGy4Olvxu1k2IgbG52B1AHAeaWTRlbomaI5kzPffk7/mVkWdu/VucZfWzy6jwAwJKHuiI2VHemKDbUH+P7tDTbh8bPYeYxIjJEshmQFi1a4LfffsPatWtx8OBB1NTUYMKECXjwwQfRtGlTp177woULUCqViImJ0TkeExODo0ePGnxOaWmpwfalpaXaxzXHjLVpLDs7G3PnzrXpNRAREN8uDUERkSaXYZkbPHsSS5cXJUZcH6ALMjl+bNYXt5Vt1i57aixjzCSTG9BtLcJo6fPG9UnCom1/ouSfYCnIxJ6VJiHhUMYkAdVXtMfCA31wV+d4hDb1hVIliBKE2Dor1JAlKW4Nnfdi3VWjj5l6nmap3O4ZAwwmUth/vALvN1gSZ8yUjNbo0zqSKXeJyChJ64A0adIEDz30kJRdkNRzzz2H6dOna7+vrq5GQoJ+CkkiMkwuV2DA2EkGs2BpmBs8exJLiyE+3Ksl/rf7uLZdUWArbIrO1Ka21QhqFokBY8ynMra1CKOlz5syoDVujA3C3A1H8GOd6WBpyCOTMaV7L+w/XoGtR0rxdf5ZVNRewXt7TuC9PSecXpRQs7dik5FN942ZmgUyF8Q4WuOgqHFgZOnP66lBbZwWeLDKPZFnkDQAKSwsxM6dO1FWVgaVSjdryYsvvui060ZGRkKhUODcuXM6x8+dO4fY2FiDz4mNjTXZXvPfc+fOIS4uTqdN586dDZ7Tz88Pfn5+tr4MIgKQkt4bw6fP1KsDEtwsEhkWDJ49iaXFEH2byPXaFQW2wl8BLRF/uQQByjo8mtUZdw3pZ1HwZmsRRmuedz29cWf89UtLVGz7FFeqr+/tafzzrvr7Cj7Yc0LUooSbDhZjydqt+Lu6EnWKAMj84yDITK90NjULJFXqWmPXlbrYJqvcE3kOmSBYs6XMcVasWIHJkycjMjISsbGxkMmu/8GSyWTIy8tz6vXT09PRo0cPLF6sLr6lUqlwww03YMqUKQY3od9///2oq6vDhg0btMd69+6Njh07ajehN2/eHM888wyefvppAOoZjejoaKxcudKiTejV1dUIDQ1FVVUVQkJCHPRKibyD1JXQXYlVdUAcOKBzRh0QY88z9fNWqgT0XbDD6OyB5k797hkDHDZY/vSzjTjy1Yc6M0iXFIH4sVlfg3VJLOlDblE5Rq34ySH9s8aaiT1N1kqRIhAwtqFf8869+0BXhAf6uszMCGdqPBvHa/aTLABJTEzEY489hhkzZkhxeaxbtw5jxozBsmXL0KNHDyxatAiffvopjh49ipiYGIwePRrx8fHIzs4GoE7D279/f7z66qsYOnQo1q5di/nz5+uk4V2wYAFeffVVnTS8Bw8etDgNLz/QROQo1lRCd+RAyRmV0K1l6cDd3EDbUn/8tAcb3lT/W9Gwx5p/XDc1Ko6oaWNuFkYTSBlb8uRo1gRmYg6wzQWUACBvlB5YypkRztR4Po7X7CfZEqyLFy/i3nvvleryuP/++3H+/Hm8+OKLKC0tRefOnZGTk6PdRH7q1CnI5denznv37o1PPvkEL7zwAmbOnImUlBR8/fXX2uADAP7v//4PtbW1mDRpEiorK9G3b1/k5OSwBggRiU5TDNFR7Rx9XWf2w9asXLZQqZTY8t5SAPp7UjTLlPqV78FfAS21y7FiLRyMmlryZC97l1A5+nNjiiV7YRonE3PmUjtTHJV6mcjTSTYDMmHCBHTv3h3/+te/pLi8S2JETURkPzFnQE4fPohPX5pptt2XscNR3DQeTw1sgykDWls1W2BpHRBz5DLgnVFdIJfLLLpD7yrLiL7JL8YTa/Otfp4zltqZIsXSP5IGx2v2k2wGpHXr1pg1axZ++ukndOjQAT4+PjqPT5s2TaKeERGROzOXrQkAmgX6olui/fVhLC1yqSmOuPbnU5gyoLVV17i+Ab8Ce45dwDs7j1ndT0A9SxAe6Ideyc0MptltOCh2pWVEtlavtyTVsSM5IvUykbeQLABZvnw5goKC8P333+P777/XeUwmkzEAISISiavc6XYUS5YulddeQf/XdpodUJt7bywtcqkpomjrAFSz5KlHUgS+yDtj874QzbIzU0uoXG0ZkSagtHUGSKxsYmIu/SNyd5IFIMePH5fq0kRE9A9XutPtSFnt47Dkoa4mly6ZG1Bb8t6YK4YpAKhRBOGs//Xz2zMAtXdfiLnZBHMV3DXFCgelxooWpCrkMswa2g6PfXLApufbOoPirOuI1R8iV2Y6QblIBEGARFtRiIi8luZOd+MBumZgnmNhMT1XldU+Dt//OwMRgT4GH9f8qzN3wxEoG+1itvS90RTDNHX+H5v10akH0nAAqlQJyC0qxzf5xcgtKtfrh7HXteShrogN1R3ImooHZFAHT42LQTZmzTIiMYUHWl8zy9LX7CiamRpjPwax+0PkyiQNQD788EN06NABTZs2RdOmTdGxY0d89NFHUnaJiMgrmLvTDRgemLubX09eREXtVaOPGxpQW/veaIphBkXoLmmqUQTppOBtPADNOVSCvgt2YNSKn/DE2nyMWvET+i7YYVHgl9U+DrtnDMCaiT3x1sjOWDOxJ94Z1RUyGM7GBViW4cpVlxFZez0xCiM2ppmdanh9KftD5MokW4K1cOFCzJo1C1OmTEGfPn0AALt378a//vUvXLhwAU899ZRUXSMi8njesmHWmgG1Zr/HnmMXrH5vUtJ7I7l7Or767kcsy8lHnSIAxQ0qoTcegDpin4WhfRxL5PrLzixN+wu47jIia69nzWt2JGNL/6TqD5GrkiwAWbx4MZYsWYLRo0drjw0fPhxpaWmYM2cOAxAiIidy1TvdjmbpwPXEhTr0eXUHSqstf72N3xu5XIERt9+CwJY3qmdQjAxAnbnPomHGLFuSCpjLIKZJJSv2MiJL+hUR6IsXhrZDbGhTSRMp2PszIPIGkgUgJSUl6N27t97x3r17o6TEvdcdExG5Ole90+1olgxcQwN88Oa2P60+t7H3xtwA1NmzT/YUCdQsI/rX6jyjfRvSXv3axBxUm9p8r+nBK3e1d5kZBjELNRK5I8n2gLRu3Rqffvqp3vF169YhJSVFgh4REXkPb9kwa25dvgDg6jWVVee05L3RDEDv6ByPXsnNdAbq7j779N6eE1btV3EUY5vvY0P9WWGcyM1INgMyd+5c3H///fjhhx+0e0D27NmD7du3GwxMiIjIcSy5o+wpG2ZNrcu//6YWWLTd8sJ+1r43huqIuPLsk2Z5mCWkqAvC5U1EnkGyAGTEiBHYt28f3nzzTXz99dcAgHbt2mH//v3o0qWLVN0iIvIazt4wa6yInxSFD40NXN/cat3SK2veG2N1RGYNTXXJfRaA+eVhDUlZF4TLm4jcm2QBCAB069YNq1evlrILRERezVl3lI0Nvod3isP630okKXxoeOBqWZrhwakxGNcnyeR70zCwOnGhDou2/Wkwy9Xjn+Rh0s1JWP7DcZebfbJ22ZenZEsjInFJGoAolUp89dVXKCgoAACkpqbijjvuQJMmknaLbCTFXU0isp+j7ygbSzFbUnUZy344rtdeiqU8Gr1aReKdnUVm243p1dLke2Qo4DJEM2uw/rcSvPtAF8zbWOBS6VptXfblqvtViMg1STbSP3z4MIYPH47S0lLceOONAIAFCxYgKioKGzZsQPv27aXqGtnA2N1O5j0n8i6mUswaI9VSHgDomdwMYQE+qKwzXqwwLMAHPc0EH4YCLmM0swbhgX7YPWOAS924MZc1zBh3z5ZGROKSLAvWI488grS0NJw5cwZ5eXnIy8vD6dOn0bFjR0yaNEmqbpENNP/4Nr7zp7mrKWaWFCKSljV7CBoyVJFcDAq5DK/e3cFkm1fv7mBy2ZW1AZdGadXfLhV8AKazhhniKdnSiEhcks2A5Ofn45dffkF4eLj2WHh4OF555RV0795dqm6RlZxZUIuI3I+9S3GkWMqT1T4OSx/qijnrD6O0ul57PDbED3OGp5mcxbU14AKAeRsLUFF7Rfu9q8waG0tO0JjU+1WIyH1JFoC0adMG586dQ1pams7xsrIytG7dWqJekbWcXVCLiNyLvUtxpFrKY+tmfHsCpobBByDtXpjGGr8fJy7UYs3+U7oBmosETETkfiQLQLKzszFt2jTMmTMHPXv2BAD89NNPeOmll7BgwQJUV1dr24aEhEjVTTLD3QtqEZFj2bqHQMrUsxq2bMZ3ZMDkarPGjd+PKQNSXG7JGBG5J8kCkNtvvx0AcN9990EmU/8BEwT1P1fDhg3Tfi+TyaBUKqXpJJnlygW1iEh8pgocGmPpUh5XzLRna8BljCvPGjuz/oYr/myJyHkkC0B27twp1aXJgcz94+sKdzWJSFzG9hAYqwNiyVIeV8201zDgciRvmjV21Z8tETmPTNBMO5DkqqurERoaiqqqKrdadqbJggUYLqjlCuuZiUh8jqqEbizNrSV/Y1QqJYoLDqOm8iKCwsIR3y4NcrnCMS+wUR8bb2JvTAYgPNAHFbXGU/5qrJnY0+VmQEyxdQbDnp8tkVTcdbzmSiQNQC5fvoyDBw+irKwMKpVK57Hhw4dL1CvpuPMHmnewiMiRNAPa0urLmPftYaODds0s6+4ZA/QGvIX79mLHyuWoqbigPRYUEYkBYychJb23U/r8zo5jeHPbnwb7CUBbfNDcrLGh1+OqbP37r1QJ6Ltgh9FEJu74XpB3cOfxmquQLADJycnB6NGjceHCBb3HvHXfh7t/oLmGl4gcwdKq4g01njEo3LcX6xfON9p++PSZekGIo/6GmRuQe9KssT0zGLlF5Ri14iez13C32SB78N9R9+Du4zVXINkekKlTp+Lee+/Fiy++iJiYGKm6QQ7kzA2KROQdrK0qrtFwz4RKpcSOlctNtt+5ajmSu6drl2M5chbXXEpfY3tk3C2trb11oJhFURdXEpA3kSwAOXfuHKZPn87gg4iIANhXVbxhpr3igsM6y64MuVR+AcUFh5GQ1tFo0GNPXQ5zN2RMBSnuchfc3jpQzKJ4nTM+g0SuTLIA5J577sGuXbuQnJwsVReIiMiF2FJV3FCmvZrKixY9t6byot138e1hKEhxp7vg9s5gMIuimpSfQSKpSBaAvPPOO7j33nvx448/okOHDvDx8dF5fNq0aRL1jIiIpGDtUhtj9UOCwsIten5QWLjdd/Edyd3ugts7g2GqZoyltWE8gSt9BonEIlkAsmbNGmzZsgX+/v7YtWuXthghoN6EzgCEiMi7WLvUxtieifh2aQiKiDS5DCu4WSTi26Uh72CpRddy9j4Ed7wL7ogZDE/ZD2MP7oUhbyRZAPL8889j7ty5ePbZZyGXy6XqBhERuQhLBrQRgb54YWg7xIY2Nbo3Qi5XYMDYSSazYGWMmQS5XOEy+xDc8S64LTMYhva3mNu07+lc5TNIJCbJApArV67g/vvvZ/BBREQALBvQvnJXe4vuiqek98bw6TP16oAEN4tExpjrdUBcZR+Cu94Ft2YGw9z+FlcJrMRmyWcwJsQPKkHAN/nFXhegkWeSrA7IU089haioKMycOVOKy7sk5pUmInLsRmxLKqG7Ql0Od6+JYS5zFyuem2bqMygACAvwQWXd9WKcrpqYwFtwvGY/yQKQadOm4cMPP0SnTp3QsWNHvU3oCxculKJbkuIHmohI7co1FT7KPYET5XUABHRuEYbm4QFOu/MrdfYpTVVwT6qQruEpFc+dnR7Z0GewceChwcBNWhyv2U+yACQjI8PoYzKZDDt27BCxN66BH2giItOV0J0ZFEhdf8MVZmKcwd1ndwDxAtSGn8HIQD88/dlvKK22PHCzZMaP7Mfxmv0k2wOyc+dOqS5NREQuylwl9BInpqQ1VzzQ2Tw1I5S77m/REDM9csPPYG5RudHgA9BPTFC4b6/enqegiEgMGHt9z5MxUgff5H0kC0AaOnPmDACgRYsWEveEiIikYmkldAGul5LWUVwhI5Slg1FL27lzlicp0yNbE7gV7ttrMOtbTcUFrF84H8OnzzQahEi9/JC8k2QBiEqlwssvv4w33ngDNTU1AIDg4GA8/fTTeP7555kdi4jIQp5y99KaSuiulpLWkaScibF0MGrNoNXSTGMqletleZIyPbKlAVlUoC92LFtuss3OVcuR3D3daAIGdyl+SZ5D0jog7733Hl599VX06dMHALB7927MmTMHly9fxiuvvCJV14iI3IYn3b20dgmOqy7ZcVeWDkatHbSaS68sAPj7qhIPvrdPe9zWz7Cjg3Epl49ZGrg1ry9BromimwBwqfwCigsOIyGto/aYOxa/JM8h2TTDqlWr8L///Q+TJ09Gx44d0bFjRzz22GNYsWIFVq5cKVW3iIjchmYg2PgOrWYgmHOoRKKe2cbaJTi2LtlRqgTkFpXjm/xi5BaVQ6mSJBeLWWL209xgFFAPRq9cU1nUrnFfNftbYkN1f2ZhAeoMmI0zPdnyGc45VIK+C3Zg1Iqf8MTafIxa8RP6Lthh1++BlMvHNIEbcD0RgUbDQo9/V1206Hw1lbrtrJndIXI0yWZAKioq0LZtW73jbdu2RUUFP+xERKZ44t1Lc3d8G4qzsTigu8wYid1PSwejH+WesHlJUuP9LZFBfnj603yj57HmM+yspURSF6q0JDHB6cPnLTpXUFi4zvfunhyA3JtkMyCdOnXCO++8o3f8nXfeQadOnSToERGR+/DEu5cN7/iaIoP6zq+1gZUzZoycMUshxcyWpYPMkxV1dp1Ps7/ljs7xkMtkKK2uN3oOSz/Dls7e2PKzsXQWwplBflb7OOyeMQBrJvbEWyM7Y83Entg9Y4A2oIpvl4agiEiT5whuFon4dmk6x9w5OQC5P8lmQP7zn/9g6NCh2LZtG3r16gUAyM3NxenTp/Hdd99J1S0iIrfgiXcvlSoBoU19Mb5PS3yVX4yKWv0CbPbsDXD0jJEzZimkmtmydJCZGBHgsPM56jPs7I3irpAe2VRiArlcgQFjJxnMgqWRMWaS3gZ0qWd3yLtJFoD0798ff/zxB/773//i6NGjAIC7774bjz32GJo3by5Vt4iI3IKn3b00NJiPCPTFHZ2bo0VYU0QE+iI2tKnNm4odPUh11pIfqbIuWToYfbhXS/xv93GHDFod9RkWIxh3hfTIpqSk98bw6TP16oAEN4tExhjDdUDMJQcAnD+7Q95L0jog8fHxzHZFRGQDd7x7aaxKs7HB/MXaK1i554RDUoE6cpDqzFkKqWa2LB2M+jaRO2zQ6qjPsFjBuNSFKs1JSe+N5O7pVlVCd4XZHfJOkgUgH3zwAYKCgnDvvffqHP/ss89QV1eHMWPGSNQzIiLX5253L41Vab5lzETM3Wl4AOrIJUeOHKQ6c5ZCypktSwejjhq0Ouoz7I7BuLPI5QqdVLuWcPXZHfJMkgUg2dnZWLZsmd7x6OhoTJo0iQEIEZEZ7nL30lSV5m/fzEZAdCYQ2Mrgcx215MiRg1RbZyksqVEh9WDa0sGoowatjvgMu1sw7opcfXaHPI9kAcipU6eQlJSkdzwxMRGnTp2SoEdERO7H1e9eqlRK7Fhpukpzv/I9+CugJQSZ8cSM9i45cuQg1ZZZCks3rLvCYNrSwaijBq2O+Ay7SzBORGqSBSDR0dE4ePAgWrZsqXP8t99+Q7NmjMKJiCzlyncviwsO6yy7MiRYWYPml0tQ3DTeaBtHLDly1CDV2lkKazese+Ng2hGfYVcPxonoOskCkFGjRmHatGkIDg7GzTffDAD4/vvv8cQTT2DkyJFSdYuIiByocfVlYwKVhutLOHrJkSMGqdbMUti6YZ2Dadu4cjBORNdJFoDMmzcPJ06cwK233oomTdTdUKlUGD16NObPN57LmoiI3Efj6svG1CkCRFty5Ki77ZbMUtizYd2eflqy34SISCqSBSC+vr5Yt24dXn75ZeTn56Np06bo0KEDEhMTpeoSERE5mKZKs6llWMHNIvH8hKF4aeNRt1pyZMkshRRpdZ1RIJGIyJEkrQMCACkpKUhJSZG6G0RE5ASWVmlO6RiPwe2bu91de3OzFGKn1bWnQKKrz5q4ev+IyHLGU454qIqKCjz44IMICQlBWFgYJkyYgJqaGpPPuXz5Mh5//HE0a9YMQUFBGDFiBM6dO6fTRiaT6X2tXbvWmS+FiMgtaKo0B0VE6hwPbhaJ4dNnaqs0awbzd3SOR6/kZh4xuNRsWDf2SmRQz044Yo+Luf0mgHq/iVKl3yLnUAn6LtiBUSt+whNr8zFqxU/ou2AHcg6VWHX93KJyfJNfjNyicoPXsZUj+kdErkMmCILj/kK4gdtuuw0lJSVYtmwZrl69inHjxqF79+745JNPjD5n8uTJ2LhxI1auXInQ0FBMmTIFcrkce/bs0baRyWT44IMPkJWVpT0WFhYGf3/L72pVV1cjNDQUVVVVCAkJse0FEhG5KGOV0D2dZlYCMLzHxRGV3gEgt6gco1b8ZLbdmok9dWZtjM2aWNM/Zy77ckT/iByJ4zX7eVUAUlBQgNTUVPz888+46aabAAA5OTkYMmQIzpw5g+bNm+s9p6qqClFRUfjkk09wzz33AACOHj2Kdu3aITc3Fz179gSgDkC++uor3HnnnTb3jx9oIiLPJMa+jG/yi/HE2nyz7d4a2Rl3dFanPFaqBPRdsMPoRnlNFrLdMwYYnZFyZoDgiP4RORrHa/bzqiVYubm5CAsL0wYfADBw4EDI5XLs27fP4HN+/fVXXL16FQMHDtQea9u2LW644Qbk5ubqtH388ccRGRmJHj164P3334e52K6+vh7V1dU6X0RE5Hmy2sdh94wBWDOxJ94a2RlrJvbE7hkDHHrn3pb9JtZk6TLEnmVflrC3f0TkmkTfhH7hwgXU1tbqZLs6fPgwXn/9ddTW1uLOO+/EAw884JRrl5aWIjo6WudYkyZNEBERgdLSUqPP8fX1RVhYmM7xmJgYnee89NJLGDBgAAICArBlyxY89thjqKmpwbRp04z2Jzs7G3PnzrX9BRERkdtwdo0KawskArZl6Wq4GfzCpXq9AEEOFXrIjyIalSgTQnGmNBTLP6jAbek34oZU65bdSZFFjIicT/QAZOrUqWjevDneeOMNAEBZWRn69euH5s2bIzk5GWPHjoVSqcTDDz9s8TmfffZZLFiwwGSbgoICu/ptzqxZs7T/36VLF9TW1uK1114zGYA899xzmD59uvb76upqJCQkOLWfRETkmawpkKhh7ayJoaVkDWXK92O2z4doLqtAYXUz7DiXjJprfqgrBb7YAjQJDseQiZO1iQcsva6j2hGRaxB9CdZPP/2E4cOHa7//8MMPERERgfz8fHzzzTeYP38+3n33XavO+fTTT6OgoMDkV6tWrRAbG4uysjKd5167dg0VFRWIjY01eO7Y2FhcuXIFlZWVOsfPnTtn9DkAkJ6ejjNnzqC+vt5oGz8/P4SEhOh8ERER2UpTIDE2VHdAHhvqb3AvhjVZujR7PUwFH0t8FiEW6uBjfXE71Fzz1Wlz9dJFrF84H4X79lr0esTMIkZE4hF9BqS0tBQtW7bUfr9jxw7cfffd2mrow4cPR3Z2tlXnjIqKQlRUlNl2vXr1QmVlJX799Vd069ZNe32VSoX09HSDz+nWrRt8fHywfft2jBgxAgDwxx9/4NSpU+jVq5fRa+Xn5yM8PBx+fn5WvRYiIiJ7WFIgUcPSWRMARvd6AOplV7N9PtR+v+NccqOzXP9OALBj1XIkd083uxzLllkdUamUwMm9QM05ICgGSOwNeEFmNyJ7iR6AhISEoLKyUrsHZP/+/ZgwYYL2cZlMZnLWwB7t2rVDVlYWJk6ciKVLl+Lq1auYMmUKRo4cqc2AVVxcjFtvvRUffvghevTogdDQUEyYMAHTp09HREQEQkJCMHXqVPTq1UubAWvDhg04d+4cevbsCX9/f2zduhXz58/HM88845TXQUREZIo1+000syaNl1Y1rESfW1RucjN4D/lRNJepN4Kfrg1FzTXjN99kAGrKL6C44DAS0jo6pH+SOLIeyJkBVJ+9fiykOZC1AEgdbvx5RCR+ANKzZ0+8/fbbWLFiBb788ktcunQJAwYM0D7+559/OnUfxMcff4wpU6bg1ltvhVwux4gRI/D2229rH7969Sr++OMP1NXVaY+9+eab2rb19fXIzMzEf//7X+3jPj4+ePfdd/HUU09BEAS0bt0aCxcuxMSJE532OoiIiBzF3KyJuU3e0ajU/n/jZVfG1FRedFj/RHdkPfDpaKDxnFB1ifr4fR8yCCEyQfQ6IAcPHsStt96K6upqXLt2DTNnzsS8efO0jz/88MMIDAzE0qVLxeyWS2BeaSIi6zTMyGTJoNTa9qRmrshhT/kRrPV9GYB6BuTTU+ZnNu57cb5FMyAuR6UEFrXXnfnQIVPPhDz5u8XLsfi5dC8cr9lP9BmQjh07oqCgAHv27EFsbKze3ouRI0ciNTVV7G4REZGbsba4nxjFAB3BFQej3RLDIZcBxsp57Fe1RYkQgVjZRcQHVCGoSf0/MyH6/RYABDeLRHy7NKf22WlO7jURfACAAFQXq9sl9TN7Onf5XBI5kldVQnd1jKiJiCxjbfVtZ1brdiRXHYyamwEB1Fmwlvq+BQA4Vh2B9cXt/nnkehAi/PPd8OkzLU7F63J+/xz4YoL5diPeAzrcY7KJu3wuSRfHa/aTpBK6SqXC+++/j9tvvx3t27dHhw4dMHz4cHz44Ydmq4cTEZF3s7b6trOrdTuKsTS3pVWX8fjqX7B/x9fqwe/xH9XLgERkSaG/zaoe+LnHIshC4pASUo7h8QUIanJFp41PSLh7Bx+AOtuVA9q5y+eSyBlEX4IlCAKGDx+O7777Dp06dUKHDh0gCAIKCgowduxYfPnll/j666/F7hYREbmJ/ccrTGZkEgCUVF3G/uMV6JXczOr2UjA1GB2sKe73Q8X1gyJnW7K00J/yxmFA1sPAyb1IvlSK+ip//F7eFIGqy+jY5garK6G7pMTe6ve/ugR6m9ABaPeAJJoOstzhc0nkLKIHICtXrsQPP/yA7du3IyMjQ+exHTt24M4778SHH36I0aNHi901IiJyA5bcjW/Yztr2UjA2GNUU99MjcrYlTUHA0qrLxobciNUUBJTLgKR+kANo/8+XR5Er1MHfp6MBY9VJsl41uwHdHT6XRM4i+hKsNWvWYObMmXrBBwAMGDAAzz77LD7++GOxu0VERG7C0rvxmnbWtpeCoUFmw+J++nvQ/xn05jwrynIsTUFAQH9buUsUBBRb6nB18BfSaH9GSHOLg0J3+FwSOYvoAcjBgweRlZVl9PHbbrsNv/32m4g9IiJyPKVKQG5ROb7JL0ZuUTnXcTuQ5m68saGuDOqN2z2SImxqLwVDg0xNcT/jY/oG2ZZEoCkIGBuq29fYUH/v3CydOhx48hAw5lv1hvMx36pT71o4I+UOn0siZxF9CVZFRQViYoxvzIqJicHFi5YXJyIicjWumsnIU2juxk9enWdsAYzO3Xhr20vB0BKnhsX9TKo556xu6XG5goBSkyssSrVriDt8LomcRfQZEKVSiSZNjMc9CoUC165dE7FHRESOYyqT0eTVecg5VKL3HM6WWM/au/Gufvfe0BKnMoRZ9mRLszI5iEIuQ6/kZrijczx6JTfjANkOrv65JHIW0euAyOVy3HbbbfDz8zP4eH19PXJycqBUipti0BUwrzSRe1OqBPRdsMNoZhvNRt3dMwZoB22cLbGPp1VCb/h5kEOF3X7TECurMHK30PqK2+SaXP1zSbo4XrOf6AHIuHHjLGr3wQcfOLknrocfaCL3ZkmxNgBYM7EneiU3YxEyMqjhYLTtxV1o8/3j/3wmDCzSESkLlrvgQJ7EwPGa/UTfA+KNgQUReQdr0mqaK0Img7oI2aDUWLccQHEgaDvNEie1B4GYYCBnBlB99nqjkObqVK8MPrQ4m0jkPkQPQIiIPJU1aTU9uQgZB4IOljocaDtUne2q5px6z0diby67asDYbKJm7xVnE4lci+gByPjx4y1q9/777zu5J0REjmVNsbZvD5410EKfuxUhs2UgyNkSC9iRbcnTefpsIpEnkqQSemJiIrp06QKRt58QkQi8eTBpTVpNTyxCZstAkLMlZC9Pnk10OJWSM2nkEkQPQCZPnow1a9bg+PHjGDduHB566CFERLDIDpEn4GDyelrNxu9DbKP3wZrZEndh7UCQy2bIEazZe+UU7jKoP7LeyF6iBdxLRKITvQ7Iu+++i5KSEvzf//0fNmzYgISEBNx3333YvHkzZ0SI3Jgt9S88VVb7OOyeMQBrJvbEWyM7Y83Entg9Y4DOYNpQ3QcNdy1C5shN+IB6toQ1UcgcSWcTj6wHFrUHVt0OfDFB/d9F7dXHXcmR9cCno3WDDwCoLlEfd7X+kscTPQABAD8/P4waNQpbt27FkSNHkJaWhsceewwtW7ZETU2NFF0iIjtwMKnPkmJtnlaEzFmb8MmNqZTA8R+B3z9X/1fl+BpfmtlEY6G6DOqZWIfPJrrLoF6lVM98mPoLnfOsU342RMZIngVLLpdDJpNBEASvLD5I5Am4Btt2We3jMCg11iP2zXATPukQacmPNXuvjFGqlMgry8P5uvOICohC1+iuUJhaRmV2UC9TD+rbDpV+OdbJvfpBkg4BqC5Wt2OiAxKJJDMg9fX1WLNmDQYNGoQ2bdrg999/xzvvvINTp04hKChIii6RiFQqJU4fPoiCPd/j9OGDUPGui9uTfA22m7NktsQdWLOszBM34VMDIs8O2DObuO3kNmR+kYnxm8djxo8zMH7zeGR+kYltJ7cZv6A1g3qp1ZxzbDsXo1Qp8XPpz/jur+/wc+nPUHJM4RZEnwF57LHHsHbtWiQkJGD8+PFYs2YNIiMjxe4GSaRw317sWLkcNRUXtMeCIiIxYOwkpKT3lrBnZA8OJknDmzfh0z8kmh2wZTZx28ltmL5rOoRGfS2rK8P0XdOx8JaFGJg4UP+J7jSoD4pxbDsXsu3kNry6/1Wcq7v+PscExODZHs8a/rmRy5AJIu/8lsvluOGGG9ClSxfIZMb/KHz55Zci9so1VFdXIzQ0FFVVVQgJCZG6Ow5XuG8v1i+cb/Tx4dNnMghxU0qVgL4LdpgdTO6eMcBt7+6TdSxJx6xJXAAYXjbjjvtgCOq9HqtuN99uzLeSLvlRqpTI/CJTZ/DakAwyxATEIGdEDhSAbqYrQQV8aMEyMolfIwB1QLiovXr2ydhf6JDmwJO/S79czArGgkfZP39BjAaPDuDp4zUxiD4DMnr0aJOBB3kmlUqJHSuXm2yzc9VyJHdPh9yN/gCSmiPWYJNn0SwrM8XS2RJTvLnujMtyk9mBvLI8o8EHAAgQUFpXirz9i9F97zLdJVfBcUDTCODvizA5qE90gZtqcoV6382nowFjf6GzXnWr4EOpUuLV/a/qBR+A+ucmgwwL9i9ARkKG6b08JBlJChGS9ykuOKyz7MqQS+UXUFxwGAlpHUXqFTmSIwaT5H3s2YTPujMuyk2W/JyvO29Zux//A9TW6h68VIrrA3k3GNSnDgfu+9BIUoBX3a4OiMXBY1keusd2F7FnZCnJs2CRd6ipvOjQduSaPCmjE4nHktmSxljE0IUl9lYPbM0t+ZF4diAqIMqydsprBo7+s5elaTjg4+8eg/rU4ep9NyIWTXTWDKXFwaOF7Uh8DEBIFEFh4Q5tR67LlsEkkTXM1Z2RQV13ZlBqLINfKbjJkp+u0V0RExCDsroyg0t5ZABirl1D18v1Rs4gAH9XAPd8o34trl4JHVD3S6Q9Kc6cobQ4eLSwHYlPkjS85H3i26UhKMJ0trPgZpGIb5cmUo+IyF2xiKEb0Cz5CWk00Axprj7uArMDCrkCz/Z4FsD1jcsamu9nlF+E2VCi7oJ6UN/hHvV/XTX4EJFmhrLx76lmhjLnUIld59cEj41/bhoyyBAbEIuu0V3tug45DwMQEoVcrsCAsZNMtskYM4kb0InILNadcROpw4EnD6kzQY14T/3fJ393ieBDY2DiQCy8ZSGiA6J1jscExGBh6kQMrPvb7DkOVzeFUiVqQlGXZm6GElDPUNrznlkUPPaYwQ3oLoxLsEg0Kem9MXz6TL06IMHNIpExhnVAiMgyrDvjRixY8uOIfQL2nGNg4kBkJGToV0IHgB+XGN3LohKAUjTDsA0qxPywg8kP/mHNDKU9y3U1waOhOiAzesxgHRAXxwCERJWS3hvJ3dPVWbEqLyIoLBzx7dI480FEFmMRQ8/hiH0CjjiHQq4wnC3JyF4Wzc37uVcfhgpyJj9oQMwZSqPBI8cULo9LsEh0crkCCWkd0a5PfySkdWTwQURW0dSdAaC3Apx1Z9yHI/YJOHuvgbG9LKVohslXn8RmVQ8Ajlta5AnEnqHUBI9DWg1B99juDD7cBAMQIiJyO5q6M7GhuoOY2FB/3oV2A47YJyDGXgMA2r0shwd9gmlXpmDklRfQt/4tbfDR8JpMfnB9htJY+C+DeoaKM5TejUuwiIjILbHujPtyxD4BsfYaAADkChwL7Iz1KvNNvT35gWaGcvLqPGNJmDlDSQxAiIjIfbHujHtyxD4BsbOhMfmB5TQzlI335sQ6qA4IAKhUSu4ndWMMQIiIiEhUjhjMix0QMPmBdZw5Q1m4b69eRs2giEgMGMuMmu6Ce0CIiIhIVI7YJyDmXgOlSom8sl8wvM85KAKKIIPuWiwuLTJMM0N5R+d49Epu5rDgY/3C+TrBBwDUVFzA+oXzUbhvr93XIOdjAEJERESickQmM7GyoW07uQ2ZX2Ri/Obx+OR4NpomrkBwm/+gSfAhbRsmPxCHSqXEjpXLTbbZuWo5VCqlSD0iWzEAISIiItE5IpOZs7OhbTu5DdN3TdcpdAcAUFShaYvVmJRVgzUTe2L3jAEMPkRQXHBYb+ajsUvlF1BccFikHpGtuAeEiIiIJOGIfQLO2mugVCnx6v5XIRjY8SFAgAwy7Dz/P8y4+R4uuxJJTeVFh7Yj6TAAISIiIsk4IpOZM7Kh5ZXl6c98NCBAQGldKfLK8gxXUSeHCwoLd2g7kg4DECLyGEzLSESOcr7uvEPbkf3i26UhKCLS5DKs4GaRiG+XJmKvyBYMQIjIIzAtIxE5UlRAlEPbkf3kcgUGjJ2E9QvnG22TMWYSbzy5AW5CJyK3x7SMRORoXaO7IiYgBjIjiX5lkCE2IBZdo7uK3DPvlpLeG8Onz0RQRKTO8eBmkRg+fSZvOLkJzoAQkVuzNC1jcvd03hUjIosp5Ao82+NZTN81HTLIdDaja4KSGT1mQMG/K6JLSe+N5O7pXHLrxjgDQkRujWkZyWWolMDxH4HfP1f/l7UI3N7AxIFYeMtCRAdE6xyPCYjBwlsWYmDiQIl6RnK5AglpHdGuT38kpHVk8OFmOANCRG6NaRnJJRxZD+TMAKrPXj8W0hzIWgCkDpeuX2S3gYkDkZGQgbyyPJyvO4+ogCh0je7KmQ8iOzAAISK3pVQJOFln2SDAW9MyKlWCw+sjUCNH1gOfjgYa14uoLlEfv+9DBiFuTiFXMNWukyhVSgZ3XogBCBG5pZxDJZi74QhKK+swRhGIIGWtka2i3puWUfMelVRd1h6LC/XH7GGprNrsKCqleubDQLE69TEZkPMs0HYowEEVkY5tJ7fh1f2v6tRbiQmIwbM9nuXyNg/HPSBE5HZyDpVg8uo8lFRdhiCT48dmfQEYHgIC3pmWseF71FBp1WVMXp2HnEMlTru2UiUgt6gc3+QXI7eoHEqVsZ+MBzi5V3fZlR4BqC5WtyMirW0nt2H6rul6xR7L6sowfdd0bDu5TaKekRg4A0JEbkWpEjB3wxGdYKMosBU2RWeiX/luBCtrtceDm0UiY4z31QEx9B5p/HNPHnM3HMGg1FiHL8fyulmXGuOVsm1qR+QFlColXt3/qk5mMQ0BAmSQYcH+BchIyOByLA/FAISI3Mr+4xV6d/UBdRDyV0BLNL9cggBlHZ6+4yYMvrWX1818AMbfIw0BQEnVZew/XoFeyc0cdl3NrEvjIYVm1mXJQ109LwgJinFsO0+lUqpngWrOqd+LxN5ckubF8sry9GY+GhIgoLSuFHlledx746G8bglWRUUFHnzwQYSEhCAsLAwTJkxATU2NyecsX74ct9xyC0JCQiCTyVBZWemQ8xKR9coumRhYy+QobhqPwqAU1EcleWXwAZh+j2xpZwlzsy6AetbF45ZjJfZWZ7syugNJBoTEq9t5qyPrgUXtgVW3A19MUP93UXv1cfJK5+vOO7QduR+vmwF58MEHUVJSgq1bt+Lq1asYN24cJk2ahE8++cToc+rq6pCVlYWsrCw899xzDjsvEVkvOtjfoe2cSalU4urVq6JfNzpAjvhg88FXdIAcly87Jgg5cOoi5Kqrpq+ruor9x0rR5QYPy0g2+I1/NqIDujuR/glKBi8ArlyFjw+gUHhZUMwMYWRAVECUQ9uR+5EJguBht6OMKygoQGpqKn7++WfcdNNNAICcnBwMGTIEZ86cQfPmzU0+f9euXcjIyMDFixcRFhbmsPNqVFdXIzQ0FFVVVQgJCbHtRRJ5OKVKQN8FO1Baddng3XYZgNhQf+yeMUCydLOCIKC0tNTgbKk41wfOVV+GUmVohbX6PVLIZYgJ8YfMQW9R3ZVrqKg1H2xFBPogwNcD731drQP+rgRU164fkzcBmoYBPgHaQ2FhYYiNjYXMUW+8K1Mp1TMdRjfpy9SzR0/+zuVYXkapUiLzi0yU1ZUZ3AcigwwxATHIGZHjkntAOF6znwf+K2Bcbm4uwsLCtEECAAwcOBByuRz79u3DXXfdJep56+vrUV9fr/2+urrapusTeROFXIbZw1IxeXUeZDB4vxmzh6VKWutCE3xER0cjICBAksFm1OUrOFtpfHajeZg/gv19HXa92vpraHKxzmy7FuEBCPTz0H96BEEdiCivAgofdeDxz89eEATU1dWhrKwMABAX52F7YQyxJkNYUj/RukXSU8gVeLbHs5i+azpkkOkEIbJ//pLP6DHDJYMPcgwP/VfAsNLSUkRHR+sca9KkCSIiIlBaWir6ebOzszF37lybr0vkrbLax2HJQ131si3FukC2JaVSqQ0+mjVz3AZva/n7+8PXzx9nKy/jqlKlPe6jkKN5mD9Cmzou+AAAPz8BZXUqnWs15qOQIyIk0LPv/jdtauIh9WNlZWWIjo72/OVYzBBGJgxMHIiFtyw0WAdkRo8ZrAPi4TwiAHn22WexYMECk20KCgpE6o3lnnvuOUyfPl37fXV1NRISEiTsEZH7yGofh0GpsS5X5Vuz5yMgIMBMS+cLbeqLEH8f1NYrcU2lQhO5HIF+CqcEADKZDM3D/HGy3PgsSPMwf88OPiyg+VxcvXrV8wMQZggjMwYmDkRGQgYroXshjwhAnn76aYwdO9Zkm1atWiE2NlY7/a1x7do1VFRUIDY21ubr23pePz8/+Pn52XxdIm+nkMscmkbWkVxloC2TyRDkL86f+tCmvkhsBtFmXdyRq3wuRKHJEFZdAsNlQv/ZA+LNGcIICrmCqXa9kEcEIFFRUYiKMp8poVevXqisrMSvv/6Kbt26AQB27NgBlUqF9PR0m6/vrPMSEbkbMWddyMXJFUDWgn+yYBnZsZX1KjegE3khr6oD0q5dO2RlZWHixInYv38/9uzZgylTpmDkyJHaTFXFxcVo27Yt9u/fr31eaWkp8vPzcezYMQDA77//jvz8fFRUVFh8XiIiTyGTyfD111+bfDzIvwnCAnwR5N+EwYc3Sx2uTrUb0mhfVkhzpuAl8mJeFYAAwMcff4y2bdvi1ltvxZAhQ9C3b18sX75c+/jVq1fxxx9/oK7u+jrmpUuXokuXLpg4cSIA4Oabb0aXLl2wfv16i89LROQOSktLMXXqVLRq1Qp+fn5ISEjAsGHDsH37dqdcb9euXUYLvDrKK6+8gt69eyMgIEAnhTqJJHU48OQhYMy3wIj31P998ncGH0RezCOWYFkjIiLCZHHAli1bonFplDlz5mDOnDl2nZeIyFpKlSDqJvsTJ06gT58+CAsLw2uvvYYOHTrg6tWr2Lx5Mx5//HEcPXrUade2lyAIUCqVaNJE/5+1K1eu4N5770WvXr3w3nvvSdA7glzBVLtEpOV1MyBERO4g51AJ+i7YgVErfsITa/MxasVP6LtgB3IOlTjtmo899hhkMhn279+PESNGoE2bNkhLS8P06dPx008/GXyOoRmM/Px8yGQynDhxAgBw8uRJDBs2DOHh4QgMDERaWhq+++47nDhxAhkZGQCA8PBwyGQybUIRlUqF7OxsJCUloWnTpujUqRM+//xzvetu2rQJ3bp1g5+fH3bv3m2wj3PnzsVTTz2FDh062P8mERGR3bxuBoSIyNXlHCrB5NV5enmDSqsuY/LqPCx5qKvDa51UVFQgJycHr7zyCgIDA/Uet2fp0uOPP44rV67ghx9+QGBgII4cOYKgoCAkJCTgiy++wIgRI/DHH38gJCREWysjOzsbq1evxtKlS5GSkoIffvgBDz30EKKiotC/f3/tuZ999lm8/vrraNWqFcLDw23uIxERiYcBCBGRC1GqBMzdcMRg0lIB6txBczccwaDUWIcuxzp27BgEQUDbtm0ddk6NU6dOYcSIEdoZiFatWmkfi4iIAABER0drg5z6+nrMnz8f27ZtQ69evbTP2b17N5YtW6YTgLz00ksYNGiQw/tMRETOwwCEiMiF7D9eoVPdvTEBQEnVZew/XuHQGiiN97450rRp0zB58mRs2bIFAwcOxIgRI9CxY0ej7Y8dO4a6ujq9wOLKlSvo0qWLzrGbbrrJKX0mIiLnYQBCRFYRlErU/fIrrp0/jyZRUQi4qRtknl7RWURll4wHH7a0s1RKSgpkMpnVG83lcvVWwoYBjKYavMYjjzyCzMxMbNy4EVu2bEF2djbeeOMNTJ061eA5a2pqAAAbN25EfHy8zmONi7caWi5GRESujZvQichi1Vu24NitA3FqzBicfeYZnBozBsduHYjqLVuk7prHiA72d2g7S0VERCAzMxPvvvsuamtr9R43liZXUwS2pOT65vj8/Hy9dgkJCfjXv/6FL7/8Ek8//TRWrFgBAPD1VVdHVyqV2rapqanw8/PDqVOn0Lp1a52vhIQEW18iERG5CAYgRGSR6i1bUPzEk7hWWqpz/Nq5cyh+4kkGIQ7SIykCcaH+MLa7QwYgLlSdktfR3n33XSiVSvTo0QNffPEFCgsLUVBQgLffflu7F6MxTVAwZ84cFBYWYuPGjXjjjTd02jz55JPYvHkzjh8/jry8POzcuRPt2rUDACQmJkImk+Hbb7/F+fPnUVNTg+DgYDzzzDN46qmnsGrVKhQVFSEvLw+LFy/GqlWrrH5dp06dQn5+Pk6dOgWlUon8/Hzk5+drZ1rICVRK4PiPwO+fq/+rUpp/DhF5DQYgRGSWoFTi3PxswNA+gX+OnZufDUHJQYa9FHIZZg9LBQC9IETz/exhqU6pB9KqVSvk5eUhIyMDTz/9NNq3b49BgwZh+/btWLJkicHn+Pj4YM2aNTh69Cg6duyIBQsW4OWXX9Zpo1Qq8fjjj6Ndu3bIyspCmzZt8N///hcAEB8fj7lz5+LZZ59FTEwMpkyZAgCYN28eZs2ahezsbO3zNm7ciKSkJKtf14svvoguXbpg9uzZqKmpQZcuXdClSxf88ssvVp+LLHBkPbCoPbDqduCLCer/LmqvPk5EBEAmOHPnIVmluroaoaGhqKqqQkhIiNTdIdKq3bcfp8aMMdvuhlWrEJjeQ4Qeua7Lly/j+PHjSEpKgr+/7cukcg6VYO6GIzob0uNC/TF7WKrDU/CSeBz1+XBZR9YDn44G9PK4/RMw3/chK6CT2+N4zX7chE5EZl07f96h7ci8rPZxGJQaK2oldCK7qJRAzgzoBx+ANol0zrNA26HqyuhE5LUYgBCRWU3+2WjsqHZkGYVc5tBUu0ROdXIvUH3WRAMBqC5Wt0vqJ1q3iMj1cA8IEZkVcFM3NImNBWRG7r7LZGgSG4uAm7qJ2zEich015xzbjog8FgMQIjJLplAgZuZz/3zTKAj55/uYmc+xHgiRNwuKcWw78nzMlua1uASLiCwSMngw8NYinJufrZOKt0lMDGJmPqd+nIi8V2JvIKQ5UF0Cw/tAZOrHE3uL3TNyRUfWq/cMNVy2F9IcyFrARAVegAEIEVksZPBgBN96KyuhE5E+uUI9ePx0NNRZrxoGIf/MnGa9yg3oZDxbWnWJ+jizpXk8LsEiIqvIFAoEpvdA6O1DEZjeg8EHEV2XOlw9eAxplCo6pDkHlaRmNlsa1NnSuBzLo3EGhOymUilRXHAYNZUXERQWjvh2aZDzDhcRkXdKHa5OtXtyr3rDeVCMetkV/10ggNnSCAADELJT4b692LFyOWoqLmiPBUVEYsDYSUhJ5zpfIiKvJFdw8EiGMVsagUuwyA6F+/Zi/cL5OsEHANRUXMD6hfNRuG+vRD0jImeSyWT4+uuvpe4GEbkjZksjMAAhG6lUSuxYudxkm52rlkPFNZwuT6kSkFtUjm/yi5FbVA6lytC6XPIWpaWlmDp1Klq1agU/Pz8kJCRg2LBh2L59u1Out2vXLshkMlRWVjrl/CdOnMCECROQlJSEpk2bIjk5GbNnz8aVK1eccj0iMkOTLQ1G6kpBBoTEM1uah+MSLLJJccFhvZmPxi6VX0BxwWEkpHUUqVdkrZxDJZi74QhKqi5rj8WF+mP2sFRktY8z8UwShUop6jr6EydOoE+fPggLC8Nrr72GDh064OrVq9i8eTMef/xxHD161GnXtpcgCFAqlWjSRPeftaNHj0KlUmHZsmVo3bo1Dh06hIkTJ6K2thavv/66RL0l8mLMlkbgDAjZqKbyokPbkfhyDpVg8uo8neADAEqrLmPy6jzkHCqRqGcEQJ2mclF7YNXtwBcT1P9d1F593Ekee+wxyGQy7N+/HyNGjECbNm2QlpaG6dOn46effjL4HEMzGPn5+ZDJZDhx4gQA4OTJkxg2bBjCw8MRGBiItLQ0fPfddzhx4gQyMjIAAOHh4ZDJZBg7diwAQKVSITs7Wztz0alTJ3z++ed61920aRO6desGPz8/7N69W69/WVlZ+OCDDzB48GC0atUKw4cPxzPPPIMvv/zSMW8aEVmP2dK8HmdAyCZBYeEObUfiUqoEzN1wxGgSRBmAuRuOYFBqLBRyY9Pk5DQS5MivqKhATk4OXnnlFQQGBuo9HhYWZvO5H3/8cVy5cgU//PADAgMDceTIEQQFBSEhIQFffPEFRowYgT/++AMhISFo2rQpACA7OxurV6/G0qVLkZKSgh9++AEPPfQQoqKi0L9/f+25n332Wbz++uto1aoVwsMt+3tTVVWFiIgIm18PETkAs6V5NQYgZJP4dmkIiog0uQwruFkk4tulidgrstT+4xV6Mx8NCQBKqi5j//EK9EpuJl7HyIIc+TJ1jvy2Qx36D/WxY8cgCALatm3rsHNqnDp1CiNGjECHDh0AAK1atdI+pgkEoqOjtUFOfX095s+fj23btqFXr17a5+zevRvLli3TCUBeeuklDBo0yOK+HDt2DIsXL+byKyJXwGxpXotLsMgmcrkCA8ZOMtkmY8wk1gNxUWWXjAcftrQjB7ImR74DCYLzkg9MmzYNL7/8Mvr06YPZs2fj4MGDJtsfO3YMdXV1GDRoEIKCgrRfH374IYqKinTa3nTTTRb3o7i4GFlZWbj33nsxceJEm14LERHZjwEI2SwlvTeGT5+JoIhInePBzSIxfPpM1gFxYdHB/g5tRw4kUY78lJQUyGQyqzeay+Xqf0YaBjBXr17VafPII4/gr7/+wsMPP4zff/8dN910ExYvXmz0nDU1NQCAjRs3Ij8/X/t15MgRnX0gAAwuFzPk7NmzyMjIQO/evbF8uekMfkRE5FxcgkV2SUnvjeTu6ayE7mZ6JEUgLtQfpVWXDS70kQGIDfVHjySukxedRDnyIyIikJmZiXfffRfTpk3TG9hXVlYa3AcSFRUFACgpKdHuwcjPz9drl5CQgH/961/417/+heeeew4rVqzA1KlT4evrCwBQKq+n7E5NTYWfnx9OnTqls9zKVsXFxcjIyEC3bt3wwQcfaIMmIiKSBv8Kk93kcgUS0jqiXZ/+SEjryODDDSjkMswelgpAPxO75vvZw1K5AV0KEubIf/fdd6FUKtGjRw988cUXKCwsREFBAd5++23tXozGWrdujYSEBMyZMweFhYXYuHEj3njjDZ02Tz75JDZv3ozjx48jLy8PO3fuRLt27QAAiYmJkMlk+Pbbb3H+/HnU1NQgODgYzzzzDJ566imsWrUKRUVFyMvLw+LFi7Fq1SqrXlNxcTFuueUW3HDDDXj99ddx/vx5lJaWorS01LY3iYiI7MYAhMhLZbWPw5KHuiI2VHeZVWyoP5Y81JV1QKSiyZEPwGh46KQc+a1atUJeXh4yMjLw9NNPo3379hg0aBC2b9+OJUuWGHyOj48P1qxZg6NHj6Jjx45YsGABXn75ZZ02SqUSjz/+ONq1a4esrCy0adMG//3vfwEA8fHxmDt3Lp599lnExMRgypQpAIB58+Zh1qxZyM7O1j5v48aNSEpKsuo1bd26FceOHcP27dvRokULxMXFab+IiEgaMsGZOw/JKtXV1QgNDUVVVRVCQkKk7g55CaVKwP7jFSi7dBnRweplV5z5sN3ly5dx/PhxJP1/e3ceF2W1/wH887ANu4ACgwQCKooEipBEdjMCAfN69ca15ecCLZqJkFs38PUzFRMwtVwyTW8p3krTTG+5oih5RQRTMVRUMBBTBk1FVBJhOL8/jPk1scgyM2yf9+s1r3ie5zznOec4wXznbK6uMDZuwRyas989XA3rjxPSLR0fBh9cI7/d0tj7g4haDT+vtRzngBB1cvp6EpfabYu4Rj4REXVQDECIiNoqrpFPREQdEAMQapBQKlH+43FUXb8OA1tbmPr5QtLnN7BERERE1DwMQKheZSkpKElIRNUfVosxkMthPysOliEhrVgyIiIiImqvuAoW1aksJQVX3p6qFnwAQFVJCa68PRVlKSmtVDIiIiIias8YgFAtQqlESUIiUNcCab+fK0lIhPjDxmFERERERI3BAIRqKf/xeK2eDzVCoEqhQPmPx3VXKCIiIiLqEBiAUC1V169rNB0RERERUQ0GIFSLga2tRtMREREREdVgAEK1mPr5wkAuB6R6dsOWJBjI5TD189VtwYioTZAkCdu3b2/tYhARUTvFAKSTEkol7mVm4faOnbiXmaU2oVzS14f9rLjfD/4UhPx+bD8rjvuBEHVACoUC0dHRcHNzg0wmg5OTE0aMGIHU1FStPC8tLQ2SJKG0tFQr+QPA3/72Nzg7O8PY2BgODg4YN24crl69qrXnERFRw7gPSCfUmP09LENCgGVLa6ezt+c+IEQ6oqxW4sS1E7hefh22prYYaDcQ+nraC/wLCwsxePBgWFlZYdGiRfDy8kJlZSX27t2LqKgonDt3TmvPbikhBJRKJQwMav9ZCwwMxKxZs+Dg4IArV65g5syZ+Mc//oEjR460QkmJiIg9IJ1MU/b3sAwJQa/U/XBOTkb3xYvhnJyMXqn7GXwQ6cD+S/sRujUUr+19De/+9128tvc1hG4Nxf5L+7X2zMmTJ0OSJGRlZSE8PBzu7u7w9PTE9OnTcfTo0TrvqasHIzs7G5IkobCwEABw6dIljBgxAtbW1jAzM4Onpyd27dqFwsJCBAYGAgCsra0hSRIiIyMBANXV1UhMTISrqytMTEzQv39/fPPNN7Weu3v3bvj6+kImk+Hw4cN1lnHatGl48skn0aNHDzz11FOIjY3F0aNHUVlZ2fJGIyKiJmMPSCfyyP09JAklCYmwCApSDa+S9PVh5j9IxyUl6tz2X9qP6WnTIaD+/+q18muYnjYdHz77IYJ7BGv0mTdv3sSePXuwYMECmJmZ1bpuZWXV7LyjoqLw4MEDHDp0CGZmZjh79izMzc3h5OSErVu3Ijw8HOfPn4elpSVMTEwAAImJifjiiy+wevVq9O7dG4cOHcLYsWNha2uLIUOGqPKOjY3F4sWL4ebmBmtr60bV88svv8RTTz0FQ0PDZteJiIiajwFIJ9KU/T0YdBC1DmW1EklZSbWCDwAQEJAgYWHWQgQ6BWp0OFZ+fj6EEOjbt6/G8qxRVFSE8PBweHl5AQDc3NxU12xsbAAAdnZ2qiCnoqICCQkJ2L9/PwICAlT3HD58GJ9++qlaABIfH4+hQ4c+sgzvvvsuPv74Y5SXl+PJJ5/Ejh07NFU9IiJqIg7B6kS4vwdR23fi2gmUlJfUe11AQFGuwIlrJzT6XFFXz6iGxMTE4P3338fgwYMxZ84c/PTTTw2mz8/PR3l5OYYOHQpzc3PVa8OGDbh48aJaWj8/v0aV4Z133sHJkyeRkpICfX19jB8/Xqt1JiKi+rEHpBPh/h5Ebd/18sZ9AdDYdI3Vu3dvSJLU5InmenoPv8f644f5P8+teOONNxAaGoqdO3ciJSUFiYmJWLJkCaKjo+vM8+7duwCAnTt3wtHRUe2aTCZTO65ruFhdunXrhm7dusHd3R0eHh5wcnLC0aNHVT0sRESkO+wB6US4vwdR22dr2rgvABqbrrFsbGwQGhqKlStX4t69e7Wu17dMru3vX1gUFxerzmVnZ9dK5+TkhEmTJuHbb7/FjBkzsHbtWgCAkZERAED5h6XA+/XrB5lMhqKiIvTq1Uvt5eTk1NwqqlRXVwN4ONSLiIh0jwFIJ8L9PYjavoF2A2Fvag8JdX9RIEGC3FSOgXYDNf7slStXQqlUYtCgQdi6dSvy8vKQm5uL5cuX19tTUBMUzJ07F3l5edi5cyeWLFmilmbq1KnYu3cvCgoKcOLECRw8eBAeHh4AgB49ekCSJOzYsQPXr1/H3bt3YWFhgZkzZ2LatGlITk7GxYsXceLECaxYsQLJyclNqlNmZiY+/vhjZGdn49KlSzhw4ABeeeUV9OzZk70fRESthAFIJ2MZEgLHZUthYG+vdt7A3h6Oy5ZyiV2iVqavp4/YQbEAUCsIqTl+d9C7WtkPxM3NDSdOnEBgYCBmzJiBxx9/HEOHDkVqaipWrVpV5z2GhobYuHEjzp07B29vbyxcuBDvv/++WhqlUomoqCh4eHggLCwM7u7u+OSTTwAAjo6OmDdvHmJjY2Fvb48pU6YAAObPn4/Zs2cjMTFRdd/OnTvh6urapDqZmpri22+/RVBQEPr06YPXX38d3t7e+OGHH2oN5yIiIt2QBGfhtRllZWXo0qULbt++DUtLS60+SyiVD1fFun4dBra2MPXzZc8HkQbcv38fBQUFcHV1hbGxcbPz2X9pP5KyktQmpMtN5Xh30LsaX4KXdEdT7w8iaj26/LzWUXW6Seg3b95EdHQ0vv/+e+jp6SE8PBzLli2Dubl5vfesWbMGX331FU6cOIE7d+7g1q1btdbEd3FxwaVLl9TOJSYmIjY2VhvVaDHu70HUtgX3CEagU6BOd0InIiLShU4XgIwZMwbFxcXYt28fKisr8eqrr2LixIn46quv6r2nvLwcYWFhCAsLQ1xcXL3p4uPjMWHCBNWxhYWFRstORJ2Lvp4+npA/0drFICIi0qhOFYDk5uZiz549OHbsmGrt+BUrVuD555/H4sWL0b179zrvmzp1KgAgLS2twfwtLCwgl8s1WeR2j0O9iIiIiOiPOtUk9IyMDFhZWaltXBUcHAw9PT1kZma2OP+kpCR07doVPj4+WLRoEaqqqhpMX1FRgbKyMrVXR1KWkoL8oGAURUTg6syZKIqIQH5QMMpSUlq7aERERETUSjpVAKJQKGBnZ6d2zsDAADY2NlAoFC3KOyYmBps2bcLBgwfx5ptvIiEhAf/85z8bvCcxMRFdunRRvTSxvn1bUZaSgitvT0XVn9q1qqQEV96eyiCEiIiIqJPqEAFIbGwsJElq8NXU3X2bavr06Xj22Wfh7e2NSZMmYcmSJVixYkWDG13FxcXh9u3bqtfly5e1WkZdEUolShISgboWWPv9XElCIsQfNh4jIiIios6hQ8wBmTFjBiIjIxtM4+bmBrlcjmvXrqmdr6qqws2bNzU+d8Pf3x9VVVUoLCxEnz596kwjk8k65Dr05T8er9XzoUYIVCkUKP/xOFfiIiIiIupkOkQAYmtrC1tb20emCwgIQGlpKY4fPw5fX18AwIEDB1BdXQ1/f3+Nlik7Oxt6enq1hnx1BlXXrzcqXc0wLE5MJyIiIuo8OsQQrMaq2U13woQJyMrKQnp6OqZMmYKXX35ZtQLWlStX0LdvX2RlZanuUygUyM7ORn5+PgAgJycH2dnZuHnzJoCHk9uXLl2KU6dO4eeff8aXX36JadOmYezYsbC2ttZ9RVuZQSOCQQAo/fJLTkwnIiIi6mQ6VQACAF9++SX69u2LoKAgPP/883j66aexZs0a1fXKykqcP38e5eXlqnOrV6+Gj4+Pao+PZ555Bj4+Pvjuu+8APBxKtWnTJgwZMgSenp5YsGABpk2bppZvZ2Lq5wsDuRyQpEal58R0ovZFkiRs3769tYtBRETtlCREXTOFqTWUlZWhS5cuuH37NiwtLVu7OC1SswoWgLono/+ZJMHA3h69UvdzOBa1a/fv30dBQQFcXV1hbGzc2sVpMoVCgQULFmDnzp24cuUK7OzsMGDAAEydOhVBQUEAHgYg27Ztw6hRo1r8vLS0NAQGBuLWrVuwsrJqcX4NqaiogL+/P06dOoWTJ09iwIABWn1eXdr7+4OIOtbntdbS6XpASDcsQ0LguGwpDOztG3fDHyamE9FDQqnEvcws3N6xE/cys7S+clxhYSF8fX1x4MABLFq0CDk5OdizZw8CAwMRFRWl1We3lBDikXsv/fOf/6x3w1kiItIdBiCkNZYhIeiVuh/OycmwGjOmUfc0dgI7UUfXGht5Tp48GZIkISsrC+Hh4XB3d4enpyemT5+Oo0eP1nlPWloaJElCaWmp6lx2djYkSUJhYSEA4NKlSxgxYgSsra1hZmYGT09P7Nq1C4WFhQgMDAQAWFtbQ5Ik1YqG1dXVSExMhKurK0xMTNC/f3988803tZ67e/du+Pr6QiaT4fDhw/XWbffu3UhJScHixYtb1khERNRiHWIVLGq7JH191VK7pV9++cj0jZ3ATtSRqYYw/mn4Ys18KSxbCsuQEI0+8+bNm9izZw8WLFgAMzOzWtdbMjwqKioKDx48wKFDh2BmZoazZ8/C3NwcTk5O2Lp1K8LDw3H+/HlYWlrCxMQEwMONWr/44gusXr0avXv3xqFDhzB27FjY2tpiyJAhqrxjY2OxePFiuLm51bvoR0lJCSZMmIDt27fD1NS02fUgIiLNYABCOlEzMb2qpKTuOSG/zwEx9fPVfeGI2pBHbuQpSShJSIRFUJBG50vl5+dDCIG+fftqLM8aRUVFCA8Ph5eXF4CH+zLVsLGxAQDY2dmpgpyKigokJCRg//79CAgIUN1z+PBhfPrpp2oBSHx8PIYOHVrvs4UQiIyMxKRJk+Dn56fqlSEiotbDIVikE5K+Puxnxf1+8KfVsX4/tp8Vxwno1Ok1ZSNPTdLmeiQxMTF4//33MXjwYMyZMwc//fRTg+nz8/NRXl6OoUOHwtzcXPXasGEDLl68qJbWz8+vwbxWrFiBO3fuIC4ursX1ICIizWAAQjpT38R0A3t7OGphSAlRe9TYeVCani/Vu3dvSJKEc+fONek+Pb2Hf0b+GMBUVlaqpXnjjTfw888/Y9y4ccjJyYGfnx9WrFhRb553794FAOzcuRPZ2dmq19mzZ9XmgQCoc7jYHx04cAAZGRmQyWQwMDBAr169ADwMXCIiIhpfUSIi0hgOwSKdsgwJgUVQ0MNvea9fh4GtLXdCJ/qDxs6D0vR8KRsbG4SGhmLlypWIiYmp9cG+tLS0znkgtr+Xo7i4WDUHIzs7u1Y6JycnTJo0CZMmTUJcXBzWrl2L6OhoGBkZAQCUf1jhq1+/fpDJZCgqKlIbbtUcy5cvx/vvv686vnr1KkJDQ/H111/D39+/RXkTEVHzMAAhnfvjxHQiUtea86VWrlyJwYMHY9CgQYiPj4e3tzeqqqqwb98+rFq1Crm5ubXu6dWrF5ycnDB37lwsWLAAFy5cwJIlS9TSTJ06FcOGDYO7uztu3bqFgwcPwsPDAwDQo0cPSJKEHTt24Pnnn4eJiQksLCwwc+ZMTJs2DdXV1Xj66adx+/ZtpKenw9LSskk9F87OzmrH5ubmAICePXvisccea2oTERGRBnAIFhFRG9Ka86Xc3Nxw4sQJBAYGYsaMGXj88ccxdOhQpKamYtWqVXXeY2hoiI0bN+LcuXPw9vbGwoUL1XocgIe9G1FRUfDw8EBYWBjc3d3xySefAAAcHR0xb948xMbGwt7eHlOmTAEAzJ8/H7Nnz0ZiYqLqvp07d8LV1VXj9SYiIt3iTuhtCHfWJGr/NLXTdVlKCkoSEtUmpBvI5bCfFcf5Uu0Yd0Inav/4ea3lOASLiKgN4nwpIiLqqBiAEBG1UZwvRUREHRHngBARERERkc4wACEiIiIiIp1hAEJERERERDrDAISIiIiIiHSGAQgREREREekMV8EiAiCUSi53SkRERKQDDECo0+OGb0RERES6wyFY1KmVpaTgyttT1YIPAKgqKcGVt6eiLCWllUpG1HZJkoTt27e3djGIiKidYgBCnZZQKlGSkAgIUcfFh+dKEhIhlEodl4yo9SgUCkRHR8PNzQ0ymQxOTk4YMWIEUlNTtfK8tLQ0SJKE0tJSreQPAC4uLpAkSe2VlJSktecREVHDOASLOq3yH4/X6vlQIwSqFAqU/3icu1FTq6iuFijOK8W9sgqYWcrg0NsKenqS1p5XWFiIwYMHw8rKCosWLYKXlxcqKyuxd+9eREVF4dy5c1p7dksJIaBUKmFgUPeftfj4eEyYMEF1bGFhoauiERHRn7AHhDqtquvXNZqOSJMunryGDbOOYPtHJ7Hvs7PY/tFJbJh1BBdPXtPaMydPngxJkpCVlYXw8HC4u7vD09MT06dPx9GjR+u8p64ejOzsbEiShMLCQgDApUuXMGLECFhbW8PMzAyenp7YtWsXCgsLERgYCACwtraGJEmIjIwEAFRXVyMxMRGurq4wMTFB//798c0339R67u7du+Hr6wuZTIbDhw/XWzcLCwvI5XLVy8zMrGWNRUREzcYAhDotA1tbjaYj0pSLJ69hz6enca+0Qu38vdIK7Pn0tFaCkJs3b2LPnj2Iioqq88O5lZVVs/OOiopCRUUFDh06hJycHCxcuBDm5uZwcnLC1q1bAQDnz59HcXExli1bBgBITEzEhg0bsHr1apw5cwbTpk3D2LFj8cMPP6jlHRsbi6SkJOTm5sLb27veMiQlJaFr167w8fHBokWLUFVV1ez6EBFRy3AIFrUL2lgm19TPFwZyOapKSuqeByJJMLC3h6mfb4ueQ9QU1dUC//06r8E0hzfnwbW/rUaHY+Xn50MIgb59+2oszxpFRUUIDw+Hl5cXAMDNzU11zcbGBgBgZ2enCnIqKiqQkJCA/fv3IyAgQHXP4cOH8emnn2LIkCGq++Pj4zF06NAGnx8TE4OBAwfCxsYGR44cQVxcHIqLi/Hhhx9qsppERNRIDECozdPWMrmSvj7sZ8XhyttTAUlSD0Kkhx/s7GfFcT8Q0qnivNJaPR9/dvdWBYrzSuHYx1pjzxV1BeEaEhMTg7feegspKSkIDg5GeHh4g70V+fn5KC8vrxVYPHjwAD4+Pmrn/Pz8Hvn86dOnq3729vaGkZER3nzzTSQmJkImkzWxNkRE1FIcgkVtmraXybUMCYHjsqUwsLdXO29gbw/HZUu5Dwjp3L2yhoOPpqZrrN69e0OSpCZPNNfTe/hn5I8BTGVlpVqaN954Az///DPGjRuHnJwc+Pn5YcWKFfXmeffuXQDAzp07kZ2drXqdPXtWbR4IgGbN5fD390dVVZVqjgoREekWe0CozXrkMrmShJKERFgEBbWol8IyJAQWQUHcCZ3aBDPLxn0j39h0jWVjY4PQ0FCsXLkSMTExtT7Yl5aW1jkPxPb3OVLFxcWwtn7YI5OdnV0rnZOTEyZNmoRJkyYhLi4Oa9euRXR0NIyMjAAAyj8sd92vXz/IZDIUFRWpDbfSlOzsbOjp6cHOzk7jeRMR0aMxAKE2S5fL5Er6+lxql9oEh95WMLOSNTgMy9z64ZK8mrZy5UoMHjwYgwYNQnx8PLy9vVFVVYV9+/Zh1apVyM3NrXVPr1694OTkhLlz52LBggW4cOEClixZopZm6tSpGDZsGNzd3XHr1i0cPHgQHh4eAIAePXpAkiTs2LEDzz//PExMTGBhYYGZM2di2rRpqK6uxtNPP43bt28jPT0dlpaWiIiIaHSdMjIykJmZicDAQFhYWCAjI0M1ob0mYCIiIt3iECxqs7hMLnVGenoS/vJS7wbTPP1ib63sB+Lm5oYTJ04gMDAQM2bMwOOPP46hQ4ciNTUVq1atqvMeQ0NDbNy4EefOnYO3tzcWLlyI999/Xy2NUqlEVFQUPDw8EBYWBnd3d3zyyScAAEdHR8ybNw+xsbGwt7fHlClTAADz58/H7NmzkZiYqLpv586dcHV1bVKdZDIZNm3ahCFDhsDT0xMLFizAtGnTsGbNmma0EBERaYIktDnzkJqkrKwMXbp0we3bt2FpadnaxWl19zKzUNSIbzqdk5PZe0Ftxv3791FQUABXV1cYGxs3O5+LJ6/hv1/nqfWEmFvL8PSLvdHTh0OH2itNvT+IqPXw81rLcQgWtVlcJpc6s54+dnDtb6vTndCJiIh0gUOwqM2qWSb34cGfPnRxmVzqBPT0JDj2sYb7E3I49rFm8EFERB0CAxBq07hMLhEREVHHwiFY1OZxmVwiIiKijoMBCLULXCaXiIiIqGPgECwiIiIiItIZBiBERERERKQzDECIiIiIiEhnGIAQEREREZHOMAChdk8olbiXmYXbO3biXmYWhFLZ2kUi6vRcXFywdOnS1i5GgyIjIzFq1KjWLgYRUafDAITatbKUFOQHBaMoIgJXZ85EUUQE8oOCUZaS0tpFI2p3IiMjIUkSkpKS1M5v374d0p83A32EY8eOYeLEiZosnsYtW7YM69evb9I9kiRh+/btWikPEVFnwQCE2q2ylBRceXsqqhQKtfNVJSW48vZUBiHU7lVXK3H5zE/ITf8Bl8/8hOpq7ffuGRsbY+HChbh161aL8rG1tYWpqamGSqUdXbp0gZWVVWsXg4io02EAQu2SUCpRkpAICFHHxYfnShISORyL2q28zCNYG/U6NsfPwq7li7A5fhbWRr2OvMwjWn1ucHAw5HI5EhMTG0y3detWeHp6QiaTwcXFBUuWLFG7/schWEIIzJ07F87OzpDJZOjevTtiYmJUaSsqKjBz5kw4OjrCzMwM/v7+SEtLa/D5kiRh1apVGDZsGExMTODm5oZvvvlGLU1OTg6ee+45mJiYoGvXrpg4cSLu3r2ruv7nIVjPPvssYmJi8M9//hM2NjaQy+WYO3euWp0A4O9//zskSVIdnzp1CoGBgbCwsIClpSV8fX3x448/Nlh+IqLOjAEItUvlPx6v1fOhRghUKRQo//G47gpFpCF5mUfw3YcJuHvzV7Xzd2/+iu8+TNBqEKKvr4+EhASsWLECv/zyS51pjh8/jhdffBEvv/wycnJyMHfuXMyePbve4Uxbt27FRx99hE8//RR5eXnYvn07vLy8VNenTJmCjIwMbNq0CT/99BNGjx6NsLAw5OXlNVjW2bNnIzw8HKdOncKYMWPw8ssvIzc3FwBw7949hIaGwtraGseOHcOWLVuwf/9+TJkypcE8k5OTYWZmhszMTHzwwQeIj4/Hvn37ADwcVgYA69atQ3Fxsep4zJgxeOyxx3Ds2DEcP34csbGxMDQ0bPA5RESdGQMQapeqrl/XaDqitqK6WokD69c0mOZg8hqtDsf6+9//jgEDBmDOnDl1Xv/www8RFBSE2bNnw93dHZGRkZgyZQoWLVpUZ/qioiLI5XIEBwfD2dkZgwYNwoQJE1TX1q1bhy1btuAvf/kLevbsiZkzZ+Lpp5/GunXrGizn6NGj8cYbb8Dd3R3z58+Hn58fVqxYAQD46quvcP/+fWzYsAGPP/44nnvuOXz88cf497//jZKSknrz9Pb2xpw5c9C7d2+MHz8efn5+SE1NBfBwWBkAWFlZQS6Xq46LiooQHByMvn37onfv3hg9ejT69+/fYNmJiDozBiDULhn8/odfU+mI2ooruWdq9Xz82Z0bv+JK7hmtlmPhwoVITk5W9Sj8UW5uLgYPHqx2bvDgwcjLy4OyjmGPo0ePxm+//QY3NzdMmDAB27ZtQ1VVFYCHw6SUSiXc3d1hbm6uev3www+4ePFig2UMCAiodVxT3tzcXPTv3x9mZmZqZayursb58+frzdPb21vt2MHBAdeuXWuwHNOnT8cbb7yB4OBgJCUlPbLcRESdHQMQapdM/XxhIJcD9a3MI0kwkMth6uer24IRtdDd0sZN/m5suuZ65plnEBoairi4uBbn5eTkhPPnz+OTTz6BiYkJJk+ejGeeeQaVlZW4e/cu9PX1cfz4cWRnZ6teubm5WLZsmQZq0jR/HjolSRKqq6sbvGfu3Lk4c+YMhg8fjgMHDqBfv37Ytm2bNotJRNSuMQChdknS14f9rN8/GP05CPn92H5WHCR9fR2XjKhlzK2sNZquJZKSkvD9998jIyND7byHhwfS09PVzqWnp8Pd3R369fw/Z2JighEjRmD58uVIS0tDRkYGcnJy4OPjA6VSiWvXrqFXr15qL7lc3mD5jh49WuvYw8NDVcZTp07h3r17amXU09NDnz59Gt0Gf2ZoaFhnL4+7uzumTZuGlJQUvPDCC48cPkZE1JkxAKF2yzIkBI7LlsLA3l7tvIG9PRyXLYVlSEgrlYyo+Rw9PGFu063BNBZdu8HRw1PrZfHy8sKYMWOwfPlytfMzZsxAamoq5s+fjwsXLiA5ORkff/wxZs6cWWc+69evx2effYbTp0/j559/xhdffAETExP06NED7u7uGDNmDMaPH49vv/0WBQUFyMrKQmJiInbu3Nlg+bZs2YLPP/8cFy5cwJw5c5CVlaWaZD5mzBgYGxsjIiICp0+fxsGDBxEdHY1x48bB/k+/M5rCxcUFqampUCgUuHXrFn777TdMmTIFaWlpuHTpEtLT03Hs2DFVIERERLUxAKF2zTIkBL1S98M5ORndFy+Gc3IyeqXuZ/BB7Zaenj6ei2x4A7/AiInQ09NN7158fHytIUgDBw7E5s2bsWnTJjz++ON47733EB8fj8jIyDrzsLKywtq1azF48GB4e3tj//79+P7779G1a1cAD1eVGj9+PGbMmIE+ffpg1KhROHbsGJydnRss27x587Bp0yZ4e3tjw4YN2LhxI/r16wcAMDU1xd69e3Hz5k088cQT+Mc//oGgoCB8/PHHLWqPJUuWYN++fXBycoKPjw/09fVx48YNjB8/Hu7u7njxxRcxbNgwzJs3r0XPISLqyCQh6tpIoeO6efMmoqOj8f3330NPTw/h4eFYtmwZzM3N600/Z84cpKSkoKioCLa2thg1ahTmz5+PLl26qNIVFRXhrbfewsGDB2Fubo6IiAgkJibCwMCg0WUrKytDly5dcPv2bVhaWra4rkSke/fv30dBQQFcXV1hbGzc7HzyMo/gwPo1ahPSLbp2Q2DERPT2f0oTRW3XJEnCtm3b1PbxaA809f4gotbDz2st1/hPxx3EmDFjUFxcjH379qGyshKvvvoqJk6ciK+++qrO9FevXsXVq1exePFi9OvXD5cuXcKkSZNw9epV1aZXSqUSw4cPh1wux5EjR1BcXIzx48fD0NAQCQkJuqweEXUQvf2fQs8n/B+uilV6C+ZW1nD08NRZzwcREZG2dKoekNzcXPTr1w/Hjh2Dn58fAGDPnj14/vnn8csvv6B79+6NymfLli0YO3Ys7t27BwMDA+zevRt//etfcfXqVdXY4tWrV+Pdd9/F9evXYWRk1Kh8GVETtX/8hls32ANCRK2Fn9darlPNAcnIyICVlZUq+ACA4OBg6OnpITMzs9H51LzhaoZXZWRkwMvLS21iY2hoKMrKynDmTP1r9VdUVKCsrEztRUREjyaEaHfBBxERPdSpAhCFQgE7Ozu1cwYGBrCxsYFCoWhUHr/++ivmz5+PiRP/f5KoQqGotapKzXFD+SYmJqJLly6ql5OTU2OrQkRERETULnWIACQ2NhaSJDX4OnfuXIufU1ZWhuHDh6Nfv36YO3dui/OLi4vD7du3Va/Lly+3OE8iahs60ehWagK+L4iIOsgk9BkzZtS7/GMNNzc3yOVyXLt2Te18VVUVbt68+cgNr+7cuYOwsDBYWFhg27ZtarvlyuVyZGVlqaUvKSlRXauPTCaDTCZr8LlE1L7U/G4oLy+HiYlJK5eG2pry8nIAtXdcJyLqTDpEAGJrawtbW9tHpgsICEBpaSmOHz8OX19fAMCBAwdQXV0Nf3//eu8rKytDaGgoZDIZvvvuu1oTBwMCArBgwQJcu3ZNNcRr3759sLS0VK1JT0Sdg76+PqysrFRfdpiamkKSpFYuFbU2IQTKy8tx7do1WFlZ1btjPBFRZ9CpVsECgGHDhqGkpASrV69WLcPr5+enWob3ypUrCAoKwoYNGzBo0CCUlZUhJCQE5eXl2LZtG8zMzFR52draQl9fH0qlEgMGDED37t3xwQcfQKFQYNy4cXjjjTeatAwvV1Ug6hiEEFAoFCgtLW3tolAbY2VlBblczqCUqB3j57WW6xA9IE3x5ZdfYsqUKQgKClJtRLh8+XLV9crKSpw/f17VTX7ixAnVClm9evVSy6ugoAAuLi7Q19fHjh078NZbbyEgIABmZmaIiIhAfHy87ipGRG2GJElwcHCAnZ0dKisrW7s41EYYGhqy54OICJ2wB6QtY0RNRERE1Lbx81rLdYhVsIiIiIiIqH1gAEJERERERDrDAISIiIiIiHSm001Cb8tqpuOUlZW1ckmIiIiIqC41n9M4jbr5GIC0IXfu3AEAODk5tXJJiIiIiKghd+7cQZcuXVq7GO0SV8FqQ6qrq3H16lVYWFjofI34srIyODk54fLly1zRoRnYfi3D9ms+tl3LsP1ahu3XMmy/lmmt9hNC4M6dO+jevTv09DiboTnYA9KG6Onp4bHHHmvVMlhaWvKXYAuw/VqG7dd8bLuWYfu1DNuvZdh+LdMa7ceej5Zh2EZERERERDrDAISIiIiIiHSGAQgBAGQyGebMmQOZTNbaRWmX2H4tw/ZrPrZdy7D9Wobt1zJsv5Zh+7VfnIROREREREQ6wx4QIiIiIiLSGQYgRERERESkMwxAiIiIiIhIZxiAEBERERGRzjAA6SRu3ryJMWPGwNLSElZWVnj99ddx9+7dBtNHR0ejT58+MDExgbOzM2JiYnD79m21dEVFRRg+fDhMTU1hZ2eHd955B1VVVdqujs41tf0AYM2aNXj22WdhaWkJSZJQWlpaK42LiwskSVJ7JSUlaakWrUdb7decfNuj5tTz/v37iIqKQteuXWFubo7w8HCUlJSopfnze0+SJGzatEmbVdGJlStXwsXFBcbGxvD390dWVlaD6bds2YK+ffvC2NgYXl5e2LVrl9p1IQTee+89ODg4wMTEBMHBwcjLy9NmFVqVptsvMjKy1vssLCxMm1VoVU1pvzNnziA8PFz1t2Dp0qUtzrO903T7zZ07t9b7r2/fvlqsATUGA5BOYsyYMThz5gz27duHHTt24NChQ5g4cWK96a9evYqrV69i8eLFOH36NNavX489e/bg9ddfV6VRKpUYPnw4Hjx4gCNHjiA5ORnr16/He++9p4sq6VRT2w8AysvLERYWhlmzZjWYLj4+HsXFxapXdHS0JoveJmir/ZqTb3vUnHpOmzYN33//PbZs2YIffvgBV69exQsvvFAr3bp169Tef6NGjdJSLXTj66+/xvTp0zFnzhycOHEC/fv3R2hoKK5du1Zn+iNHjuCVV17B66+/jpMnT2LUqFEYNWoUTp8+rUrzwQcfYPny5Vi9ejUyMzNhZmaG0NBQ3L9/X1fV0hlttB8AhIWFqb3PNm7cqIvq6FxT26+8vBxubm5ISkqCXC7XSJ7tmTbaDwA8PT3V3n+HDx/WVhWosQR1eGfPnhUAxLFjx1Tndu/eLSRJEleuXGl0Pps3bxZGRkaisrJSCCHErl27hJ6enlAoFKo0q1atEpaWlqKiokJzFWhlLW2/gwcPCgDi1q1bta716NFDfPTRRxosbdujrfbT1Pu6rWtOPUtLS4WhoaHYsmWL6lxubq4AIDIyMlTnAIht27ZpreytYdCgQSIqKkp1rFQqRffu3UViYmKd6V988UUxfPhwtXP+/v7izTffFEIIUV1dLeRyuVi0aJHqemlpqZDJZGLjxo1aqEHr0nT7CSFERESEGDlypFbK29Y0tf3+qL6/By3Js73RRvvNmTNH9O/fX4OlJE1gD0gnkJGRASsrK/j5+anOBQcHQ09PD5mZmY3O5/bt27C0tISBgYEqXy8vL9jb26vShIaGoqysDGfOnNFcBVqZptqvPklJSejatSt8fHywaNGiDjeETVvtp+1/l7aiOfU8fvw4KisrERwcrDrXt29fODs7IyMjQy1tVFQUunXrhkGDBuHzzz+HaMdbQz148ADHjx9Xq7eenh6Cg4Nr1btGRkaGWnrg4e+xmvQFBQVQKBRqabp06QJ/f/9682yvtNF+NdLS0mBnZ4c+ffrgrbfewo0bNzRfgVbWnPZrjTzbKm3WNS8vD927d4ebmxvGjBmDoqKilhaXWsigtQtA2qdQKGBnZ6d2zsDAADY2NlAoFI3K49dff8X8+fPVhn0oFAq14AOA6rix+bYHmmi/+sTExGDgwIGwsbHBkSNHEBcXh+LiYnz44Yctyrct0Vb7afPfpS1pTj0VCgWMjIxgZWWldt7e3l7tnvj4eDz33HMwNTVFSkoKJk+ejLt37yImJkbj9dCFX3/9FUqlss7fS+fOnavznvp+j9W0U81/G0rTUWij/YCHw69eeOEFuLq64uLFi5g1axaGDRuGjIwM6Ovra74iraQ57dcaebZV2qqrv78/1q9fjz59+qC4uBjz5s3DX/7yF5w+fRoWFhYtLTY1EwOQdiw2NhYLFy5sME1ubm6Ln1NWVobhw4ejX79+mDt3bovzayt01X4NmT59uupnb29vGBkZ4c0330RiYiJkMplWn91SbaH92rO20H6zZ89W/ezj44N79+5h0aJF7TYAobbp5ZdfVv3s5eUFb29v9OzZE2lpaQgKCmrFklFnMGzYMNXP3t7e8Pf3R48ePbB582a1ea2kWwxA2rEZM2YgMjKywTRubm6Qy+W1JnBVVVXh5s2bDU7aAoA7d+4gLCwMFhYW2LZtGwwNDVXX5HJ5rdUpalbZeVS+bYEu2q+p/P39UVVVhcLCQvTp00ejeWtaa7efLv9dtEGb7SeXy/HgwQOUlpaq9YKUlJQ02Db+/v6YP38+Kioq2nwAXJdu3bpBX1+/1mpfDdVbLpc3mL7mvyUlJXBwcFBLM2DAAA2WvvVpo/3q4ubmhm7duiE/P79DBSDNab/WyLOt0lVdrays4O7ujvz8fI3lSU3HOSDtmK2tLfr27dvgy8jICAEBASgtLcXx48dV9x44cADV1dXw9/evN/+ysjKEhITAyMgI3333HYyNjdWuBwQEICcnR+3D0b59+2BpaYl+/fppvsIapu32a47s7Gzo6enVGnLTFrV2++ny30UbtNl+vr6+MDQ0RGpqqurc+fPnUVRUhICAgHrLlJ2dDWtr63YZfACAkZERfH191epdXV2N1NTUeusdEBCglh54+HusJr2rqyvkcrlamrKyMmRmZjbYlu2RNtqvLr/88gtu3LihFtB1BM1pv9bIs63SVV3v3r2Lixcvdrj3X7vT2rPgSTfCwsKEj4+PyMzMFIcPHxa9e/cWr7zyiur6L7/8Ivr06SMyMzOFEELcvn1b+Pv7Cy8vL5Gfny+Ki4tVr6qqKiGEEFVVVeLxxx8XISEhIjs7W+zZs0fY2tqKuLi4VqmjNjW1/YQQori4WJw8eVKsXbtWABCHDh0SJ0+eFDdu3BBCCHHkyBHx0UcfiezsbHHx4kXxxRdfCFtbWzF+/Hid10/btNF+jcm3o2hO+02aNEk4OzuLAwcOiB9//FEEBASIgIAA1fXvvvtOrF27VuTk5Ii8vDzxySefCFNTU/Hee+/ptG6atmnTJiGTycT69evF2bNnxcSJE4WVlZVqtb5x48aJ2NhYVfr09HRhYGAgFi9eLHJzc8WcOXOEoaGhyMnJUaVJSkoSVlZW4j//+Y/46aefxMiRI4Wrq6v47bffdF4/bdN0+925c0fMnDlTZGRkiIKCArF//34xcOBA0bt3b3H//v1WqaM2NbX9KioqxMmTJ8XJkyeFg4ODmDlzpjh58qTIy8trdJ4diTbab8aMGSItLU0UFBSI9PR0ERwcLLp16yauXbum8/rR/2MA0kncuHFDvPLKK8Lc3FxYWlqKV199Vdy5c0d1vaCgQAAQBw8eFEL8/9Kndb0KCgpU9xUWFophw4YJExMT0a1bNzFjxgzVMr0dSVPbT4iHS//V1X7r1q0TQghx/Phx4e/vL7p06SKMjY2Fh4eHSEhI6JB/lLXRfo3Jt6NoTvv99ttvYvLkycLa2lqYmpqKv//976K4uFh1fffu3WLAgAHC3NxcmJmZif79+4vVq1cLpVKpy6ppxYoVK4Szs7MwMjISgwYNEkePHlVdGzJkiIiIiFBLv3nzZuHu7i6MjIyEp6en2Llzp9r16upqMXv2bGFvby9kMpkICgoS58+f10VVWoUm26+8vFyEhIQIW1tbYWhoKHr06CEmTJjQIT8812hK+9X8v/vn15AhQxqdZ0ej6fZ76aWXhIODgzAyMhKOjo7ipZdeEvn5+TqsEdVFEqIdr7lIRERERETtCueAEBERERGRzjAAISIiIiIinWEAQkREREREOsMAhIiIiIiIdIYBCBERERER6QwDECIiIiIi0hkGIEREREREpDMMQIiIiIiISGcYgBAR6UBkZCQkScKkSZNqXYuKioIkSYiMjKyVXpIkGBoawt7eHkOHDsXnn3+O6upqtftPnTqFv/3tb7Czs4OxsTFcXFzw0ksv4dq1a9quVofm4uKCpUuXPjLdmjVr8Oyzz8LS0hKSJKG0tFTrZSMias8YgBAR6YiTkxM2bdqE3377TXXu/v37+Oqrr+Ds7FwrfVhYGIqLi1FYWIjdu3cjMDAQb7/9Nv7617+iqqoKAHD9+nUEBQXBxsYGe/fuRW5uLtatW4fu3bvj3r17OqtbZ1ZeXo6wsDDMmjWrtYtCRNQuMAAhItKRgQMHwsnJCd9++63q3LfffgtnZ2f4+PjUSi+TySCXy+Ho6IiBAwdi1qxZ+M9//oPdu3dj/fr1AID09HTcvn0b//rXv+Dj4wNXV1cEBgbio48+gqura71lqaiowLvvvgsnJyfIZDL06tULn332mer6Dz/8gEGDBkEmk8HBwQGxsbGqoAcAnn32WURHR2Pq1KmwtraGvb091q5di3v37uHVV1+FhYUFevXqhd27d6vuSUtLgyRJ2LlzJ7y9vWFsbIwnn3wSp0+fVivb1q1b4enpCZlMBhcXFyxZskTtuouLCxISEvDaa6/BwsICzs7OWLNmjVqay5cv48UXX4SVlRVsbGwwcuRIFBYWqq5HRkZi1KhRWLx4MRwcHNC1a1dERUWhsrJSVb9Lly5h2rRpqp6o+kydOhWxsbF48skn601DRET/jwEIEZEOvfbaa1i3bp3q+PPPP8err77a6Pufe+459O/fXxXEyOVyVFVVYdu2bRBCNDqf8ePHY+PGjVi+fDlyc3Px6aefwtzcHABw5coVPP/883jiiSdw6tQprFq1Cp999hnef/99tTySk5PRrVs3ZGVlITo6Gm+99RZGjx6Np556CidOnEBISAjGjRuH8vJytfveeecdLFmyBMeOHYOtrS1GjBih+uB//PhxvPjii3j55ZeRk5ODuXPnYvbs2aqAq8aSJUvg5+eHkydPYvLkyXjrrbdw/vx5AEBlZSVCQ0NhYWGB//73v0hPT4e5uTnCwsLw4MEDVR4HDx7ExYsXcfDgQSQnJ2P9+vWq53z77bd47LHHEB8fj+LiYhQXFze6bYmI6BEEERFpXUREhBg5cqS4du2akMlkorCwUBQWFgpjY2Nx/fp1MXLkSBEREVErfV1eeukl4eHhoTqeNWuWMDAwEDY2NiIsLEx88MEHQqFQ1FuW8+fPCwBi3759dV6fNWuW6NOnj6iurladW7lypTA3NxdKpVIIIcSQIUPE008/rbpeVVUlzMzMxLhx41TniouLBQCRkZEhhBDi4MGDAoDYtGmTKs2NGzeEiYmJ+Prrr4UQQvzP//yPGDp0qFp53nnnHdGvXz/VcY8ePcTYsWNVx9XV1cLOzk6sWrVKCCHEv//971rlr6ioECYmJmLv3r1CiIft26NHD1FVVaVKM3r0aPHSSy+pPeejjz6qs43qUlO/W7duNfoeIqLOiD0gREQ6ZGtri+HDh2P9+vVYt24dhg8fjm7dujUpDyGE2pCgBQsWQKFQYPXq1fD09MTq1avRt29f5OTk1Hl/dnY29PX1MWTIkDqv5+bmIiAgQO0ZgwcPxt27d/HLL7+oznl7e6t+1tfXR9euXeHl5aU6Z29vDwC1JsMHBASofraxsUGfPn2Qm5urevbgwYPV0g8ePBh5eXlQKpV1PluSJMjlctVzTp06hfz8fFhYWMDc3Bzm5uawsbHB/fv3cfHiRdV9np6e0NfXVx07ODhw4j4RkQ4YtHYBiIg6m9deew1TpkwBAKxcubLJ9+fm5taa39G1a1eMHj0ao0ePRkJCAnx8fLB48WIkJyfXut/ExKR5Bf8TQ0NDteOaFbv+eAyg1qpd2np2zXPu3r0LX19ffPnll7Xus7W1bVQeRESkPewBISLSsZq5CDVzFZriwIEDyMnJQXh4eL1pjIyM0LNnz3pXwfLy8kJ1dTV++OGHOq97eHggIyNDbU5Jeno6LCws8NhjjzWpvHU5evSo6udbt27hwoUL8PDwUD07PT1dLX16ejrc3d3VeisaMnDgQOTl5cHOzg69evVSe3Xp0qXR5TQyMlLrdSEiIs1gAEJEpGP6+vrIzc3F2bNnG/xQXVFRAYVCgStXruDEiRNISEjAyJEj8de//hXjx48HAOzYsQNjx47Fjh07cOHCBZw/fx6LFy/Grl27MHLkyDrzdXFxQUREBF577TVs374dBQUFSEtLw+bNmwEAkydPxuXLlxEdHY1z587hP//5D+bMmYPp06dDT6/lfzbi4+ORmpqK06dPIzIyEt26dcOoUaMAADNmzEBqairmz5+PCxcuIDk5GR9//DFmzpzZ6PzHjBmDbt26YeTIkfjvf/+rql9MTIzaELJHcXFxwaFDh3DlyhX8+uuv9aZTKBTIzs5Gfn4+ACAnJwfZ2dm4efNmo59FRNSZcAgWEVErsLS0fGSaPXv2wMHBAQYGBrC2tkb//v2xfPlyREREqAKBfv36wdTUFDNmzMDly5chk8nQu3dv/Otf/8K4cePqzXvVqlWYNWsWJk+ejBs3bsDZ2Vm1j4WjoyN27dqFd955B/3794eNjQ1ef/11/O///q9G6p6UlIS3334beXl5GDBgAL7//nsYGRkBeNh7sXnzZrz33nuYP38+HBwcEB8fr7ZJ46OYmpri0KFDePfdd/HCCy/gzp07cHR0RFBQUKPavUZ8fDzefPNN9OzZExUVFfWuMrZ69WrMmzdPdfzMM88AANatW9ekchMRdRaSqO83KhERkQalpaUhMDAQt27dgpWVVWsXh4iIWgmHYBERERERkc4wACEiIiIiIp3hECwiIiIiItIZ9oAQEREREZHOMAAhIiIiIiKdYQBCREREREQ6wwCEiIiIiIh0hgEIERERERHpDAMQIiIiIiLSGQYgRERERESkMwxAiIiIiIhIZxiAEBERERGRzjAAISIiIiIinWEAQkREREREOsMAhIiIiIiIdIYBCBERERER6QwDECIiIiIi0hkGIEREREREpDMMQIiIiIiISGcYgBARERERkc4wACEiIiIiIp1hAEJERERERDrDAISIiIiIiHSGAQgREREREekMAxAiIiIiItKZ/wMJswXf7ibyVAAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "180b8f7e43c442819c91da5f4b8d2d26", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUZf7A8c/M9uxm00hICCEkFOmIqIigiIJgwdNDPT09QUU9RVTKneV+niBi5BS7Yrk75cSzop6KNBFFFEGlKL0l1BRCerbvzO+PXPZYUkgglXzfr1demtlnZp7ZbMJ853me71fRdV1HCCGEEEIIIZqA2twdEEIIIYQQQrQdEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQQgghhBCiyUgAIoQQQgghhGgyEoAIIYQQQgghmowEIEIIIYQQQogmIwGIEEIIIYQQoslIACKEEEIIIYRoMhKACCGEEEIIIZqMBCBCCCGEEEKIJiMBiBBCCCGEEKLJSAAihBBCCCGEaDISgAghhBBCCCGajAQgQgghhBBCiCYjAYgQosXKyspCURTefPPN5u7KKWv69OkoitLc3TghnTt3Zvz48c3dDSGEEPUkAYgQDejNN99EUZTQl9VqpUOHDowaNYrnn3+e0tLSKvtU3gBWfqmqSlJSEpdffjk//PBDlfa//vorV199NampqVitVpKTkxk5ciQvvPBClbbBYJA33niDCy64gNjYWCwWC507d+bmm2/mp59+qvYaXn75ZRRFYdCgQTVeZ2Vf58yZU+N7UNPxW5ItW7Ywffp0srKymrsrp6wvvviC6dOnN3c3GtT333/P9OnTKSoqatDjLl++nFtuuYXu3bsTERFBeno6EyZMIDs7u87HOPpvidFoJDY2loEDB3LvvfeyZcuWOh+nc+fOKIrCiBEjqn399ddfD53n6N/1Y/+eRURE0KlTJ8aMGcMbb7yB1+ut9nifffYZw4YNIyEhIXTt1157LYsXL65zn4UQrYcEIEI0gkcffZS33nqLuXPnMmnSJADuu+8++vbtyy+//FLtPnPnzuWtt97izTff5O6772bTpk2cf/75bNiwIdTm+++/58wzz2Tjxo3cdtttvPjii0yYMAFVVXnuuefCjud2u7n88su55ZZb0HWdhx56iLlz53LTTTexevVqzj77bA4cOFClH2+//TadO3dm7dq17Nq1q9brfPLJJ3G5XPV8d1qOLVu2MGPGjDYdgPzf//0fbre70Y7/xRdfMGPGjEY7fnP4/vvvmTFjRoMHIPfffz9ff/01V111Fc8//zzXXXcd77//PgMGDCAnJ6fOxxk5ciRvvfUWb7zxBo8++ihnnHEG8+bNo3///jz99NN1Po7VamXFihXVnvvtt9/GarXWuG/l37MXXniBCRMmUFBQwC233MLZZ5/N/v37w9o+9dRTXHHFFSiKwoMPPsgzzzzD2LFj2blzJ++++26d+yuEaEV0IUSDeeONN3RA//HHH6u8tnz5ct1ms+mpqam6y+UKbX/kkUd0QD98+HBY+02bNumA/tBDD4W2XXrppXp8fLxeWFhY5fi5ublh30+cOFEH9GeeeaZK20AgoD/55JP6/v37w7bv2bNHB/SPPvpIj4+P16dPn17tdQL66aefrgP6nDlz6vwe1FdmZqYO6G+88cZJH6s6H3zwgQ7oK1asaNDjlpWVNejx6sPtduvBYLDZzn+sys9hY0hNTdXHjRvXKMeuzZNPPqkDemZmZoMe95tvvqnys/vmm290QP/LX/5Sp2MA+sSJE6tsz8/P1wcPHqwD+sKFC497nNTUVP2iiy7SnU6n/uyzz4a9tn//fl1VVX3s2LFVftdr+num67o+f/58XVVVfdCgQaFtfr9fdzqd+siRI6vtx7F/14QQpwYZARGiiVx44YU8/PDD7N27l/nz5x+3fWJiIgBGozG0bffu3fTu3Zvo6Ogq7RMSEkL/f+DAAV599VVGjhzJfffdV6WtwWBg2rRpdOzYMWz722+/TUxMDJdddhlXX301b7/9do39GzJkCBdeeCF/+9vfTvgJelFREZMnT6Zz585YLBY6duzITTfdRH5+fo37XHDBBVxwwQVVto8fP57OnTuHbXv33XcZOHAgkZGROJ1O+vbtGxopevPNN7nmmmsAGD58eGjKyNdffx3af9GiRZx33nnY7XYiIyO57LLL2Lx5c5XzOhwOdu/ezaWXXkpkZCQ33HADADt37mTs2LEkJiZitVrp2LEj1113HcXFxbW+LxdccAF9+vTh559/5txzz8Vms5GWlsYrr7wS1u7rr79GURTeffdd/u///o/k5GQiIiIoKSkB4IMPPmDgwIHYbDbatWvHjTfeyMGDB8OOUdMakPnz54f2jY2N5brrrqvy5BpgzZo1XHrppcTExGC32+nXr1/oPR4/fjwvvfQSED41qJKmaTz77LP07t0bq9VK+/btueOOOygsLAw7h67rPPbYY3Ts2JGIiAiGDx9e5edQm/LycqZOnUpKSgoWi4XTTjuNp556Cl3Xw9opisLdd9/NJ598Qp8+fbBYLPTu3TtsGtD06dP505/+BEBaWlromipH0QKBADNnzqRLly6hKY8PPfRQjVOPjnb++eejqmqVbbGxsWzdurXO11uduLg43n33XYxGI7NmzarTPlarld/+9rf8+9//Dtv+zjvvEBMTw6hRo+rVhxtuuIEJEyawZs0ali1bBkB+fj4lJSUMGTKk2n2O/rtWk2XLljF06FCio6NxOBycdtppPPTQQ6HXK39P3nvvPR566CESExOx2+1cccUVVT7T3377Lddccw2dOnXCYrGQkpLC5MmTq/0bt23bNq699lri4+Ox2Wycdtpp/OUvfwlrc/DgQW655Rbat28f+jz985//PO41CXGqMx6/iRCiofzhD3/goYceYunSpdx2221hrxUUFAAVN2UHDx5k5syZWK1Wrr322lCb1NRUVq9ezaZNm+jTp0+N51m0aBGBQIA//OEP9erf22+/zW9/+1vMZjPXX389c+fO5ccff+Sss86qtv306dM5//zzmTt3LlOmTKnXucrKyjjvvPPYunUrt9xyC2eccQb5+fl8+umnHDhwgHbt2tXreMdatmwZ119/PRdddBGzZ88GYOvWrXz33Xfce++9nH/++dxzzz08//zzPPTQQ/Ts2RMg9N+33nqLcePGMWrUKGbPno3L5WLu3LkMHTqU9evXhwU7gUCAUaNGMXToUJ566ikiIiLw+XyMGjUKr9fLpEmTSExM5ODBg3z++ecUFRURFRVVa/8LCwu59NJLufbaa7n++ut5//33ufPOOzGbzdxyyy1hbWfOnInZbGbatGl4vV7MZjNvvvkmN998M2eddRYZGRnk5uby3HPP8d1337F+/fpqg9hKs2bN4uGHH+baa69lwoQJHD58mBdeeIHzzz8/bN9ly5Zx+eWXk5SUxL333ktiYiJbt27l888/59577+WOO+7g0KFDLFu2jLfeeqvKee64445QP++55x4yMzN58cUXWb9+Pd999x0mkwmAv/71rzz22GNceumlXHrppaxbt46LL74Yn89X63sIFcHLFVdcwYoVK7j11ls5/fTTWbJkCX/60584ePAgzzzzTFj7VatW8dFHH3HXXXcRGRnJ888/z9ixY9m3bx9xcXH89re/ZceOHbzzzjs888wzoc9pfHw8ABMmTGDevHlcffXVTJ06lTVr1pCRkcHWrVv5+OOPj9vfY5WVlVFWVnbSvw8AnTp1YtiwYaxYsYKSkhKcTudx9/n973/PxRdfzO7du+nSpQsA//73v7n66qtDP5/6+MMf/sBrr73G0qVLGTlyJAkJCdhsNj777DMmTZpEbGxsvY63efNmLr/8cvr168ejjz6KxWJh165dfPfdd1Xazpo1C0VRuP/++8nLy+PZZ59lxIgRbNiwAZvNBlQE7S6XizvvvJO4uDjWrl3LCy+8wIEDB/jggw9Cx/rll18477zzMJlM3H777XTu3Jndu3fz2WefhQK83NxczjnnnFBgGx8fz6JFi7j11lspKSmp9uGQEG1GM4/ACHFKqcv0o6ioKH3AgAGh7yunLBz7FR0drS9evDhs36VLl+oGg0E3GAz64MGD9T//+c/6kiVLdJ/PF9Zu8uTJOqCvX7++zn3/6aefdEBftmyZruu6rmma3rFjR/3ee++t0pajpnkMHz5cT0xMDE0rq+sUrL/+9a+h6V7H0jRN1/Xqp2ANGzZMHzZsWJV9xo0bp6empoa+v/fee3Wn06kHAoEa+1DTFKzS0lI9Ojpav+2228K25+Tk6FFRUWHbx40bpwP6Aw88ENZ2/fr1OqB/8MEHNZ6/JsOGDasyvc3r9eqnn366npCQEPp5r1ixQgf09PT0sGl9Pp9PT0hI0Pv06aO73e7Q9s8//1wH9L/+9a+hbZWfv0pZWVm6wWDQZ82aFdanX3/9VTcajaHtgUBAT0tL01NTU6tMCaz8+el6zVOwvv32Wx3Q33777bDtixcvDtuel5enm81m/bLLLgs77kMPPaQDx52C9cknn+iA/thjj4Vtv/rqq3VFUfRdu3aFtgG62WwO27Zx40Yd0F944YXQtpqmYG3YsEEH9AkTJoRtnzZtmg7oX331Va19rc7MmTN1QF++fHmd2h/9u1mde++9Vwf0jRs31nqc1NRU/bLLLtMDgYCemJioz5w5U9d1Xd+yZYsO6N988021v+u1TcHSdV0vLCzUAf2qq64Kbav8W2C32/VLLrlEnzVrlv7zzz/X6XqfeeaZWs+n6//7PUlOTtZLSkpC299//30d0J977rnQtqN/jyplZGToiqLoe/fuDW07//zz9cjIyLBtuh7+2b/11lv1pKQkPT8/P6zNddddp0dFRVV7LiHaCpmCJUQTczgc1WbDWrBgAcuWLWPp0qW88cYbdO/enbFjx/L999+H2owcOZLVq1dzxRVXsHHjRv72t78xatQokpOT+fTTT0PtKqfgREZG1rlfb7/9Nu3bt2f48OFAxXSU3/3ud7z77rsEg8Ea95s+fTo5OTlVpgcdz4IFC+jfvz9XXXVVldcaIi1sdHQ05eXloake9bFs2TKKioq4/vrryc/PD30ZDAYGDRrEihUrquxz5513hn1fOcKxZMmSE1qobzQaueOOO0Lfm81m7rjjDvLy8vj555/D2o4bNy70BBfgp59+Ii8vj7vuuitsofBll11Gjx49WLhwYY3n/eijj9A0jWuvvTbs2hMTE+nWrVvo2tevX09mZib33XdfldGUuvz8PvjgA6Kiohg5cmTYeQYOHIjD4Qid58svv8Tn8zFp0qSw49b16fEXX3yBwWDgnnvuCds+depUdF1n0aJFYdtHjBgRetIP0K9fP5xOJ3v27KnTuYAqo4FTp04FqPV9r87KlSuZMWMG1157LRdeeGG99q2Jw+EAqPZvUHUMBgPXXnst77zzDlDxdyIlJYXzzjuvwc4/Y8YM/v3vfzNgwACWLFnCX/7yFwYOHMgZZ5xx3KlnlZ+9//znP2iaVmvbm266Kexv4tVXX01SUlLo5waE/R6Vl5eTn5/Pueeei67rrF+/HoDDhw+zcuVKbrnlFjp16hR2jsrPqK7rLFiwgDFjxqDrethnfNSoURQXF7Nu3bpa+yvEqUwCECGaWFlZWbWBwfnnn8+IESMYOXIk48ePZ/ny5URGRoayaFU666yz+OijjygsLGTt2rU8+OCDlJaWcvXVV4fSbFZOrajrTUYwGOTdd99l+PDhZGZmsmvXLnbt2sWgQYPIzc1l+fLlNe57/vnnM3z48HqvBdm9e3et08hO1l133UX37t255JJL6NixI7fcckudU3ru3LkTqFi3Ex8fH/a1dOlS8vLywtobjcYq62nS0tKYMmUKf//732nXrh2jRo3ipZdeOu76j0odOnTAbreHbevevTtAlaxdaWlpYd/v3bsXgNNOO63KcXv06BF6vTo7d+5E13W6detW5dq3bt0auvbdu3cDnPDPcOfOnRQXF5OQkFDlPGVlZaHzVPa1W7duYfvHx8cTExNz3PPs3buXDh06VPmdq5xqd+x7cewNJUBMTEyVdSk1nUtVVbp27Rq2PTExkejo6Frf92Nt27aNq666ij59+vD3v/897LWCggJycnJCX3X9TEHF3x+o38OJ3//+92zZsoWNGzfy73//m+uuu+6EHxLUdP7rr7+eb7/9lsLCQpYuXcrvf/971q9fz5gxY/B4PDUe73e/+x1DhgxhwoQJtG/fPpQ5rLpg5NjPkKIodO3aNez3ad++fYwfP57Y2FgcDgfx8fEMGzYMIPQ+VwajtX32Dx8+TFFREa+99lqVz/fNN98MUOXviBBtiawBEaIJHThwgOLi4io3KNVxOBwMGjSI//znP5SXl1e5GTWbzZx11lmcddZZdO/enZtvvpkPPviARx55hB49egAVNUNOP/30457rq6++Ijs7m3fffbfatJdvv/02F198cY37P/LII1xwwQW8+uqrta4taAiKolRZPAxUGaVJSEhgw4YNLFmyhEWLFrFo0SLeeOMNbrrpJubNm1frOSpvXt56661QMoCjHZ0YAMBisVRZPAwwZ84cxo8fz3/+8x+WLl3KPffcQ0ZGBj/88EOVgOVkHP3U9mRpmoaiKCxatAiDwVDl9con2A1xnoSEhBoTHVSuqWhq1V0zUO1nriYnO4K3f/9+Lr74YqKiovjiiy+q3Kz/9re/5Ztvvgl9P27cuDoX69y0aRMGg6FK0FqbQYMG0aVLF+677z4yMzP5/e9/X+d9qzs/UOPfQKfTyciRIxk5ciQmk4l58+axZs2aUBBwLJvNxsqVK1mxYgULFy5k8eLFvPfee1x44YUsXbq0xp9ndYLBICNHjqSgoID777+fHj16YLfbOXjwIOPHjz/uCMvRKtveeOONjBs3rto2/fr1q/PxhDjVSAAiRBOqXIhb1+wxgUAAqHhqeGwAcrQzzzwTIFSw7JJLLsFgMDB//vw6LUR/++23SUhICGUsOtpHH33Exx9/zCuvvFLjje6wYcO44IILmD17Nn/961+Pez6ALl26hG5G6iMmJqba6TDVPV02m82MGTOGMWPGoGkad911F6+++ioPP/wwXbt2rfFGsXIKTkJCQo2F2Oqqb9++9O3bl//7v//j+++/Z8iQIbzyyis89thjte536NChKoHnjh07AKpk+zpWamoqANu3b68ydWf79u2h16vTpUsXdF0nLS0tNOJSUzuouKGs7T2q7T3+8ssvGTJkSK0BVGVfd+7cSXp6emj74cOH6zQqkZqaypdffklpaWnYjfy2bdvCjl8fNV1Tamoqmqaxc+fO0AgLVCxGLioqqtO5jhw5wsUXX4zX62X58uUkJSVVaTNnzpywa+/QoUOd+r1v3z6++eYbBg8eXK8REKgYoXjsscfo2bNnnR5q1KQ+fwPPPPNM5s2bd9xCjKqqctFFF3HRRRfx9NNP8/jjj/OXv/yFFStWhH02K0c2K+m6zq5du0KBwK+//sqOHTuYN28eN910U6jdsdM4Kz+Htf39io+PJzIykmAweNJ/Q4Q4FckULCGayFdffcXMmTNJS0sLpWmtTUFBAd9//z2JiYmhVJQrVqyo9kls5Rzmyik3KSkp3HbbbSxdurTaCumapjFnzhwOHDiA2+3mo48+4vLLL+fqq6+u8nX33XdTWloatsakOpVrQV577bXjXhvA2LFj2bhxY7WZgWp72tylSxe2bdvG4cOHQ9s2btxYJevNkSNHwr5XVTV0o1GZErXy5v7YgnKjRo3C6XTy+OOP4/f7q/Th6HPXpKSkJBRAVurbty+qqtYpJWsgEODVV18Nfe/z+Xj11VeJj49n4MCBte575plnkpCQwCuvvBJ2rkWLFrF161Yuu+yyGvf97W9/i8FgYMaMGVV+Drquh97XM844g7S0NJ599tkq79/R+9X0Hl977bUEg0FmzpxZ7bVXth8xYgQmk4kXXngh7LjPPvtsjddwtEsvvZRgMMiLL74Ytv2ZZ55BURQuueSSOh3naDVd06WXXlpt3yqL/9X2vkPFmoNLL72UgwcP8sUXX1SZMlRp4MCBjBgxIvTVq1ev4/a5oKCA66+/nmAwWCVVbF1MmDCBRx55hDlz5tR730r//ve/+fvf/87gwYO56KKLAHC5XKxevbra9pXrc6qbSlipMnvg0SoDpGN/z/71r3+FTUv98MMPyc7ODn0GKkdLjv6c6bpepchrfHw8559/Pv/85z/Zt29f2GuV+xoMBsaOHcuCBQuqDVTq8jdEiFOZjIAI0QgWLVrEtm3bCAQC5Obm8tVXX7Fs2TJSU1P59NNPq60g/OGHH+JwONB1nUOHDvGPf/yDwsJCXnnlldAT10mTJuFyubjqqqvo0aMHPp+P77//nvfee4/OnTuH5hZDxVPS3bt3c88994QCjJiYGPbt28cHH3zAtm3buO666/j0008pLS3liiuuqPZazjnnHOLj43n77bf53e9+V+M1Dxs2jGHDhoVNDanNn/70Jz788EOuueYabrnlFgYOHEhBQQGffvopr7zyCv379692v1tuuYWnn36aUaNGceutt5KXl8crr7xC7969Q4vvgVD15QsvvJCOHTuyd+9eXnjhBU4//fTQ0+nTTz8dg8HA7NmzKS4uxmKxcOGFF5KQkMDcuXP5wx/+wBlnnMF1111HfHw8+/btY+HChQwZMqTKDe2xvvrqK+6++26uueYaunfvTiAQ4K233grdmBxPhw4dmD17NllZWXTv3p333nuPDRs28Nprrx03/anJZGL27NncfPPNDBs2jOuvvz6Uhrdz585Mnjy5xn27dOnCY489xoMPPkhWVhZXXnklkZGRZGZm8vHHH3P77bczbdo0VFVl7ty5jBkzhtNPP52bb76ZpKQktm3bxubNm1myZAlAKFi65557GDVqFAaDgeuuu45hw4Zxxx13kJGRwYYNG7j44osxmUzs3LmTDz74gOeee46rr76a+Ph4pk2bRkZGBpdffjmXXnop69evZ9GiRXVKTTtmzBiGDx/OX/7yF7Kysujfvz9Lly7lP//5D/fdd1/YgvO6qrymv/zlL1x33XWYTCbGjBlD//79GTduHK+99hpFRUUMGzaMtWvXMm/ePK688spQgoea3HDDDaxdu5ZbbrmFrVu3hi3AdjgcXHnllXXq344dO5g/fz66rlNSUsLGjRv54IMPKCsr4+mnn2b06NH1vubU1FSmT59e5/aVf898Ph8HDx5kyZIlfPfdd/Tv3z8sna3L5eLcc8/lnHPOYfTo0aSkpFBUVMQnn3zCt99+y5VXXsmAAQNqPM+jjz7KypUrueyyy0hNTSUvL4+XX36Zjh07MnTo0LC2sbGxDB06lJtvvpnc3FyeffZZunbtGkqJ3qNHD7p06cK0adM4ePAgTqeTBQsWVDvS9vzzzzN06FDOOOMMbr/9dtLS0sjKymLhwoVs2LABgCeeeIIVK1YwaNAgbrvtNnr16kVBQQHr1q3jyy+/rDZ4EqLNaNqkW0Kc2irTUlZ+mc1mPTExUR85cqT+3HPPhaWArFRdGl673a4PHjxYf//998PaLlq0SL/lllv0Hj166A6HQzebzXrXrl31SZMmVVsxOBAI6H//+9/18847T4+KitJNJpOempqq33zzzaEUvWPGjNGtVqteXl5e43WNHz9eN5lMoXSS1JDqszLdJXWshH7kyBH97rvv1pOTk3Wz2ax37NhRHzduXOg8NVVCnz9/vp6enq6bzWb99NNP15csWVIlDe+HH36oX3zxxXpCQoJuNpv1Tp066XfccYeenZ0ddqzXX39dT09P1w0GQ5WUvCtWrNBHjRqlR0VF6VarVe/SpYs+fvx4/aeffgq1GTdunG6326tc2549e/RbbrlF79Kli261WvXY2Fh9+PDh+pdffnnc92XYsGF679699Z9++kkfPHiwbrVa9dTUVP3FF18Ma1f5fteU6ve9997TBwwYoFssFj02Nla/4YYb9AMHDoS1OTYNb6UFCxboQ4cO1e12u2632/UePXroEydO1Ldv3x7WbtWqVfrIkSP1yMhI3W636/369QtLWRsIBPRJkybp8fHxuqIoVc712muv6QMHDtRtNpseGRmp9+3bV//zn/+sHzp0KNQmGAzqM2bM0JOSknSbzaZfcMEF+qZNm+pcCb20tFSfPHmy3qFDB91kMundunXTn3zyybCUqbpe8+e6uvPMnDlTT05O1lVVDUvJ6/f79RkzZuhpaWm6yWTSU1JS9AcffFD3eDzH7Wdqamq1KbmBsM92bY7eR1VVPTo6Wh8wYIB+77336ps3b67TMSr7ctlll9XaprY0vJVfVqtV79ixo3755Zfr//znP6u8D36/X3/99df1K6+8Uk9NTdUtFoseERGhDxgwQH/yySd1r9dbax+WL1+u/+Y3v9E7dOigm81mvUOHDvr111+v79ixI9Sm8vfknXfe0R988EE9ISFBt9ls+mWXXVYlje6WLVv0ESNG6A6HQ2/Xrp1+2223hVIxH/t3aNOmTfpVV12lR0dH61arVT/ttNP0hx9+OKxNbm6uPnHiRD0lJUU3mUx6YmKiftFFF+mvvfZardclxKlO0fV6rKwTQgjR6C644ALy8/NPaI1MfT388MNkZGRUmS4mxKni66+/Zvjw4XzwwQdcffXVzd0dIQSyBkQIIdq07OzsBqmyLYQQQtSVrAERQog2aM+ePXz88cd88MEHXH755c3dHSGEEG2IjIAIIUQbVFlle9iwYaEsTUIIIURTkDUgQgghhBBCiCYjIyBCCCGEEEKIJiMBiBBCCCGEEKLJyCL0FkTTNA4dOkRkZGSo8JwQQgghhGg5dF2ntLSUDh06oKryLP9ESADSghw6dIiUlJTm7oYQQgghhDiO/fv307Fjx+buRqskAUgLEhkZCVR8oJ1OZzP3RghRm7V7Crhl3o/HbffPcWdxdnpsE/RICCFEUygpKSElJSV03ybqTwKQFqRy2pXT6ZQARIgWbni/SJITdpNT7KG6VIIKkBhlZXi/VAyqTKkUQohTjUyXP3EycU0IIU6AQVV4ZEwvoCLYOFrl94+M6dXgwUdQ01m9+wj/2XCQ1buPENQkk7oQQojWRUZAhBDiBI3uk8TcG89gxmdbyC72hLYnRll5ZEwvRvdJatDzLd6UXeVcSY10LiGEEKKxSCHCFqSkpISoqCiKi4tlCpYQrUhQ01mbWUBeqYeESCtnp8U2+MjH4k3Z3Dl/XZXpXpVnmXvjGRKECCFEE5D7tZMnIyBCCHGSDKrC4C5xjXb8oKYz47Mt1a410akIQmZ8toWRvRJlvYkQJ0DTNHw+X3N3Q7QQJpMJg8HQ3N04pUkAIoQQLdzazIKwaVfH0oHsYg9rMwsaNRAS4lTk8/nIzMxE07Tm7opoQaKjo0lMTJSF5o1EAhAhhGjh8kprDj5OpJ0QooKu62RnZ2MwGEhJSZGicgJd13G5XOTl5QGQlCRTWxuDBCBCCNHCJURaG7TdiWiKdS5CNLVAIIDL5aJDhw5EREQ0d3dEC2Gz2QDIy8sjISFBpmM1AglAhBCihTs7LZakKOtxa46cndY4BQ8l+5Y4VQWDQQDMZnMz90S0NJUBqd/vlwCkEchYoxBCtHDNVXME/pd969g1KDnFHu6cv47Fm7Ib/JxCNDWZ5y+OJZ+JxiUBiBBCtAKVNUcSo8KnWSVGWRstBe/xsm9BRfYtKYYohBCiPmQKlhBCtBKj+yQxsldik63FkOxbQrRuiqLw8ccfc+WVVzZ3V4QIIyMgQgjRilTWHPnN6ckM7hLXqAvBJfuWEC1XTk4OkyZNIj09HYvFQkpKCmPGjGH58uWNcr6vv/4aRVEoKipqlOMDzJo1i3PPPZeIiAiio6Mb7Tyi+ckIiBBCiGq1hOxbQrQGTZ0lLisriyFDhhAdHc2TTz5J37598fv9LFmyhIkTJ7Jt27ZGO/fJ0nWdYDCI0Vj1FtTn83HNNdcwePBg/vGPfzRD70RTkREQIYQQ1arMvlXTbZRCRTasxsq+JURrsHhTNkNnf8X1r//Ave9u4PrXf2Do7K8aNUHDXXfdhaIorF27lrFjx9K9e3d69+7NlClT+OGHH6rdp7oRjA0bNqAoCllZWQDs3buXMWPGEBMTg91up3fv3nzxxRdkZWUxfPhwAGJiYlAUhfHjxwMVVeQzMjJIS0vDZrPRv39/PvzwwyrnXbRoEQMHDsRisbBq1apq+zhjxgwmT55M3759T/5NEi2ajIAIIYSoVmX2rTvnr0OBsMXojZ19S4jWoDJL3LFpGCqzxDVGgoiCggIWL17MrFmzsNvtVV4/malLEydOxOfzsXLlSux2O1u2bMHhcJCSksKCBQsYO3Ys27dvx+l0hmplZGRkMH/+fF555RW6devGypUrufHGG4mPj2fYsGGhYz/wwAM89dRTpKenExMTc8J9FKcGCUCEEELUqDL71rF1QBKlDoho446XJU6hIkvcyF6JDRqk79q1C13X6dGjR4Mds9K+ffsYO3ZsaAQiPT099FpsbMVIZ0JCQijI8Xq9PP7443z55ZcMHjw4tM+qVat49dVXwwKQRx99lJEjRzZ4n0XrJAGIEEKIWjV19i0hWoPmyhKn642X9vqee+7hzjvvZOnSpYwYMYKxY8fSr1+/Gtvv2rULl8tVJbDw+XwMGDAgbNuZZ57ZKH0WrZMEIEIIIY6rMvuWEKJCc2WJ69atG4qi1HuhuapWLPs9OoDx+/1hbSZMmMCoUaNYuHAhS5cuJSMjgzlz5jBp0qRqj1lWVgbAwoULSU5ODnvNYrGEfV/ddDHRdskidCGEEG1GUNNZvfsI/9lwkNW7j0gRRXHCmitLXGxsLKNGjeKll16ivLy8yus1pcmNj48HIDv7f4vjN2zYUKVdSkoKf/zjH/noo4+YOnUqr7/+OgBmsxmAYDAYaturVy8sFgv79u2ja9euYV8pKSkneomiDZARECGEOAU0dRrQ1mjxpuwqa1mSZC2LOEGVWeJyij3VrgNRqFgr1RhZ4l566SWGDBnC2WefzaOPPkq/fv0IBAIsW7aMuXPnsnXr1ir7VAYF06dPZ9asWezYsYM5c+aEtbnvvvu45JJL6N69O4WFhaxYsYKePXsCkJqaiqIofP7551x66aXYbDYiIyOZNm0akydPRtM0hg4dSnFxMd999x1Op5Nx48bV67r27dtHQUEB+/btIxgMhgKkrl274nA4TuzNEi2SBCBCCNHKyY318TVHtiJxamvOLHHp6emsW7eOWbNmMXXqVLKzs4mPj2fgwIHMnTu32n1MJhPvvPMOd955J/369eOss87iscce45prrgm1CQaDTJw4kQMHDuB0Ohk9ejTPPPMMAMnJycyYMYMHHniAm2++mZtuuok333yTmTNnEh8fT0ZGBnv27CE6OpozzjiDhx56qN7X9de//pV58+aFvq9cR7JixQouuOCCeh9PtFyK3pirmUS9lJSUEBUVRXFxMU6ns7m7I4RoBWq6sa685ZEb64rRoaGzv6pxwXDlk+pV918oo0ZtjMfjITMzk7S0NKzWE5sqJQ8ATk21fTbkfu3kyQiIEEK0Us2VBrQhNcXUsebKViTaBskSJ0T9SQAihBCtVGu/sW6qJ8fNla1ItB2SJU6I+pEsWEII0Uq15hvryqljxwZQlWsyFm/KrmHP+muubEXHIxm5hBBtlYyACCFEK9VSb6yPp6mnjjVntqKayLoBIURbJiMgQgjRSlXeWNd0i65QcVPblDfWdVGfqWMNoTJbEVDlvWrsbEXVacrRHyGEaIkkABFCiFbq6BvrYzXHjXVdNcfUsdF9kph74xkkRoWPBiVGWZs0U9jxRn+gYvRHpmMJIU5lMgVLCCFauagIE0Uuf9i26AgTGb/t2yKn8zTX1LGWkK2otScOEEKIhiABiBBCtFI11QABKDwmIGlJmnNNRnNnK2rNiQOEEKKhyBQsIYRohWqbygP/W8jdEqfytLQ1GU2ptSYOEEKIhiQBiBBCtEJNvZC7obWUNRlNrbUmDhCtk6IofPLJJ83dDSGqkABECCFaoVNhKs/oPkmsuv9C3rntHJ677nTeue0cVt1/4SkbfEDbHv0RDSsnJ4dJkyaRnp6OxWIhJSWFMWPGsHz58kY539dff42iKBQVFTXK8bOysrj11ltJS0vDZrPRpUsXHnnkEXw+X6OcTzQvWQMihBCt0Kkylae512Q0h8rRn2PrgCRKHZDWSwvC3u+hLBcc7SH1XFANjXa6rKwshgwZQnR0NE8++SR9+/bF7/ezZMkSJk6cyLZt2xrt3CdL13WCwSBGY/gt6LZt29A0jVdffZWuXbuyadMmbrvtNsrLy3nqqaeaqbeiscgIiBBCtEIylad1a4ujP6esLZ/Cs31g3uWw4NaK/z7bp2J7I7nrrrtQFIW1a9cyduxYunfvTu/evZkyZQo//PBDtftUN4KxYcMGFEUhKysLgL179zJmzBhiYmKw2+307t2bL774gqysLIYPHw5ATEwMiqIwfvx4ADRNIyMjIzRy0b9/fz788MMq5120aBEDBw7EYrGwatWqKv0bPXo0b7zxBhdffDHp6elcccUVTJs2jY8++qhh3jTRosgIiBBCtEKVU3nunL8OBcIWo8tUntahLY7+nHK2fArv3wTHpoMoya7Yfu2/oNcVDXrKgoICFi9ezKxZs7Db7VVej46OPuFjT5w4EZ/Px8qVK7Hb7WzZsgWHw0FKSgoLFixg7NixbN++HafTic1mAyAjI4P58+fzyiuv0K1bN1auXMmNN95IfHw8w4YNCx37gQce4KmnniI9PZ2YmJg69ae4uJjYWHmIciqSAEQIIVopmcojRDPSgrD4fqoEH/DfbQosfgB6XNag07F27dqFruv06NGjwY5Zad++fYwdO5a+ffsCkJ6eHnqtMhBISEgIBTler5fHH3+cL7/8ksGDB4f2WbVqFa+++mpYAPLoo48ycuTIOvdl165dvPDCCzL96hQlAYgQQrRiLaG4nhBt0t7voeRQLQ10KDlY0S7tvAY7ra43Xmrte+65hzvvvJOlS5cyYsQIxo4dS79+/Wpsv2vXLlwuV5XAwufzMWDAgLBtZ555Zp37cfDgQUaPHs0111zDbbfdVr+LEK2CBCBCCNHKyVQeIZpBWW7Dtqujbt26oShKvReaq2rFst+jAxi/P7xg6YQJExg1ahQLFy5k6dKlZGRkMGfOHCZNmlTtMcvKygBYuHAhycnJYa9ZLJaw76ubLladQ4cOMXz4cM4991xee+21Ou0jWh9ZhC6EEEIIUV+O9g3bro5iY2MZNWoUL730EuXl5VVerylNbnx8PADZ2dmhbRs2bKjSLiUlhT/+8Y989NFHTJ06lddffx0As9kMQDAYDLXt1asXFouFffv20bVr17CvlJSUel/bwYMHueCCCxg4cCBvvPFGKGgSpx75yQohhBBC1FfqueDsQNWKLpUUcCZXtGtgL730EsFgkLPPPpsFCxawc+dOtm7dyvPPPx9ai3GsyqBg+vTp7Ny5k4ULFzJnzpywNvfddx9LliwhMzOTdevWsWLFCnr27AlAamoqiqLw+eefc/jwYcrKyoiMjGTatGlMnjyZefPmsXv3btatW8cLL7zAvHnz6nVNlcFHp06deOqppzh8+DA5OTnk5OSc2JskWjQJQIQQQggh6ks1wOjZ//2mhrKSo59olHog6enprFu3juHDhzN16lT69OnDyJEjWb58OXPnzq12H5PJxDvvvMO2bdvo168fs2fP5rHHHgtrEwwGmThxIj179mT06NF0796dl19+GYDk5GRmzJjBAw88QPv27bn77rsBmDlzJg8//DAZGRmh/RYuXEhaWlq9rmnZsmXs2rWL5cuX07FjR5KSkkJf4tSj6I25mknUS0lJCVFRURQXF+N0Opu7O0II0eiCmi4L6EWz8Xg8ZGZmkpaWhtV6gkU7t3xakQ3r6AXpzuSK4KOBU/CKplPbZ0Pu106eLEIXQgjRLBZvyq6SQjhJUgiL1qbXFRWpdpuwEroQrZ0EIEIIIZrc4k3Z3Dl/XZUKCjnFHu6cv465N55RYxAioyaixVENDZpqV4hTnQQgQgjRgmhakINbN1NWVIgjOobknr1RT7EnqUFNZ8ZnW2or38aMz7YwsldilcBCRk2EEKL1kwBECCFaiJ1rvuerN1+jrCA/tM0R244Lx99Ot0ENn0mnuazNLAgLII6lA9nFHtZmFoTVNzmZURMhhBAth2TBEkKIFmDnmu/59OnHw4IPgLKCfD59+nF2rvm+mXrW8PJKaw4+amp3vFETqBg1CWqSV0UIIVo6CUCEEKKZaVqQr96sveLvinmvoWnBWtu0FgmRdcs2dHS7+oyaCCGEaNkkABFCiGZ2cOvmKiMfxyo9ks/BrZubqEeN6+y0WJKirLWVbyMpqmJxeaUTGTURQgjRMkkAIoQQzaysqLBB27V0BlXhkTG9gBrLt/HImF5hC9BPZNRECCFEyyQBiBBCNDNHdEyDtmsNRvdJYu6NZ5AYFR4wJEZZq11MfiKjJkK0dYqi8MknnzR3N4SoQgIQIYRoZsk9e+OIbVdrm8i4diT37N1EPWoao/skser+C3nntnN47rrTeee2c1h1/4XVZrI6kVETIU5lOTk5TJo0ifT0dCwWCykpKYwZM4bly5c3yvm+/vprFEWhqKioUY4PcMUVV9CpUyesVitJSUn84Q9/4NChQ8ffUbQ6EoAIIUQzU1UDF46/vdY2w8fdfsrVA4GKwGJwlzh+c3oyg7vE1RpA1HfURIhTVVZWFgMHDuSrr77iySef5Ndff2Xx4sUMHz6ciRMnNnf3aqXrOoFAoNrXhg8fzvvvv8/27dtZsGABu3fv5uqrr27iHoqmIAGIEEK0AN0GncsVUx6qMhISGdeOK6Y8dErVATkZ9Rk1EaKpBLUgP+b8yBd7vuDHnB8JNnLGurvuugtFUVi7di1jx46le/fu9O7dmylTpvDDDz9Uu091IxgbNmxAURSysrIA2Lt3L2PGjCEmJga73U7v3r354osvyMrKYvjw4QDExMSgKArjx48HQNM0MjIySEtLw2az0b9/fz788MMq5120aBEDBw7EYrGwatWqavs4efJkzjnnHFJTUzn33HN54IEH+OGHH/D7/Sf/pokWRQoRCiHEUTRNJ3tnEeUlXuxOC0ndolGbaFpPt0Hn0uWsQad8JfSTVTlqIkRL8OXeL3li7RPkunJD29pHtOeBsx9gROqIBj9fQUEBixcvZtasWdjt9iqvR0dHn/CxJ06ciM/nY+XKldjtdrZs2YLD4SAlJYUFCxYwduxYtm/fjtPpxGazAZCRkcH8+fN55ZVX6NatGytXruTGG28kPj6eYcOGhY79wAMP8NRTT5Genk5MzPHXsxUUFPD2229z7rnnYjKZTviaRMskAYgQQvzX7vV5fPveTsqLvKFt9mgL5/2uG10GJDRJH1TVQErvfk1yLiHEyfly75dM+XoK+jElMvNceUz5egpPX/B0gwchu3btQtd1evTo0aDHBdi3bx9jx46lb9++AKSnp4dei42tSPCQkJAQCnK8Xi+PP/44X375JYMHDw7ts2rVKl599dWwAOTRRx9l5MiRx+3D/fffz4svvojL5eKcc87h888/b6jLEy2ITMESQggqgo/Fr24KCz4Ayou8LH51E7vX5zVTz4QQLVFQC/LE2ieqBB9AaNvstbMbfDqWrlc9X0O55557eOyxxxgyZAiPPPIIv/zyS63td+3ahcvlYuTIkTgcjtDXv/71L3bv3h3W9swzz6xTH/70pz+xfv16li5disFg4KabbmrUaxbNQ0ZAhBBtnqbpfPvezlrbrHp/J2n945tsOpYQomVbl7cubNrVsXR0clw5rMtbx1mJZzXYebt164aiKGzbtq1e+6lqxTPno2/mj11bMWHCBEaNGsXChQtZunQpGRkZzJkzh0mTJlV7zLKyMgAWLlxIcnJy2GsWiyXs++qmi1WnXbt2tGvXju7du9OzZ09SUlL44YcfQiMs4tQgIyBCiDYve2dRlZGPY5UVesneWdQ0HRJCtHiHXYcbtF1dxcbGMmrUKF566SXKy8urvF5Tmtz4+HgAsrOzQ9s2bNhQpV1KSgp//OMf+eijj5g6dSqvv/46AGazGYBg8H8jOr169cJisbBv3z66du0a9pWSknKilxiiaRpQMdVLnFokABFCtHnlJXX7x62u7YQQp774iPgGbVcfL730EsFgkLPPPpsFCxawc+dOtm7dyvPPP1/jSEFlUDB9+nR27tzJwoULmTNnTlib++67jyVLlpCZmcm6detYsWIFPXv2BCA1NRVFUfj88885fPgwZWVlREZGMm3aNCZPnsy8efPYvXs369at44UXXmDevHn1uqY1a9bw4osvsmHDBvbu3ctXX33F9ddfT5cuXWT04xQkAYgQos2zOy3Hb1SPdqeSoKazevcRPl53gH98u4eP1x9k9e4jBDWZky3atjMSzqB9RHuUKqUxKygoJEYkckbCGQ1+7vT0dNatW8fw4cOZOnUqffr0YeTIkSxfvpy5c+dWu4/JZOKdd95h27Zt9OvXj9mzZ/PYY4+FtQkGg0ycOJGePXsyevRounfvzssvvwxAcnIyM2bM4IEHHqB9+/bcfffdAMycOZOHH36YjIyM0H4LFy4kLS2tXtcUERHBRx99xEUXXcRpp53GrbfeSr9+/fjmm2+qTOcSrZ+iy8qeFqOkpISoqCiKi4txOp3N3R0h2gxN0/nXQ9/XOg3LEWPhD7PObVNrQBZvymbGZ1vILvZUeS0pysojY3pJ/Q3Rqnk8HjIzM0lLS8NqtR5/h2NUZsECwhajVwYljZEFSzSN2j4bcr928mQERAjR5qmqwnm/61Zrm6HXdmtzwced89dVG3wAZBd7uHP+OhZvyq72dSHaghGpI3j6gqdJiAhP090+or0EH0LUQrJgCSEE0GVAAqPv6FOlDogjxsLQa5uuDkhLENR0Zny2pZrkolXN+GwLI3slYmhDwZkQRxuROoLhKcNZl7eOw67DxEfEc0bCGRikgKgQNZIARAgh/qvLgATS+sc3WyX0lmJtZkGNIx9H06kYCVmbWSCVyUWbZlANDZpqV4hTnQQgQghxFFVVSD4tprm70azySo8ffJxMeyGEEG2brAERQggRJiGyfotx69teCCFE2yYBiBBCiDBnp8WSFHX8oEKhIhvW2Wmxjd8pIYQQpwwJQIQQQoQxqAqPjOlVQ3WDcI+M6SUL0IUQQtSLBCBCCCGqGN0nibk3nlHjSEhSlJW5N57RYHVANE3n4PZCdvyYw8HthWhS6FAIIU5ZsghdCCFEtUb3SWJkr0TWZhaQU+ymoNxHrMNCorNi2lVDjXzsXp9XJf2xPdrCeb9rW+mPm0tQ01mbWUBeqYeEyIb92QohRHUkABFCCFEjg6o0aord3evzWPzqpirby4u8LH51E6Pv6CNBSCOqrtq9VLk/dSiKwscff8yVV17Z3F0RIoxMwRJCCNGkgprO6t1H+GTdAZa/vb3Wtqve33nc6ViVx/vPhoOs3n2EoEzfqpOaqt3nSJX7ViEnJ4dJkyaRnp6OxWIhJSWFMWPGsHz58kY539dff42iKBQVFTXK8Y/m9Xo5/fTTURSFDRs2NPr5RNOTERAhhBBN5ugn7il+levKLbW2Lyv0kr2zqMbaLPIE/8TUVu1epyLDmVS5b7mysrIYMmQI0dHRPPnkk/Tt2xe/38+SJUuYOHEi27Zta+4u1kjXdYLBIEZjzbegf/7zn+nQoQMbN25swp6JpiQjIEIIIZrEsU/c7XrdbmzLS7zVbpcn+CfueNXuj65yL45PDwYpX7OW4s8XUr5mLXow2Kjnu+uuu1AUhbVr1zJ27Fi6d+9O7969mTJlCj/88EO1+1Q3grFhwwYURSErKwuAvXv3MmbMGGJiYrDb7fTu3ZsvvviCrKwshg8fDkBMTAyKojB+/HgANE0jIyODtLQ0bDYb/fv358MPP6xy3kWLFjFw4EAsFgurVq2q8doWLVrE0qVLeeqpp07uTRItWpsIQFauXMmYMWPo0KEDiqLwySefhL2u6zp//etfSUpKwmazMWLECHbu3BnWpqCggBtuuAGn00l0dDS33norZWVlYW1++eUXzjvvPKxWKykpKfztb39r7EsTQohWobon7uVK3aZK2Z1VR0mO9wQfKp7gy3Ss6tW1er1UuT++kqVL2XXRCPaNG8ehadPYN24cuy4aQcnSpY1yvoKCAhYvXszEiROx2+1VXo+Ojj7hY0+cOBGv18vKlSv59ddfmT17Ng6Hg5SUFBYsWADA9u3byc7O5rnnngMgIyODf/3rX7zyyits3ryZyZMnc+ONN/LNN9+EHfuBBx7giSeeYOvWrfTr16/a8+fm5nLbbbfx1ltvERERccLXIVq+NhGAlJeX079/f1566aVqX//b3/7G888/zyuvvMKaNWuw2+2MGjUKj+d/f3hvuOEGNm/ezLJly/j8889ZuXIlt99+e+j1kpISLr74YlJTU/n555958sknmT59Oq+99lqjX58QQrR01T1xP2DUKFE09GrDiAqOGAtJ3aLrdLyjyRP82tW1er1Uua9dydKlHLz3PgI5OWHbA7m5HLz3vkYJQnbt2oWu6/To0aPBj71v3z6GDBlC3759SU9P5/LLL+f888/HYDAQG1tRcDQhIYHExESioqLwer08/vjj/POf/2TUqFGkp6czfvx4brzxRl599dWwYz/66KOMHDmSLl26hI51NF3XGT9+PH/84x8588wzG/zaRMvSJtaAXHLJJVxyySXVvqbrOs8++yz/93//x29+8xsA/vWvf9G+fXs++eQTrrvuOrZu3crixYv58ccfQ78UL7zwApdeeilPPfUUHTp04O2338bn8/HPf/4Ts9lM79692bBhA08//XRYoCKEEG1RdU/SdQW+svn5jcuMjo5STenDodd2Q61mDYI8wT85ldXuc4o91YZ/CpAoVe5rpQeD5D6eAXo176Cug6KQ+3gGkRddhGIwNNx5qztfA7nnnnu48847Wbp0KSNGjGDs2LE1jlZARTDkcrkYOXJk2Hafz8eAAQPCth0vqHjhhRcoLS3lwQcfPPELEK1GmxgBqU1mZiY5OTmMGDEitC0qKopBgwaxevVqAFavXk10dHTYL8+IESNQVZU1a9aE2px//vmYzeZQm1GjRrF9+3YKCwurPbfX66WkpCTsSwghTkU1PUnfadb4T4SP0mOmYzliLLWm4JUn+Censto9UCXsq/xeqtzXzvXTz1VGPsLoOoGcHFw//dyg5+3WrRuKotR7obmqqv/t1v9+1/x+f1ibCRMmsGfPHv7whz/w66+/cuaZZ/LCCy/UeMzKqegLFy5kw4YNoa8tW7aErQMBqp0udrSvvvqK1atXY7FYMBqNdO3aFagIXMaNG1f3CxWtQpsPQHL++8ejffv2Ydvbt28fei0nJ4eEhPB/BI1GI7GxsWFtqjvG0ec4VkZGBlFRUaGvlJSUk78gIYRogSqfuFd3O7vTrPG608uy9joX3dyLKycP4A+zzq21/kdtx4OKm+gkeYJfq8pq94nHVLtPbOAq96eqwOHDDdqurmJjYxk1ahQvvfQS5eXlVV6vKU1ufHw8ANnZ/0vOUF2K25SUFP74xz/y0UcfMXXqVF5//XWA0APW4FEL7Hv16oXFYmHfvn107do17Ku+9zTPP/88GzduDAUxX3zxBQDvvfces2bNqtexRMvXJqZgtVQPPvggU6ZMCX1fUlIiQYgQ4pRU+cT9zvnrUCBs2o9CxXSsP17Tix59EhvkeCBP8Ovi6Gr3Ugm9foz/vaFvqHb18dJLLzFkyBDOPvtsHn30Ufr160cgEGDZsmXMnTuXrVu3VtmnMiiYPn06s2bNYseOHcyZMyeszX333ccll1xC9+7dKSwsZMWKFfTs2ROA1NRUFEXh888/59JLL8VmsxEZGcm0adOYPHkymqYxdOhQiouL+e6773A6nfUauejUqVPY9w6HA4AuXbrQsWPH+r5FooVr8yMgiYkV/9jl5uaGbc/NzQ29lpiYSF5eXtjrgUCAgoKCsDbVHePocxzLYrHgdDrDvoQQ4lTV0E/c5Ql+w6isdv+b05MZ3CVOgo86ijhzIMbERFBqeL8UBWNiIhFnDmzwc6enp7Nu3TqGDx/O1KlT6dOnDyNHjmT58uXMnTu32n1MJhPvvPMO27Zto1+/fsyePZvHHnssrE0wGGTixIn07NmT0aNH0717d15++WUAkpOTmTFjBg888ADt27fn7rvvBmDmzJk8/PDDZGRkhPZbuHAhaWlpDX7d4tSh6I25mqkFUhSFjz/+mCuvvBKomAvZoUMHpk2bxtSpU4GKkYiEhATefPPN0CL0Xr168dNPPzFwYMUfkqVLlzJ69GgOHDhAhw4dmDt3Ln/5y1/Izc3FZDIB8NBDD/HRRx/VeZ5mSUkJUVFRFBcXSzAihDhlBTW9QZ+4N/TxWvp5RcPxeDxkZmaSlpaG1Vr/9UKVWbCA8MXo/w1Kkp97FufFFzdAT0VTq+2zIfdrJ69NTMEqKytj165doe8zMzPZsGEDsbGxdOrUifvuu4/HHnuMbt26kZaWxsMPP0yHDh1CQUplRH/bbbfxyiuv4Pf7ufvuu7nuuuvo0KEDAL///e+ZMWMGt956K/fffz+bNm3iueee45lnnmmOSxZCiBar8ol7Sz1eXUgFdgFUBBfPPUvu4xlhC9KN7dvT/qEHJfgQogZtYgTk66+/DlXwPNq4ceN488030XWdRx55hNdee42ioiKGDh3Kyy+/TPfu3UNtCwoKuPvuu/nss89QVZWxY8fy/PPPh+YoQkUhwokTJ/Ljjz/Srl07Jk2axP3331/nfkpELYSoJE/XW67KCuzH/uNZ+dOR6V+tx8mOgFTSg8GKrFiHD2OMjyfizIENmnpXND0ZAWlcbSIAaS3kAy2EAHm63pIFNZ2hs7+qsQhiZf2MVfdfKAFjK9BQAYg49UgA0rja/CJ0IYRoSSqfrh97g5tT7OHO+etYvCm7hj1FU5AK7EIIcfIkABFCiBYiqOnM+GxLtZWpK7fN+GwLQU0GrpuLVGAXQoiTJwGIEEK0EPJ0veWTCuxCCHHyJAARQogWQp6ut3xSgV0IIU6eBCBCCNFCyNP1lq+yAjtQJQiRCuxCCFE3EoAIIUQLIU/XWwepwC6EECenTRQiFEKI1qDy6fqd89ehQNhidHm63rKM7pPEyF6JUqtFtGiKovDxxx+HCisL0VLICIgQQrQg8nS99aiswP6b05MZ3CVOgg/RpHJycpg0aRLp6elYLBZSUlIYM2YMy5cvb5Tzff311yiKQlFRUaMcH6Bz584oihL29cQTTzTa+UTzkREQIYRoYeTpumhtNC3Iwa2bKSsqxBEdQ3LP3qiqVAJvLFlZWQwZMoTo6GiefPJJ+vbti9/vZ8mSJUycOJFt27Y1dxdrpOs6wWAQo7H6W9BHH32U2267LfR9ZGRkU3VNNCEZARFCiBZInq6L1mLnmu95feKtvP/oQ3zx/JO8/+hDvD7xVnau+b65u9ZkNE3n4PZCdvyYw8HthWiNXKvnrrvuQlEU1q5dy9ixY+nevTu9e/dmypQp/PDDD9XuU90IxoYNG1AUhaysLAD27t3LmDFjiImJwW6307t3b7744guysrIYPnw4ADExMSiKwvjx4wHQNI2MjAzS0tKw2Wz079+fDz/8sMp5Fy1axMCBA7FYLKxatarGa4uMjCQxMTH0ZbfbT+7NEi2SjIAIIYRokYKaLqNALdzONd/z6dOPV9leVpDPp08/zhVTHqLboHOboWdNZ/f6PL59byflRd7QNnu0hfN+140uAxIa/HwFBQUsXryYWbNmVXtzHh0dfcLHnjhxIj6fj5UrV2K329myZQsOh4OUlBQWLFjA2LFj2b59O06nE5vNBkBGRgbz58/nlVdeoVu3bqxcuZIbb7yR+Ph4hg0bFjr2Aw88wFNPPUV6ejoxMTE19uGJJ55g5syZdOrUid///vdMnjy5xtES0XrJT1QIIUSLs3hTNjM+2xJWmDEpysojY3rJOpgWQtOCfPXma7W2WTHvNbqcNeiUnY61e30ei1/dVGV7eZGXxa9uYvQdfRo8CNm1axe6rtOjR48GPS7Avn37GDt2LH379gUgPT099FpsbEX2vYSEhFCQ4/V6efzxx/nyyy8ZPHhwaJ9Vq1bx6quvhgUgjz76KCNHjqz1/Pfccw9nnHEGsbGxfP/99zz44INkZ2fz9NNPN+RlihZAAhAhhGgkmqaTvbOI8hIvdqeFpG7RqPIE/7gWb8rmzvnrOHYSS06xhzvnr5PF+C3Ewa2bKSvIr7VN6ZF8Dm7dTErvfk3Uq6ajaTrfvrez1jar3t9JWv/4Bv291/XGm951zz33cOedd7J06VJGjBjB2LFj6dev5p/drl27cLlcVQILn8/HgAEDwradeeaZxz3/lClTQv/fr18/zGYzd9xxBxkZGVgslnpejWjJJAARQohG0NTTMk4VQU1nxmdbqgQfUJGWWAFmfLaFkb0SZTpWMysrKmzQdq1N9s6isN/v6pQVesneWUTyaTVPOaqvbt26oShKvReaq2rFst+jAxi/3x/WZsKECYwaNYqFCxeydOlSMjIymDNnDpMmTar2mGVlZQAsXLiQ5OTksNeODRhOZC3HoEGDCAQCZGVlcdppp9V7f9FyySJ0IYSoh6Cms3r3Ef6z4SCrdx8hWM1i08ppGcfenFROy9i9Pq+putvqrM0sCJt2dSwdyC72sDazoOk6JarliK7bTXVd27U25SW1Bx/1bVdXsbGxjBo1ipdeeony8vIqr9eUJjc+Ph6A7Ozs0LYNGzZUaZeSksIf//hHPvroI6ZOncrrr78OgNlsBiAYDIba9urVC4vFwr59++jatWvYV0pKyoleYlj/VFUlIUEe2pxqZARECCHqqC7rEpprWsapIq+05uDjRNo1hba6WD65Z28cse1qnYYVGdeO5J69m7BXTcfurNuUoLq2q4+XXnqJIUOGcPbZZ/Poo4/Sr18/AoEAy5YtY+7cuWzdurXKPpVBwfTp05k1axY7duxgzpw5YW3uu+8+LrnkErp3705hYSErVqygZ8+eAKSmpqIoCp9//jmXXnopNpuNyMhIpk2bxuTJk9E0jaFDh1JcXMx3332H0+lk3Lhxdb6m1atXs2bNGoYPH05kZCSrV69m8uTJ3HjjjbUuWhetk4yACCFEHVSuSzj26XzluoTFmyqeKtZnWoaoKiHSevxG9WjX2BZvymbo7K+4/vUfuPfdDVz/+g8Mnf1V6PNwKlNVAxeOv73WNsPH3X7KLkBP6haNPbr24MIRU7H2q6Glp6ezbt06hg8fztSpU+nTpw8jR45k+fLlzJ07t9p9TCYT77zzDtu2baNfv37Mnj2bxx57LKxNMBhk4sSJ9OzZk9GjR9O9e3defvllAJKTk5kxYwYPPPAA7du35+677wZg5syZPPzww2RkZIT2W7hwIWlpafW6JovFwrvvvsuwYcPo3bs3s2bNYvLkybz2Wu2JDkTrpOiNuZpJ1EtJSQlRUVEUFxfjdDqbuztCtAl1eXod1HSGzv6qxqlBChWVylfdfyG7f85l2T+2HPe8I2/tRfezEhviEk4ple91TrGn2nUgR7/XzT3KUNNi+cpetZXF8jvXfM9Xb74WNhISGdeO4eNub/EpeD0eD5mZmaSlpWG11j+orSkLVqXGyIIlmkZtnw25Xzt5MgVLCNFm1TXVa33WJXRqxmkZpwKDqvDImF7cOX8dCoTd3Ffe2D8yplezBx+yWP5/ug06ly5nDWqTldC7DEhg9B19qiSccMRYGHqtJJwQoiYSgAgh2qT6pHqtz7qEQf06YI+21DoNq7GmZZwqRvdJYu6NZ1QJDhNbUB2Q+gSlg7vENV3HmomqGk7JVLt10WVAAmn94yXlthD1IAGIEKLNqe/T6/qsS1BVhfN+163WaRlDr+0mNyfHMbpPEiN7JbbYxd2tcbG8aDyqqjRoql0hTnWyCF0I0ebUN9Xr2WmxJEVZqenWV6Fi6tbZaRWVgiunZRy7QNURY5E54fVgUBUGd4njN6cnM7hLXIsJPqD1LZYXQoiWREZAhBBtTn2fXp/IuoS2PC2jLaSlrQxKj7dYvjIobSnaws9GCNHySQAihGhzTuTp9YmsS2iL0zLqurC/tWsti+WP1lZ+NkKIlk/S8LYgktZNiKZxMqle5QlyzdpiWtrWclPfFn82dXGyaXjFqUvS8DYuGQERQrQ5J/P0unJdggjXVtPStvTF8tB2fzZCiJZLAhAhRJvUGlK9NqddP+fxwUvfYFTN6LqOqiro6KCDoqhouv6/RfkKHDQqZEfVXPehcmH/1ImfkezXUY7eGagcjNd10NFR+O/5jjmIpmuoilJx46wo6JoO6ChKRSipqiooYDQZMBmN+P0+TCYjAb8bXVdQVUPFfroOqOi6jq5peLw+goGK7qR3SeXsMel0HVi3ZAEtPSiVlMFCiJZGAhAhRJvVGp5eN5e1n+3Baa77zWjAGAD8dWhnJUJvgn96NMAHZizgAxO2/20/lgLmo2ZYFOa4WPvZnjoHIKFTasEWWYzvRFIGt9RrEQ2vc+fO3Hfffdx3333N3ZUajR8/nqKiIj755JPm7opoIBKACCHatJb+9Lq5+DxBoGLEocxbRKQzAoPBSFFhCZqmoaNiMJkwGsBsMqB4fWA/fnV3Y8CNK6gTDAThvyMdIYqCwahitphD23V0tKCGwWgg4PFCMIiKQlDTUBWVoKYRAFANgI7ZYsJiNeNxe7FYzPj8PkxGlUDA/d/5RmrFtDtdJ7QCUlGp/MZEFApq6Prrauea7/nqzdcoK8gPbXPEtuPC8bfTbdC59TpWQ6tv0oWWfC2iwvjx45k3bx4ZGRk88MADoe2ffPIJV111FfVZ3vvjjz9it9sbo5sN5rnnnqvXNUHFCOnHH3/MlVde2TidEidFAhAhxClLFoyfvHJPMe/ueYErf3c6sbFRvDbrbQ5m5mCxxZF4ziCS7OVcOqYfex77BOOVjxPAzFHzq46i4zD5Sb1gO6XFxURFOPnX82/i9WoYjQaCahCLw0rH7p25YOj5BAhQVnQEh93O4fxcunXvwsEla3Dv3EO5x0PJoVJ8ZV4K/DoF0cm4LX4MDpU+A7pyWvfu7D2wjz59e5CZtYPu6ckU7ZyLT0sjqCo4nQ7KXcW4XV78fh2T0UJJsQeTyUb3sr9ioV293qOda77n06cfr7K9rCCfT59+nCumPNSsN+71SRnc0q9F/I/VamX27NnccccdxMSceLa9+Pj4BuxV44iKimruLogGJoUIhRAtQlDTWb37CP/ZcJDVu48Q1E4uQd/iTdkMnf0V17/+A/e+u4HrX/+BobO/YvGm7AbqcVuh0bFTEoYIC4lJTuLaRTDwrF4EtTIUm41SHxQW5GNS3Zxuy/nvPsf+7Cq+H5acibu8AH+gHCwBCn1FmMwaJrOKpmsYFANWBcy6hq+kGIvRiMVoREUn6AtQHgyQXxAg4I0gwhHFkGsuYsRNV6FZFWxWB46IKCId0SS2T8btdmM0GjCZTOiqmwiHSvsOkbRPjMQRFSSmnUq7RDMJSRHExVtITrXTsbOt3nVaNC3IV2++VmubFfNeQ9PqN6LSkCqTLgBVimkenXRBQWvx19JSaVqQ/Zt/Yet337B/8y9N8h6NGDGCxMREMjIyam23YMECevfujcVioXPnzsyZMyfs9c6dO/Pss88CFSOD06dPp1OnTlgsFjp06MA999wTauv1epk2bRrJycnY7XYGDRrE119/Xev5FUVh7ty5XHLJJdhsNtLT0/nwww/D2vz6669ceOGF2Gw24uLiuP322ykrKwu9Pn78+LCRjAsuuIB77rmHP//5z8TGxpKYmMj06dPDrgngqquuQlGU0PcbN25k+PDhREZG4nQ6GThwID/99FOt/ReNQ0ZAhBDNrqFTmdaUcjSn2MOd89e12ZSjJ0ahpCCb8sJY3IlO9u49wIhhl/Dj9z9zzvmDKd65hbPO6Ue3HAOri7YywBpks5KMT//fdCynxc+oLjl0iijCaIjEVGYgc1cmQ4ddwJ4N2/AHfRgDKu5SL+tWb2P7rweIiYvBF/RQWlKIyajg8Swi0uAgwq9gMfgwmX34dv9Csc+ILcqOP+DHZlEpKy8hNz8Xi8WEroA9wonXdRCrHYIGF2ZzBOhmLAYvzsgYNL0cv89BuTePqEiVgKpWv06kBge3bg6bqlSd0iP5HNy6mZTe/U70h3DS6pJ0Yf/mX1rFtbQ0zTVlzWAw8Pjjj/P73/+ee+65h44dO1Zp8/PPP3Pttdcyffp0fve73/H9999z1113ERcXx/jx46u0X7BgAc888wzvvvsuvXv3Jicnh40bN4Zev/vuu9myZQvvvvsuHTp04OOPP2b06NH8+uuvdOvWrca+PvzwwzzxxBM899xzvPXWW1x33XX8+uuv9OzZk/LyckaNGsXgwYP58ccfycvLY8KECdx99928+eabNR5z3rx5TJkyhTVr1rB69WrGjx/PkCFDGDlyJD/++CMJCQm88cYbjB49GoOhYv3SDTfcwIABA5g7dy4Gg4ENGzZgMpnq/qaLBiMBiBCiWTV0sCApRxuWruvs2raNC0b0x+v14PJ42bN3HwaDiU4dEvj+l1/x+TV6DO7Llx+uwd4uh/6RufQ/4ww+XfgfhpzVg27RPrZu2cEeNYIN634l71Ae5aU+7JZIIiKcqEYz1gjQgwbK3EfIyy2gtMSP0WQh0tGOSKsJY7CEsvJS3Ch4S1yoKJQYFGKckWiaF82gERFhxmxUsNiMBDQ/mq5hNhhQFBdmtRsvvbabuyZeiT2yiG9X7iC5XU8S03ZjtVk5sLcbnTtEkq/Ub+StrKiwQds1puMlXWhN19JSNPeUtauuuorTTz+dRx55hH/84x9VXn/66ae56KKLePjhhwHo3r07W7Zs4cknn6w2ANm3bx+JiYmMGDECk8lEp06dOPvss0OvvfHGG+zbt48OHToAMG3aNBYvXswbb7zB449XfR8qXXPNNUyYMAGAmTNnsmzZMl544QVefvll/v3vf+PxePjXv/4VWovy4osvMmbMGGbPnk379u2rPWa/fv145JFHAOjWrRsvvvgiy5cvZ+TIkaFpZdHR0SQmJoZd35/+9Cd69OgR2k80D5mCJYRoNscLFqAiWKjPdKz6pBwVx6cDnoCPQCBAXLt2uErcmM1mVMxoxSXk4iNnRz7GJAfJwSDGrg4+efdtvHlbuWVkLzroZXz01uesXLSGpZ98zd4teWildsxE4Q8YySko4khRkIDuwI+BhKgUYuzxmBUTNoMJk2LB5zcRVCKJi0klKbUbms2GuV0cBYEIdua6KHH5KfcH8AU1CvOLydmbgxIMogVdGJRy/HoedoeFyVNuwmazEhERwVdLcxk0JA2bMR2r1cbPa7OIsLTHYKjfczlHdN3m3te1XWOrTLrwm9OTGdwlLiwIb23X0txayvS72bNnM2/ePLZu3Vrlta1btzJkyJCwbUOGDGHnzp0Eg1X7dc011+B2u0lPT+e2227j448/JhAIABXTpILBIN27d8fhcIS+vvnmG3bv3l1rHwcPHlzl+8r+bt26lf79+4cthB8yZAiaprF9+/Yaj9mvX/goXFJSEnl5ebX2Y8qUKUyYMIERI0bwxBNPHLffovFIACKEaDaNESycSMpRUTtXcTnFh4spKnWj+GHL5g1gKGfrz9/hCdrJOnSAzOyDRFqO0NN/hCFnpJO3ax9vzF3Am6+9Q9b2fEoL/LhKPKD50PEQFRWDzeokwRlPWWERhw4dotTtQ7XZiYiJJyIqHt2k4g36KHOVUXAkn03bt7InM4vkhGQCLh8RNht5+UfILyyiNM/Dll/2sXt7Lt9/uZ6y8iOUFx+hzFOOK9+DqrcjqHvJ3JGDy5NNIAC6OYt2CZHonjjOu8DK5s07651qNrlnbxyxtS9aj4xrR3LP3ifxE2gap9K1NIX6TL9rTOeffz6jRo3iwQcfPOljpaSksH37dl5++WVsNht33XUX559/Pn6/n7KyMgwGAz///DMbNmwIfW3dupXnnnuuAa6kfo6dOqUoCppW+/zJ6dOns3nzZi677DK++uorevXqxccff9yY3RQ1kABECNFsGiNYqG/KUVE7VVVwRkUSabFi1lVMUQoJhkh8qpFtv24ERaHI46XIXcD+/ENEm6xE6AZ+Wr0Or0dF0aLQtCBGg4GE+ASMRgsaJg7n51NcUoIvAKmdu3Fat950Tk7HZLXi8noJKgomNQI9qGIzR9I+viMpSal0Tu5C9v48dL+Coqmkdkync8d02qd0JCW9C96gkXKPSv5+C6X5BnQfBLUysjJ3U1ZWSs6hw2DaR2mhgt3aDtXgYcNPuygvsvD5x78QDNZvCpaqGrhw/O21thk+7vZWUUPjVLqWptCSpqw98cQTfPbZZ6xevTpse8+ePfnuu+/Ctn333Xd07949tC7iWDabjTFjxvD888/z9ddfs3r1an799VcGDBhAMBgkLy+Prl27hn0dPc2pOj/88EOV73v27Bnq48aNGykvLw/ro6qqnHbaaXV+D45lMpmqHeXp3r07kydPZunSpfz2t7/ljTfeOOFziBMnAYgQotk0RrBQmXK0ptUdChUL3M9Oi63zMVurhsgspuk67dpFkZN3CLMD4mw6h9x5WAIBErzFpBkCqOWl2NVIjLEJvPn2fyjLdZObmUvh4cN4AkV4vV5UVSU/P5/Scg+oVqyRDpJSkrBF2zFHmAn6PRQfzqUwey+B0iNYNC82s46nvJDigoN4yguxGDUK8w+gB8qxW1W87iNYjD6KC/fj8xZQXJyDgp/DudkcPlTIss/X8/WSTRTnxbA/y4PLVcLeQ5mUFEVgcRjYmfUdWhDyjxym94AOKJZD1d6wHE+3QedyxZSHqoweRMa1a3Vpa0+la2lsLWnKWt++fbnhhht4/vnnw7ZPnTqV5cuXM3PmTHbs2MG8efN48cUXmTZtWrXHefPNN/nHP/7Bpk2b2LNnD/Pnz8dms5Gamkr37t254YYbuOmmm/joo4/IzMxk7dq1ZGRksHDhwlr798EHH/DPf/6THTt28Mgjj7B27VruvvtuoGJhuNVqZdy4cWzatIkVK1YwadIk/vCHP9S4/qMuOnfuzPLly8nJyaGwsBC3283dd9/N119/zd69e/nuu+/48ccfQ4GQaFqyCF0I0WzqU5+gripTjt45f11FwbljjgcVKUdP9QXoDZVZTFXgcoNGRKSBQMlhnrpsKEs+WEVE3+5okRFoh1aSFt8Pww8b2LmjAEdUKht//okIh5Wg7sfn0zFaFBSjjsflwWQ0UlyYg8MZh9cdpKS0DKOqYzIE8Xnd6EEXuu7DXezBrVlwWm1YbEa87nIK3QUYsBJpt+Nzl2IxmCkvysfpNON2laEFVaKc7fGWBSktPkxZoRuHLZK15UFiY+34jAfJ3FlK0ZEoSguDbN9sxdDLy8b1+ygo8rJmZZCrO+ucyPP9boPOpctZg06J6uGn0rU0psopa7VNw2rKKWuPPvoo7733Xti2M844g/fff5+//vWvzJw5k6SkJB599NFqF6BDxaLtJ554gilTphAMBunbty+fffYZcXEVxVrfeOMNHnvsMaZOncrBgwdp164d55xzDpdffnmtfZsxYwbvvvsud911F0lJSbzzzjv06lWRGjoiIoIlS5Zw7733ctZZZxEREcHYsWN5+umnT+r9mDNnDlOmTOH1118nOTmZHTt2cOTIEW666SZyc3Np164dv/3tb5kxY8ZJnUecGEWvb2lJ0WhKSkqIioqiuLgYp9PZ3N0RoklUZsGC6oOFE02Z29CpfVuTmjKL1ec9ffOB7ygv8uJxH+acmLdYXXyIXneOQ/t2Ox1++RVXrIOpf1/MzXddR9Gvm9ngimOPy0duQT4GVcVkMnLkSB4JifGompuiwhIMBhPFxaVER8Vhs0aS1rUrhWVeDAZw22LxYsSpldPRlE+MI4aunVJwucvR9SBa0M/GndvQgxaCKLg95RhUEwXFBVgjLBSVFmM02kCx4deMqKqHosJszCYrRnMQf7CEiy/vzvoNm7n4om689c9M7vvLOWiBIM888R233TeEZ2f/wMOXvotFicUebWH8E0NqfY9E6+fxeMjMzCQtLQ2rtf7TMmvKglVJRo1ab0Xy2j4bcr928mQERAjRrOpSn+BEj1tbytFTVUOnIfahUHLlb9j95VJis/M4HGXm5SIDW35egyfKydrcIrbsD2LqGIM9CoJFRzjttD7k5+fjdvnQPQq+YBAVIwbFhNMRQ3xcOwgEsfjdGOM6kd1pOAFLxT/iZYDbFGBcWj4Xd9DR0dD1IG63i9EX9WLr9kPkl7k4lJtHfkERHVNT8fjdxJY42X8gB6NFpSS/EC3owea0YzJbUXSFknwDP68po6DAzpIvM3H7zDz455VcdHEyZlMqr7zwHSXFRry+IBZL7e+JEJUqp6wdWwckMq4dw8c1bh0QIVozCUCEEM2usYKFypSjbUl9MovV5b2JjHawLfcXTuvXgyK3jsUeyYW/PZuz3P3ZvWUvX3/5IxbFjj9zFzHx8ahu2PjrBmzOeNJO68uhXT+i6yr2hI5EBHR6JCViMirEt3OSY+/Iesd5Vc5Z6Dfw7I72xDmLuLBjAB2wOk2U5uUR6zDgD6hYOsTTr28PsnPzOJidzZFD+3BYjRzMOUhkTDsK3EEstliKi0uxO1SccVFk5x5h1GVDiEqKYdRv7aDq+L0eevT30y7+cgwmI7YfHOA/iR+AaHNkypoQ9ScBiBANJKjpbe5pe0Nqi8FCY2jozGKuci8f/+sbAAIBH5rPT4TVhsmocGB/NkYcFBS5Se/RHcUE5bqLLknp5BaVcDD3IKbIdpgNFpJio+nZMY4eHePwlBXQo0cPHtrf6783+8f+nigo6Ly4OYoRqS78fhdGo4HY+AR0g4mUTipur4e8gkKIdhBj60IwoLIn6xAOh4NIpxOMRvbv3Uf7hCTMipGSsjLMagTLv1iL7jZQUlxGWZkb1WQmoGkYjUZ0XeeRqwcTY7fV/Q0XgooMYlIdvnoy019URwIQIRpAW15vIFqWhs4spqBi1ByAhtFoQyeIq9SF4tMozPagqCbsjmhysg4RVLwEysrZsWEj0cntMURaSO/aD0+Jj3bGIGf0SKdXt1gs5h7sdEdxZI+pxvPqKOS6FTYXORiQYMCne9B0A/Ht4vB73Bii7FhNOhbVTOaeQxiNRhwOB8VlAY7k5xMTG4fdaqOkqAinMwK3Kx+rzQQoGJ0KMY4Y1JIICCgYDCpHDh/GaDZjrCE1qRBCiIYjaXiFOEmVC36PnfaSU+zhzvnrWLwpu5l6JtqixkhDHFD8aBYIah7UgI8DO7aTvX8/AN6ghmKxElCKKc49iBYMELAa6darL0rAiOY3YfCW0Tc9htNSooiOjiQuvh1lakSdzp3vM2E02bEZIrFa7NisdowWK5qigmLEalexO8FGkIR2UVisRhS/H6PRgt1hxR5hxRe0kZB4GsUlGq5yP95SH87IKBLbpxHfqSc+SxSRHbviSEpDV1r3qKWmBdm/+Re2fvcN+zf/0uhVuIUQ4kTICIgQJ6GhF/wKcbIaOg2xpmmoQR1PmQuTaiYn5wCqquDyuzBbIlC8AQpzs7E7zaiqiq5rJMS1Y/PP6+l2Wk/yDuxGy9vDGdeej91ux2yJwGgw0d5uBmqvWgwQH2HEYDAS1DQMqkIwqGM0WNA0N9FOKxazEa/Lzd7sIrIP5GEyqZjMBkpKCzCbzZR5fJS4SoiIsBITk0B+bjYetxdHVJAgfrxeDaPBgqKq+P2te/HHzjXfV1kM7Yhtx4XjZTH08cg0IXEs+Uw0LhkBEeIk1GfBrxBNpTKzWGJU+DSrxChrvdMaa3qQ+M4JBDBRVOyiuKgEfyCAajLgjHTgsNtQggECHh8Wqw2/P0BRYTFJ7ZMxGwzonhLuvOla2reLIsJuR1FNGIwW+sZqtI9Qah2pSbQr9IsJgq6i6wZU1YjH40dVjZiMVixGB05HLJ07ppOSmIaqm3E4YwmqFlxlOiXFpbi9xRjNpRzI3kxBQSb2SDBbbNitEfg8LlAUYuNisEfaUQzGqstRWonKdLDH1qQoK8jn06cfZ+ea75upZy1bZTVwn8/XzD0RLY3L5QIqKqqLhicjIEKchIZe8CvEyapMhuANaDx1dX9QIL/MW6fECEcnUsjETzt0NF3n+01riHN2QVEtGFQjjqg4fIEArjI35eUeAoEgEREmFLMRXdeIjo1CtZgoKSmhY5yDtI4dMdqMYACjohD0+7HZbPz5LJ1p3/hqHKl5YIAJi6oS9PtRjUYI+LDZbPgDXnQ9iK4q6FqQQNBDh4RobEaFwy4PxggzAb+foB/c5R6MZhWryYIvqOB1B8CgkHtoP7rRjslmxmKJxk85lkgFQyvMXKRpQb5687Va26yY9xpdzhokmZmOYTQaiYiI4PDhw5hMJlRVnsu2dbqu43K5yMvLIzo6OhSkioYlAYgQJ6GhF/wKcTJqS4ZwvAxj1e3rcMIg3YBH8ZFXkEW834ke8NEuOYXde3ZSXubCYonAYDDQKb0LWVlZRMW143D+EYxGBV9xHr3O6Ic1QkPX/RgMFgyKCaOioCowsrOZp1HJWOshz/2/vrSPUHhgoImLkhQ0XxBNCaKiolBxw+j1uTEYDHg9XgwGA0ajkdKSXOJiHezKLaW8pJyignzKy13YrHZMRhu6pmE0GMGgUFhchBJhxmBVcZUUYLN3IDLCicPpRjW0vhvQg1s311qNG6D0SD4Ht26WTE3HUBSFpKQkMjMz2bt3b3N3R7Qg0dHRJCYmNnc3TlkSgAhxEioX/OYUe6pdB6JQMe2lPgt+hTgRNVU/r0yGUNvUq5r2LVNgebSZ0/pehXfbN9gDQQrws3ffbjy+ALpmID62Hfl5ueTnHUE32HA4LPjLd9IhNgZLXBSdO0bjsOjoAR+BoE5AUzAbLegBExitXNRZZViKnfV5OgU+lbgIhUHtTagBP1rQTSDgQTEqaLqKZlLQAgoGcxB/wIPZoeL2llFeVoBVDRATacXjcqFqZhQtiB5Qcbv9RDoSsNnM5B0+gKIESWgXTVlpGR1j4wkoEPTuxx6TiuIwoSit72lnWVFhg7Zra8xmM926dZNpWCLEZDLJyEcjkwBEiJPQ0At+hTgRJ5MMobZ9Kz/UeZZBxCqrOHjgAJqmgaJhs5rx6Rp5uXkYDRr5BYeJi0+ipCAfPD7cRUWYrCZ6d+uB1+MHNRJNsxDwBgkoOqquYzFCwBSB2WrgnDQjigKoKroWwI8Xo27AYrHh9ns5cqSU/QUFHMkvorQ4H5tFoXPHdsQlmLFHRWLIy6d9fCTtnFaKysrxejwoiglFUSgtLcDlVvH5fKgGHc3lxmIxU1Scj93uAIORrD2bSelxGroebHXrQBzRMQ3ari1SVRWrVUaqhWgqEoAIcZIqF/weO30lUeqAiCZyMtXPj7cvioJijSE/EEXHjjp5uYWUl3lQzQYIqgR8XhQlgIabosJsAqUldE5Np7isiDMGnMXe/Tms+nELhQE77rJykmLsdO2cxqBBA+mUZMVp8uF1B7BZItB1BVQFTQ8S8HkIBDVc7nJ+WPMT+/YX4FUVOnfqQkqH7qiKj707d7F+7QF0m0an1GjMqpsBvTtSULqbfIsFHRV/MAiqD6/PT1AL4PMHUdQA7eKi8AfKcZf7sBqDxEVG4j5SgtZOg1b24DO5Z28cse1qnYYVGdeO5J69m7BXQghRMwlAhGgAo/skMbJXolRCFw3i6MXgdfksnUwyhLrua7TG4Dp8BJ/HQCCgoWoa7dunsHt3JiazBS3gJ+gpwmSA7MN5pKcm4feWk9K5PwNOPw9nXHui28Xg83koyy/BVeYm9/ARvP4IrAYdgwKaKQJDMIjPU4i/uByPL0ApPnp27kSP0/sRExWDARWDOYiuuyjvYCbgT6XEW8bX3y4nLSWO1PY2BvbQyc8pYp+7YsqRzxvA4/OiKCoGgxGz2YbfBxERdjRNp9zlQdEUNGMEutb6AhBVNXDh+Nv59OnHa2wzfNztsgBdCNFiSAAiRAMxqMpxF/oKcTy1LSSvaTTtZJIh1HVfU8BD/pE8gkEVu92C1+snNzcXp9NJuauEYMCHSVUJeL30H9CPlHZWrrzgXDomJWNy2vH7AxTkHKDMVU5khJ24GDN+dwElRT70CANmi4rJasCgQGlxCT6fF3+ZF68jhmiHjaK9G/lmXyGlniC2GCflbhedEzrQKdGGhXLOHXgWuzI3oStGuqXF8dV3OrqmENQC6CiAAU2rmGhmsRiIiLBgUAMEdDcGNYJgUCHgN9FaU/93G3QuV0x5qEodkMi4dgwfJ3VAhBAtiwQgQgjRQpzoQvKTSYZwvH3RQfGXULpnIwTMWM12zGYTwWAB0VFx+LwBNN2P3xck6HHTvl08fdI7kRpnRDUYefGdJcR0HsiubTvIz9uPt6yY3429mrhIC6elJqG4yiksd2GzalijzAR1P2azTrG7nGIXOM0l5GXuZM0BF0OvuIaJE++l3H0Em1nlnol/4oM3FjDy7BQcJhf2yChMeHEGdOxOI+bDVhRVx+0pR1Uqanx07doVh91JVtYuImxGjEokHTqkUur1c8BVdgI/tfqPWDWWboPOpctZgyqyYhUV4oiOIbln7zY78qFpQXkvhGihJAARQogW4GQWkp9MMoTa9q34Rici90uCAQNBmxXFZMYV0LBFJBHUguiaD5vJit9XjmoyYDdaaB8bTaRdw1dUyvmnD6Jdz8Hs3bYFu82Maohk2KhL6RQdw7YfviYqxUHx/lwUn5OAuwSDBQLuIjTdi9Vqo11UPOWqm99d9xv0aDud422UFUehWGwkJzi4+pLhBIvzsbWPwu87TKwlEt0doE+XjmzfuxmfHiAqLgb8fnxeL9n5B4hVUkjt2p19ezKJjnayddNmzE4nEe0SMdSzDsSJjFg1JlU1SKpd2kZVeAmwRGsmAYgQQrQAJ7OQHE4uGUJN+0bqcIHPwJfbv8NoA6OiYjUb8LnKiYiJQ9E1SvUAigEiDTF4y12kdO5EXLyTDgmRWExmSvPLKNu3iQfuHM/an9eR2KEDxrIyso8cJqVjAuX6ETTFQ2l5Hpo1iEOPwFtagt1hA9WEMcpE7349ObR/N/n7NaZMvJvc7INYzAa0gmySEp1Y0x34feXEKBGUFh5GNyq0T4hDUfxEWsyUl5cQYbYQYbbg041ERcaRl5dNTEwk5Z4yrDYLPn8ZPdOjUOoRf5xM6mPReCqrwh+rsir8FVMeavVBSFsIsMSpTQIQIYRoAU5mIXmlk0mGcOy+697dSbuSIOWeQkr2FhOR3I7D+/ZjNFgwGs0UlhSja0E0vxer2YTR4EALmIiJjcVuM2CwmjBH2jgtvh1Jcaloqpnf/OZSLGYbQa8ftAC5+XsozC/FqJhQFSsWswN/WQla0IMfH9GRFo54C4iKSCDa5sCmGTA6Y+iY1h6z4qfMV4oeLETzlWAkiNGg4TUHcJeVYjMrxETawGDAajNjUa3oAQNl3gDZh/KwR5hxu4vQFB+6rmNWFPqe1h7DYYXq56KFO5kRK9F42kJV+LYQYIlTX+sr+SqEEKegk1lIfrTKZAi/OT2ZwV3i6nXze/S+aZhQUdB1HVO0lZy9B/H7NQJeH2arGafdQlFeNt7SEkoKCgiWFGPQfAT8RjCoGIJ+HEYDUTFODDYDthgLqk3Db3ShWsrx+w9hDZZgCJajqgoWawRmkxHFFIHRFInTEY2GhtPjwunwozn8WJxmoh1mopw2jFYFuzGA3WrEFmHFGmkigIrRGEGpy42uGTGaHBiDRmJ8Bq686BK6dO5ChM2JzaxQWnAEv9+N5vNRUlRISXExC95YjMddt2J09RmxEk2nPlXhW6O6BliaFmyiHglxYiQAEUKIRqZpOge3F7LjxxwObi8MZWM6WuVi8JrCBYWKtQXVLSRvTLqucyS3BHuEFdVgwGw2U1xcTPahAxiMCqpBwxFpJqgEwKxxuDCPYNCHUdWxKSoRmo5V9WMJlGAsy0Yp2INatBerVghaEUYliM2kEuuMRCGAQddRAhr4gxhNZoxGI0F3GXERJqIcQYK+wxgpJNLqw2ZVsNusGBQVVTcSoZtRNBXNbOVwSSF4/GhePzdcfRPZ+3LYvGUbqtWIaraQ3DkNgzmSgM+Iw+LAhIJZ1VCVugVsDTFiJRreqV4V/lQPsETbIVOwhBCiEe1en8e37+2kvMgb2maPtnDe77rRZUBCaNvJLCRvCMdmctL+2wNFUXFGOVHNKjEmO2XFJXh8fjS3RnSUE1VR8PpU2iUmkZ+fz6HcI7hcflQtiOZxEzCWo1nMGIxGzKoBzGbQTfi9Hkz4MAZdRMdEogeDqLoJ1WxGJwgBFUVTsdrsoBgg4MVgNGMwGvB5NTS/F4Pbg9/jxhjwU+7z43e58br9BIMK5WVeTIpKQFV49eMPMJgsqA4rDkcEQdWCx+dFCxgxRdjxesFoc9K+cwdUQ93e34YasRIN61SvCn+qB1ii7ZAARAghGsnu9XksfnVTle3lRV4Wv7qJ0Xf0CQtCTmYh+cmoLpOTE4XhJhMd/UbMNisulxuPy4PV5sCkKXj9LiIcNtzlXgJBMEdEYo/00D42BleZmYCmE/Ar+L0BfG4/2EwYLWas5gjcXh8Gix3N5MaoOHDGd8Jgd4AKPm8JFruN4twczH4jpg5xWKLboek6KiYUghgMRvSghh5UMAbA7Qug+wP4gz6Cmh9fmY+yEi/l3mKMERb8ikKJuwSv14vDacfl8xFps1JSlE9A8xJhMWGwGNi/Zz9Kt7oFICeT+lg0nlO9KvypHmCJtkOmYAkhRCPQNJ1v39tZa5tV7++sMh1rdJ8kVt1/Ie/cdg7PXXc679x2Dqvuv7BRg48756+rsp6hBJ3/RPjYYdTwlhehBIJER0ejqioJCQmYVVCCATyuYhwWI4f3Z1FSkM/e/QfZeyiPcp+O1w+qbkZVzRj+++X1a5jNVgxGE4UFxfh8JvJzyvGUKwR8Jkry3JQVeLBZYokyWcnZe4CgRwHVjuZXQDOgBMDn8ePz+XB7K0aWdA28niAedwBXuZeD2bl0TOlEmceP3x+kfUIHggFwlftIiI8hJ/cAmq7hjLTjC7oxmaC8NEAwqNXpfascsQKqTJurbcRK04Ls3/wLW7/7hv2bf5G5+g2ssip8bVpzVfjKAKs2rTnAEm2HjIAIIUQjyN5ZFDbtqjplhV6ydxaRfFr408rKxeCNrTKTE7pGsiebiKALlyGCQ9Yk9P/mo/3eaSKg6RgMGkG/ixhnDC6XD7PNSmFJId6glxJPCXaTCX95GcVlZezds4ecdCeRnYzYfVZMXhsYTGi6BYNRIeD3E3CXY/RAbHwiBw4ewONxoauge/0UFnromJRCvs+Fpmvo7mLKvcU4LTF4S8vQtQBmxUBQM4HJjM9disfjI+AN4PH5KfL7cAcClJZ5MSgJBHQdZ1QcZkseFquDg1kHKDlSgDVCQdO9RMfaKSwsIDmp93+rptdNfUesqkudanM66Tl0OF3PHCR1HBrIqVwVvjLAqi4LVqXWHGCJtkMCECGEaATlJbUHH/Vt1xjWZhYQcWgL446sIjJYHtpearDzbdxQdtvTKTeoxPUYhJ67g9ISNxF2K/6AD3vAhqKAxWDE43ZTUFqKxWQiEAji1TSKyv2UunxE2XwEfT40ow8MARSMaH4/iqIRFePEXVJMu7hYNIOBMreL2Nh47I4o/G43FqeFDsmJaHoARYfysmIMKmjBIKXuUgJeN25PCYGAB6/fh8vlorTcS7nLT0AD1WhAD2gois6vmzZis9nIzNxFrDMOW4QVt6cInw/KygM4nU58Xg9qPQsR1jX1cU2pU90lJaz74j+s++I/UsehAZ3KVeFP5QBLtB0SgAghRCOwOy0N2q4x7Pnpey7JW1JluyNYziV5S1iUMIrd9nSKvaCWujCbLRw8uI+g5sPn8tOrVy82bdqEqqrEJCbhd3spLy1l+75DpHRKJsYeQWKMD6+7FEVXUHQVzR8AfPiDPsx2EyazCdUWgSUmgQSbDVUBb1khqteFatHRjICuo/v9BHUvWsCAHlBRVRPoOqqq4vf7KfeVU1hahturU+bSCGoqh3JywWbFbrURFRWJ2+2i+2ldKco/QtmRUqKjY/EHvHi9HhQsFJfk16kGyLGON2JVl9SpIHUcGtqpXBX+VA6wRNsgAYgQQjSCpG7R2KMttU7DcsRYSOoW3XSdOoqmBSn48n2g+jUMOnDeke/YE9EZY9BDZLtYNK+P4pIydM2EJdLO7qxMgsEgKR2SCQZ95B3OwWQ2Ue538d3GjXRMiSWlvJQISySqHsBAAJ+3hHKvG7M9AqNBQbdYcUZEYIkw4THpGIIGoqIceHwB/GgVIxk+HcWv41WD+N3lmDQFgw4erxevz0sgEKTUFURTFWyRTtb/spKkTj05mL8egw7tY2LQFR0jGju2bMZqM2N32ND0IIrRQkxUDAQDxNgdjbImoy6pU4/W2gvliaZxKgdY4tQni9CFEKIRqKrCeb/rVmubodd2Q22mKtkHt27GV1JYa92RyGAZ6a5DRAeKUBQjChZUxcaIiy7F4XAQDFbcrBcWFnIgOxcMRjRUgprKnsz9uDxBXD4NfzCA0WJBV3SOlJfg1r2UucvxlJVgcHnwF5XhOZCNNbsQrSAPX0kRSqkLc7EXpdxDIOijRHfh8RSh4MOrlePVXGDQwQBBPQC6H1uEjTKPh117D7Bx40bMZjOBQIAjJcVExcZRXFaOMyYWmz0Smz2SpOQUIuwRaD4fZqOK1+NC109gCOQ46psSVeo4CCFOdTICIoQQjaTLgARG39GnSh0QR4yFodeG1wFpanW9KR5QVsYb+w8R1DUG9u/DgUM7+XbVVxSXFWMzW9A0DY/HA4oB1aBisVrRsZCa1p0f122ie/tzSEnQsdoj0BUVe0QUe3fvpyy/iGjNgsXmxBQdSZk3AB4/XkUnPi0Zd24BRo+b4rIigrqb+IRYDLEWomNisNoiMJtMqOZyPCVluAIuzEYFXVHJOpRLsceHjgkNP3aHk0BQwReEnn36k5OTw/4DWaSnp7N77166d+lM5q5t2Cwx6H4vSh0LEdbHiaRElToOQohTmQQgQgjRgI4t6Hd2/3jS+sdXZMUq8WJ3Vky7aq6Rj0p1vSmOD1gxWez4PCVs27GHiAgHPo8bu9WOqqp0SmtPdnY2RkXDZLKiawoebwkHD3soPKJTOuxM3F4Xfn+AyNj2mKKMqNjJde+hfMcBjA4TZlMUcR06ktghmb3ZB0lN6cS+0s34NBWL5saqGlGDCtH2eKxOOwaLEZNBwV9Qgt/rQg8GUE1G8ouK+WLJtwQ8dkyRVuwRCm53OQFPKVu2uBg0+FyKyoro3DGFQ5l7MGp+dm7bRFCDYNBCUA00yghIXWpTHEvqOAghTmUSgAghRAOprqBfUiMXETxRdbopViLRDe2Jjo/Dl++lvLycSLuNoGIgPiGOnJwcDh48iNlsxu9x4/O5QIfIqGi8morZonLoSBGnedrjdruJCHrxeUpRjV5MMQbieydjdRuwGjSiyr3oOzJJM2qwcwfpRgNlVh1SolGsGj5rEIfTgGpRUS0GNF8Atz+IXzOiqxZ8wQD5hR7y80uwOaLo1CWF/fuzsEUYKC71o3s9rF+3HkXVcdjj8Lj2ASomixVFD+ByuTGbbFRdEXPy6pI6tZIOuE0OEk/r1eD9EEKIlkLWgAghRAOoqaBfTrGHO+evY/Gm7GbqWfXqUrDNFHEBug4OsxVfqQuDQUXTdKKj2+N2e/B4PERFRaEoChEREVgtFux2O65SL+3iEtFVK8u+WUWZx0dJcRnFBUcoLy4k6C8jGBFEizei9miHmuJA6RBBIMWGKTmWQJKT8lgzlk7xqJ2i8MdZ0CJUfMFiSsuOUFZeRElpOV6fjqYbMBhtlJZ5WLxkFUHFBEadI/kluMuNJLXvTHSkAU0roax4PyVFh9i+/Vci7GaMJh2rzURMXARmqxedxisKWJk6FXtUjW0qx16+jhnCT3uLG60v4sRIEUkhGo6MgAghxEmqLOhX3eQdnYpn6jM+28LIXolV6kM0p9rqCeiG8wn4O6O4CzmQtQ2/q5D2KemU+gPklxwm4C5HC2joQR2jasTjLsPt9RAdE0PQ7+dgThbt2yWAMYZN2w4SF+3A6jahKBaMBgMOixMVA2pQB6uRYoMbo8GA21OO3R6BGmHAHyjDH/CiKaAarZS4SlHMOqpmAMWIPxBAD+q4fT5++P4XjIoJo6bj0/wUlZTSpVcvcg5l4vca0fyAScHhcOJyufCW+bBFRmOyOzGooOhBikqOoFN7JfQqU+yqqflRk932NF6Mv44OkdmkubI4rWwHEdr/AtYyg4Nv44aw255OXqmnliOJplZdEUmp2yLEiZMARAghTtLazIIqIx9H04HsYg9rMwuapMJ5fdRUT+BfD/1A4L8L5/1+HxabBV90J9p16Mq+betR/bswqWZ0BdK6pLN922YsWEjr3JltW3dgsygU5x2k3GTnsy9X0qtnCqpixBkVh4KKyWjDZDBhRkE1GlAtJrSghsFiRzcZcJV7cNjtqEET3oCXIEFstsj/Z+/O4+Ou68SPv77n3DO5k7b0opSWthQQoZwqrNwr3iIqx7qIonjhrueuigeIu6Lr4g9WXUWXVUDXXcED5FKBFlCgQFsopbTQI2nuTOb8Xp/fH+mkTXOnyWSSvp+PRx6Qme/MfGaStt/39/M+8DUdX/PwAw9QtLe188runaRzeZYuX8njm15BmTq+rzB0G8f1cL0iZiSEwsS04yyfv4wtGzYRCUepqqqmfc8eImEb31doI6RgHUyKXX+QqunsisxjV2Qej9aczNxhJtBv2dPLuq0d4wpwxNQYboikzG0RYuIkABFCiIM01qvVlXpVe6R5AgpFMOdoqt5wGXq8jhxQt+IC/Ewn1sbf0bvpYV7Z+Qo1tbW0tuxh43MbcT0f3CKRcIycgtbeInokyYvbt7NkoUYyHsE0LJJGDDMUxbZtjFCYcDiGCkXQAo9ILEYx34FthlEmOG4R13FwlEfgK7LZPM3bd/Pwnx4hHE+w5oTTeOiJJ6mqraWtI83cBYvpbO/A9zUi0RhBwSESqyIaTrJx4zPogYPvaWzd3IZuhsnHmrCWLGa3rRMfYi+rlGJ34D2lFLub3/eaEYOQoYLUUjAylJse2spND22t2BqiQ8VYhkjK3BYhxk8CECGEOEgNifCkHldJXg7rJC+4ZtDteqwa/8T3EnMdnO2PkcsEKAV2OIzvF8GMYqfqeOtb34JddMhmApYuPZbW3TvJpQtUVcWIoghsEx8TzQ+DZoMKcF0HJ5dHDwIcr4jvO2QzPRR8l3yxQGdXmlde2cWTTzzN+//+KnTD5umnn6azswvLNFGBz7ZtW6mvr2fx4kXsePklAl9nwYIFbPzrc2jKwbCMvtqVI04k+br3YyTqALgbiAcFzt+vRHIyUuwmGnyONcARU2MsQyRLc1tkKKAQYydF6EIIcZBOXFzDnFR4xKF+c1J99QIzSYBibdICGDQfQ9P6kpWME95JPu9RU5vE84sEgcP8BUupn38UV3/8CzSkauhq3oNXdMjn88ybvxAjGqe5vYfOTJFct4OXU3iOR6a7g1x7F362gOe4uK7CLfpk0gXyuSJ7WjrYtPFl/u9/f084UsWHP/Y5qqob0DGxbZu2tnay2SwhO0R1dRW+7/Lyyy8R4GHZGk8++VccNweBgW1FCR1+ClXn/yN6fGBaXEaDO8n1Nw4YT4rdcCYafJaCnmvv3oQfTH6LYDGysc5jkbktQoyP7IAIIcRBMnSNL71pBVfd9hQaDLhSXjpt/9KbVsy4XP6dZkDW0IevitA0/FACs/FIOtu3EbV1TMJUJxawYN6JvPTMS+R6NpEwXDy/CDqYpk5NTTW6rtHcnSGTDahxA3TVRTwSxQ08NAWWbuC4GTKZXjrzaZ7f8iIbt+7g7LPP5ooPnoJp28QjMTLdPTjFLFnlks4W8XwLzTJJRFPsadmNFTJwPAhbIeIhhRGBXNEFI4R5wrv3vo0D3uHeb0u7GpORYlcKUlt6CkPupIzkYGqIgsAfVN8jqUJjN9Z5LDK3RYjxkR0Q4Mtf/nLf1bz9vpYvX95/f6FQ4CMf+Qi1tbXE43He/va3s2fPngHP8eqrr3LBBRcQjUZpaGjgH//xH/E8r9xvRQgxTc5dNYeb3/camlIDr3Q3pcIzNn0mq43tVLlp8RF4TgZCFj1BEdfJY7kZcm3bOHJOLbWJFE6ugApAGTrK1IhVJzGiIXzLoC3Xy87uDjbu2MZLbc283L6HJ7c8z7oNz3HfXx7jmZdeZtlrjufdF72buXPmkkpVkYjFcYpFPM9DKY3du1qwLZtYJEw4ZOAHBXQTdB0MM8A0fBJxg0AViKTiBE2Ho8WqRpx8Xjrpn4wUu1KQChOfNDLeNK4tj6/lBx/5e+78yuf53Xf/hTu/8nl+8JG/Z8vjaye4gkNPaV7OSBK1dcw7amWZViTE7CA7IHutXLmS+++/v/9709z30Xzyk5/kt7/9Lb/4xS9IpVJcffXVvO1tb+PRRx8FwPd9LrjgApqamli7di3Nzc1ceumlWJbFddeNPnhKCDE7nLtqDmetaJpwm9ZKE1NjW3fzSy/g+xC2all59Goi8QZOPWUNra+sJWFlqKqej25D4HoozycWDuMFOqHqOjK9LtlinlR9A5FYFDMaRlfgux6B8jk6CHCKDtlshrhtk0pVETgeGDq+q9B1i8Av8uq23SQicbpamll69DJe3vEqmu5RKBYxDRvbilBdk0LtaSYAHDs+pvfW2lvgb1fPHXH3QqMv0Bwtxa4UpB7YSas2ZtORdUZdy3jSuKRz0+QYyxDJMy67UnaVhBgnCUD2Mk2TpqamQbf39PTwn//5n/zsZz/jzDPPBODHP/4xRx11FI899hgnnXQSf/jDH9i0aRP3338/jY2NHHvssXz1q1/lM5/5DF/+8pexbbvcb0cIMU0MXau4VrsTdZinE/MDMjpo2uANc6UUQaYD9mxB9wzs6HxOe93fsmXjczz559/REIOG45cQCpV2gxUqUHi+jx2y8TyPZFwnmYiiGxbFnINfdLFtC03T8PHwPI9Q2CYWb8ByHWxbx3F8XLeAGTLo7c7S0dNDNufSXSygRXS2vvAM9XMWkOlOY0ds7HiKoqvY09aNZVmk070Yxe4xfQYNifCkptgNFaQev7CaE6+7n+6cO+RjxhrglEjnpsk10rycMy6TOSBCTIQEIHtt2bKFuXPnEg6HOfnkk7n++utZsGABTz75JK7r8sY3vrH/2OXLl7NgwQLWrVvHSSedxLp16zj66KNpbGzsP+acc87hqquuYuPGjRx33HFDvmaxWKRYLPZ/n06np+4NCiHEOOlonJJ2+UOVjVLBgCBEqQANjcLaO0jVNJD34JovfZ4Xn15PyutlcVWCiOnQmLAJwlFc10Upheu6RCNhgiAgFArRq3J4gUs4EiEVqcIMmZiGSaAC9CDA8zwKhQLFYpGQbuF74HsK3wfleXSle3ni6Wd5uXknqfo59La5pIsFvF27OXzhIrrSvWR9nyCAdE83OkUsy6awcwOR3nb0eM2QwRUMbBww3O5F0wTa5B4YpN6zoXnY4AP6Ap7x1BBJ56bJN9y8HAnghJgYCUCANWvWcOutt7Js2TKam5u59tprOf3009mwYQMtLS3Ytk1VVdWAxzQ2NtLS0gJAS0vLgOCjdH/pvuFcf/31XHvttZP7ZoQQYhItzvsU/vpvhE+5BGL7Tpq1fA/RF+9nz0tPY1fXc9wbzqAYM3nDWaex1U+z7ZmnePd7306PlSeu61iWRRAEFAoFIuEQ0WgUz/MI6xqOD6pQwNdAD6J4hg9K4boOruviOA6WaWIYJrpukMl0Y1gmhYJDW1cPf3rsMXbk0iSduYTTBnqQQAvlsU2TBXPm4YXDpHuyFPJ5sr09+H5fYNP78I9InfePoBTsXwuyt7fugSf9U5FiV2rxO5KqqMVZKwbv0A9HOjdNjZHm5QghxkcCEOC8887r///Vq1ezZs0aFi5cyJ133kkkEpmy1/3c5z7HNdfs66+fTqeZP3/+lL2eEEKMn8Ld9iTBjmcoJhdSe9jheL3teM2bCTSD2qhFRHNZefh8XvzN73k1X+T0s95A++4duFGTajOJRl/gYZshTMuk4Pl4hQJWKIRh2AS+i61AZYsU8kV0y0SzTVxHga+wDRtD03FwsYIAjYDujnZa27t57K9PklEucauKpbW1xHtyZLRqeiyfth5oarBo39FMV28rmu5ghBKkYnHa29vxtz9D4YHvETrpPejxfelNCQXnadEhdzUmO8VutBa/AN05d1wdsKRzkxCi0kkAMoSqqiqOPPJIXnrpJc466ywcx6G7u3vALsiePXv6a0aampp44oknBjxHqUvWUHUlJaFQiFAoNPlvQAghJomu6YRCIQqFArRuIZ/ZhVKKaCxGTyaDmykSUiZP/PlPVCXq+czHP8a2bdsJigG1iWryhTyBymOaZt/fd1pf4w5Ds9A0A6V8giBAMwxUoNA0HR0N5froukng+yil+upNPHCUh+v4RGMJdj67mVd3tZComkN1VcD6Hbt4zamv49G//JXXn30WvXkH5WZ58aUXqaqOYeUBL4fnOyRTcVzXpbB1LT2bHqVq6QnosThvW3EJy8xqElXlqd0bS2crTQVs3/AMVS3GmFJ/Sp2bRkrDks5NQojpJG14h5DJZNi6dStz5szh+OOPx7IsHnjggf77N2/ezKuvvsrJJ58MwMknn8xzzz1Ha2tr/zH33XcfyWSSFStWlH39QohDmx8o1m3t4Nfrd7Fua8dBDbCz7L5BhDU1NZimSTQa7WtTnnfwiw7LFyzm8GQ9i1Q9vS91cO1nvsLRa07CjMXYsXsPVCWxbRvH6evyFA6FMQwbx/Fxij6maZJKpdB1ncD3CYouTrFILpPFKRYxrb4hg+Hw3scVfZTS2bmjmXWPP05t3Tx6My5nXvB3nH3Zx3ly5x6OOfFE7LDJwsVzufT9lxCO1tC6J0OmM4eW9ykWs5gmxBMRVMPhxI46BQ2NaPtLzHMVI0w+mXSjdbZakn2Zy3bcxu6f3TjmVrqlzk0jkc5NQojppCmlDvnRqv/wD//Am970JhYuXMju3bv50pe+xPr169m0aRP19fVcddVV/O53v+PWW28lmUzy0Y9+FIC1a/v+AfB9n2OPPZa5c+fyzW9+k5aWFi655BKuuOKKcbXhTafTpFIpenp6SCaTU/JehRCz2z0bmgcVSs+ZQKH0rZ99lGx3X5OMTKGTQClM08RxXAxDBzSUUpi6gQ4oTQeliESioOkEQQAqQNMVlmkCfXUWutb3uFKhha7vvQ6m1N5bSif/fbseaBpoGtref6qC0m5IEJDN5QgURKIxAjRMy6Q33Us4FKJYKBCPxwiCgN7eXkzTwPPcvS+rsS1isjZpkTX2BRsxP+Bv8jbLPItYVYjLv3HqBH8KY+cHitNueHDIFr9Lsi9zXuu9wNCzQ0Zrpbvl8bXSuUmIKSDnawdPUrCAnTt3cvHFF9PR0UF9fT2nnXYajz32GPX19QB8+9vfRtd13v72t1MsFjnnnHP4f//v//U/3jAMfvOb33DVVVdx8sknE4vFuOyyy/jKV74yXW9JCHEIumdDM1fd9tSgE9mWngJX3fbUuAYiHvvG+Tz6y5cAiIf31UdErVEeGPT9Ry9tsAfgjT7igsGn2KN9D5FSi3N/73a+Dwk7AQqskA0u6BikonvXv/fwFy2f+6KDF5XVde6Kebw5p7MmXJ7dgeFa/Goq4PSOR/r+f5jHjtZKVzo3CSEqleyAVBCJqIUQE1W6kj5cQXNplsQjnzlzzF2b1t//Kuvv3zGJq5x+AYrvkCY95EjBPil07nzHa1j22sZhj5lsB+5czcvv4m0td436uHd98bqK7czkB4rHt3aw48Uu4krj6CNqOOzIavQZOphTiBI5Xzt4sgMihBCzwGjdlBTQ3FMYVzelY9+4gGPfuGCSVlgZ1m3tIP2Dx0Y8poeAzury/vN4YItf7WXFljtGf1ylttK9Z0MzP7pjE8e1K5JKpx3YzqsYcZOz3rucJcc1TPcShRDTSIrQhRBiFhhLN6XxHDdbVfLnVGrx++Zj53HcsrEFfpXYSveeDc3c+KP1vK4NEmrgboeXcbnnPzaw9enWYR4thDgUSAAihBBlMJmdqYYyWjel8R43W82Uz6nUSnckldhK1w8UX7lrE2fk+4qFtAMqWDQ0FIqH79xCMMl/BoQQM4ekYAkhxBSbrM5UIzlxcQ1zUuEhuynBvhqQExfXDHHvoWOmfE6lVrp33Th8J8VKbKX7xLZOjA6HpBp+xpWGRrarSPOWbuYtq7wdHCHE1JMdECGEmEKlzlQH1meUOlPds6F5Ul6n1E0Jhu8f9aU3rRhzAfpsFASKli3dXLNsHvNdHf2ACKTSPqela07hwms+P2gnJFFbN2oL3unS2lsgpsb22WXTxSlejRCiUskOiBBCTBE/UFx796Yhr7T3zbyAa+/exFkrmiblhPfcVXO4+X2vGbTb0jTJuy0z0danW3n4ji39s00uIkTWUNwXcthi9/UOrsTPaaa10m1IhMlqY0utiiWH3yURQsxuEoAIIcQUmYrOVKM5sJtSQ6IvnagSruhPl61Pt3LPf2wYdHvM13hLLkTtaXNZeEx9xX5Oum5UbKvdA524uAa/1qY3FxBX2qAaEACFIl4dZs7SqvIvUAhRESQFSwghpsh0dVzav5vSyUtqK/KkulyCQPHwHVtGPKb4lw7WTELwEQSKXZu7ePEvLeza3HVIFlkbusYXL1zBgxEX6As29qdQaGic/q6lMg9EiEOY7IAIIcQUmSkdl2az5i3d/WlXw8lMQkH0gSleALGqEKdftPSQm3lx7qo58H72mwOyL9Aw45bMARFCSAAihBBTZaZ0XJrNxlrofDAF0cOleGW7i9zzHxs494OrDrkT7lIqoExCF0IMRQIQIYSYIqXOVFfd9hQaDAhCKq3jUrn5gSpLncpYC50nWhA9lhSvR+7cwuJj6g+5E29D1zhlaR0sHXmeiRDi0CMBiBBCTKGzVjTxiTceyY8f3UZ33u2/vRI7LpVLOeai9D/v0ipiVaER07Di1aEJF0SXK8VLiAMFgT9juqMJcSAJQIQQYooMdaJdFbH4u1MXcfWZS2fFzsd4T4JKc1EOTEkrzUW5+X2vmdQgRNc1Tr9o6ZApUiWnHURBdDlSvIQ40JbH1/Lgrd8n09nef1u8po4zL7+yIufDCHEgCUCEEGIKDHei3ZN3+c79W1jWlJjxux/jPQk62LkoE03bWnJcA+d+cNWgIvF4dYjT3nVwReJTneIlxIG2PL6Wu268btDtmc527rrxuoodUinE/iQAEUKISVbuAYTTYSInQQczF+Vg07aWHNfA4mPq+1Km0kViyb60q4Oty5jqFC8xs0x1bVMQ+Dx46/dHPOahn3yfJSeskXQsUdEkABFCiEk2HQMIy2miJ0ETnYsyWWlbuq5Neh3GVKd4iZnj98/u4ubb7yOf7iZnRNkdnkNTVXRSa5t2Pb9xwI7jUHo72tn1/MYZM7xSHJokABFCiEk2XQMIy2WiJ0ETmYsyE3aTpjLFS8wMd/7it2z635/yej/bf1uvEePh3GlcdVth0mqbMt1dk3qcENNFAhAhhJhks30A4URPgiYyF2Wm7CZNVYqXqHybH3uUV395M/EDbo/7Wc5rvZffN5zDtXeHJyVIjleNbQdvrMcJMV306V6AEELMNqUT7eFONTT66hdm6gDCiZ4EleaiAIM+m+Hmosyk3aRSiteRJzQxb5kM3DsUBIHPH/7zFmD43+nTOx6lpTvHE9s6D/r15h21knjNyHNVErV1zDtq5UG/lhBTSQIQIYSYZBM50Z5JDuYk6NxVc7j5fa+hKTVw96cpFR4yTWW27yaJmW3X8xtx0l0jXmxI+BnmFponJUjWdYMzL79yxGPOuOxKKUAXFU9SsIQQYgqUTrQP7Nw0GwYQlk6ChuqCVTLSSdC5q+Zw1oqmMXULmkjalhDlMtZ0xKifm7QgeemaU7jwms8PaoGdqK3jjMtkDoiYGSQAEUKISVZqxVn0Av71nceAgvZscUrack6Xgz0JMnRtTDUbpd2kq257Cg0GBCGlT/GKI3W+8o7zsA0DXdfxPL//SDVE1KKUQis9uHT/gB+JBkoRqADDMFDBwCdRgKb1PQ/7rUod+DR77xt8+777htK3Pm3Qbf2L3vswTdNYsGgRp170Po486bQhn0tMrbGmI0aSVZMaJC9dcwpLTlgjk9DFjCUBiBBCTKKR5lXMxJa7IynXSdBou0nN/3ktSav0z5nCNg+d7OLO3Tt59I7bJACZJqV0xOG6wikgY8S56t1nTfqFB103pNWumLEkABFCiEkyWfMqZpJynQSNlLb1H4U8AIFS5F2/tIHBgE0EtW+fQttvJ2GIvQ0UCsOyCIfDpNMZ2uPzyOlRon6Oxtwu9P7dj4GP3J+uaSjVt/tBaS37bYXs/3BtiPPS0vr3bdBo6LqOYZqg6eiGgek5aCicve9flN9I6Yiln92Kt17CeavnlXdhQlQ4CUCEEGISzIR5FTPdaGlbedfn5y+8glKKIABd17EsC8/zAPB8HwwdPL/vZN7o26lxfDB1DY0AQwNNKTwUmboj0Y97H1p0X5qNlu8mvPFujJYNFJwiRdffm/bloZQiZFoA/bcBBEFAEAR9r2lbe9cXoAE62r5gRjcIlELzvb4AI2Ti+gGWHWfe/EVUH3YEi48/BruqmlRtLdz+Xcimp+CTFuMxXDpiKFXD2e//IMtOOnUaVydEZZIARAghJsFMmVcxEaWaltEKxqfb3v2GvSf8YJomhUIBTdPwA41UbQ27du0mEQmhlOoPGgzdwNYtNHzCIRtNtyg0rSS/8h2DXyOcIn/8+zCfuBWjZQO4PpZl9QcYtmXjOE5/8AF96ygWi5x++uk88MeHME0TXdfxgwB/7/aHYRpogY8WKELRGErTCMXiNNQ1kGhopHb+QmpWH0f1vHnEElGS4Sg508AbtEIxHaQmQ4jxkQBECCEmwUyaVzEeI9W0VGI6WSkQCIIAx3EwTRPH9dFMm66eDHYkhuMUsC2DIOgrMo+ELKLhEE7RB9+j4Cq6l5zV94QH5kf1VZ/jHf0WvFefAqBYLO7bTXGc/p0X13X71xSLxVj/9Hps20bX9b77dA2fvvUqFaBjEq+uoXbuAqrrGknWzqFm/gK06hTJ+fNoqoqSSsWwXJ/D4nHWa0MXsYvpITUZQoydBCBCCDEJZuO8iplY0+K6fcGAppn9qU6GDlBAeT4WoDQdAoWpa4TDJjqQzebwfR/f9ynWLYFI1fAvomkQrSaoW0bh1WcJ2Rae2rsDonnEoil8L0ALTBQavuHzs5//gLqkyZrXnU8yNZfA0/HxsTQNXXkoK0w4Wc/8I1eybP5x1CQa8FIx1KJqIskINUmTuTU1mMojFQ9hqcKwsyeEEKLSSQAihBCTYLbNq5jJNS2+76PrWn8qVt+Npdt1dM3AskwMo2/dBcfpDz6UUqhwckyvk0gl0clj41FXW0dXVzdNDXUopbFrZwvhcIyCn2feYXM5/pjD2fzsOv5874/Y8PxOPv35fyFqJCjkC5jxGHWLl3P0otNYZazC6jagG9gBbM+R+JsqqhbGqLI8bEMnHrLQAn+YJr5CCFH5Dp1ehUIIMYVm2/Tz8dS0VBJd19F1HfAwDIWmB2iawkAjbNlYuoFh9NVgmKaJ4zgUnCJe4PelRKkAr3ds78nqbaYhbmEUe1C5TiIqh5vpJKJ7LDmsEd3L0VhdQzGT4a0X/C3FdJZCexerly3i5/91M1bIQotGaDxyOceteiPHBqsx3QNqBjIevb9+FX9LBl1BOBSlvTtHe3cepWbG75IQQhxIAhAhhJgkpXkVTamBaVZNqXBFpiuNZKbWtCilEQSglEEQ6KAMdN0ETcPzfVzPwzIC/MAjV8yT83yUFuD6DgUnjyJA73oJ8l0oFQzzIgFk25ln5bAiSfRoiqyrsbujl+bWTl7ZuZudLS2YIYt8No0qFknGqnhi/XMo5fPLX/4QXetF19M0NNXSuOgolhWOoK/Z7tBa72tBBRoZ16UTeKY7RzBU/14hhJgBJAVLCCEm0UjzKmaSmVrT4jgOoVCoP50K9s7sUD6aphGNhclms9i2Ta43gxWyiYY1lK4IFIQsA1XI4z35M3KnfnjwQJG9088Tz9xOpqeTfLFIqipJZ2cn8WSMOfUNdHd3Y9s23d3dxKJxcq7DE4+t5/lNm+h46zm84YyziepFvvsv/8S/3/4QK5aeir1h5G5JXo9L1+4iqYUQj0Tp7u0iPtSYdyGEmAFkB0QIISZZaV7Fm4+dx8lLamdc8AH7alqGW7lGXzesSqtpsW27v/sUgGEY+L6LrtOXimVoxBJRDEMjZJvUxBPUJWLULn0tqRVvwGhYiqYZRFufI/HEf6CyHQOe38h3UffUD3htdYGwbZG0bXr27CFp2xiuSyQSwfM8LMuipqYGlIZSOq4DLc3d/OZ3j/LpT32Zth17iOsFnGwrfsEZ03vLdLv4vo9t2ERj1TiONOEVQsxMsgMihBBikFJNy1W3PUVpiHdJJde06IEiatpk3dJ08KBvNyTwCIXCOI5Le2cHNXUN5IMAq/YoOo99Cyq6L5DSj+kk8dydsO0JItseo375ybRmPch1Uue2cljTXJ56+nl8P8C2NRrqa0gkEgS+Q8vOHRgqwFABKvCpq65mV/Nuauuq6OpVBIFDb7fBR675ChdfciG+pjCT8bG9uaok3Z7LfU8+R9aDZX6ANfkfoRBCTDkJQIQQYgYIAr/sQ85KNS0HzgFpKsMckN8+28yN920mW/RHPfaC3iLRvf8fAIGuYZommqbhui6WbaE8ncA30DWTZKKBmtq5dEQWkz/57wbt8gSRKnpO/CBabw81vZspbH2MiOtSLBZxEwm2vLQZxy0SiUSIhGyU47Hj5e1YlkVjfR1dXV3EImF83yeX6aW+ppruTC8R06RlVzepqhp6cnkeWreJnBGloHagxxcTZIZ+rwrwowZdYQ+jO+DFl1uoq6nBti0Y2+aJEEJUFAlAhBCiwm15fC0P3vp9Mp3t/bfFa+o48/IrWbrmlCl97emqabnxvs1sbcuO6dgg2DcBXWngBX7/DJBoNEpbWxtVqQTgU3Ty4NvseHkLibdf3/cEg4YN6n2F5qdcQfLhL9LZ0UlTUxOFQoF0uoea2npisQiNjY1kurrxHId5c+fieR6JZIJCPkdPdxfV1dUsXbKY7nSagpMnCAJqq+N09LZjxWPseHkH4VCIzff+giPO/QDBU8O3/21fabIwrLFt+26a5s/jhNXLcR4apkie6QlYhRBirCQAEUKICrbl8bXcdeN1g27PdLZz143XceE1n5/yIKRU01JOpZ0PXYNURMPzPGzLRqHQDggYSrGQ0gw0O0W6cydo4PseR68+ht5MHjQdw1cEmCgbVHQBxEaoX9F0VLSWLuswGmMBKu9ioROxI1Bwmd/URLq3m0xvN8loHL/gEjJD9LS0E9MtQmbAgroadjS/QjiagIZl5IgQNxT2y0/gZXuJJ6pJd2fY+uQ6XliQ5KhVZ6G2H46b2RdY+DED97QqwtVF0m7AC7s7WLBgPlVxk9Zhlj6dAasQQoyFBCBCCFGhgsDnwVu/P+IxD/3k+yw5Yc2svbpdHTP44RVzSSVTdHd1EwqF+gYMKhfDNDENg/s/Y1DsBjMUp/roc4hl05x92kJ+9L1/4cknN6JrChX4OJ6HpyvymTyJOUeP6fXNZC1O7xacbJGGhgZ6u9uYc1gD3e07ScSjRFJRdB0CxyEaNogVizQ1NtCbCViUtOlMnMqzc8/HCfcFOwVAP66D5HO/IL3xjyQTUVzPYcPj6wklYpzz90fR3j4XLwjx8OattGh5jm5MUldv8oc/Pc6cpjpOOmElf374MeYGigN/6pUQsAohxGikC5YQQlSoXc9vHHAVeyi9He3sen5jmVZUfhoalrG3dW44REAA+t5CeNeno6WdUlm8rhuEGhag1Szgoedtjvyba6g67hKWnPERwo0n05GJYhopTMMiZQ+fvrS/sNtDKhqiJhyG3l5eu3w5ViHHkY11vGbRImqBOl1j9WGNfPYDl7KoLs6qRXN41/lnsk2fw18XvxcnVD3gOYNIDd0nfpDwkjVEIhZ1jQ3ku/NEWrbjbPk1mr+Jtt51PLf+s6yo2knz1o1sac1x+JJFHL5kKfc+up4dTnRw7coYA9YgGL2uRgghppLsgAghRIXKdHdN6nEzVYSAcChEV1c7qWQSTdPJ+gGBCXpEI9g7MNDQNUJhDVuLMHfxfLbvaCcWSpArOqw+77VEj3gDtueQCFowu9aRznWgIjWDa0AAlMIudLHCb6Fufi0hDLxckbqaGLmIz8rDj2TH7p38zfGrUDocfuRi6hImF73zHBKxKE6+yOOZs/fGRgfWmGigFM6Jl1P7lxtw3CLFMLz48k6MHz/N0nm/4YoPnMq7rlqME/wv7aFzuDezGKO6gee2baPgaYSwB7YmY3wB6/yVqyf+AxFCiIMkAYgQQlSoeFX16AeN47iZyCtmeeGPt5KKxbFNjebuHrq7u0n3FtnTU0BpMaLFIgCJqEXM76RoV7FnT5qi1s6cIw5n18vdbG/vpj3r8rev+1v+8ocfoje3syB6N68sv2yYYYPwd/YGjj52ObhFaqqriUaj1NfV8+K2F6hLJYnpDcQb6njNqSfj4/HqSy+xYsVSXCfPuj0WaTM1/BvTNLxINZs7NVbWh+lsy/HsSx0kVzXx4O0befPHziZWq1O9dQ91xr+zxzF4Jvy3FAMbx1c46a7+QYslErAKIWYKCUDEIckP1IyfVC1mv3lHrSReUzfiVe1EbR3zjlpZxlWVm6InF+K5do/66gh/+sNaCmmHwPDwA5/ADzjZno+FTkf7Hu792T9w809/ya8f2Uyq6nCK6Ty1CYdQKoKrlnHf+nU01erkt+bIPX0v83ydlsMvwI/uK7JPBRkuM57j9NBO5ixcgG4YaLpOKBwmk8ux6qij6WhrZ+Hhh9N4+FIMO4qmByxauhxDFcnnCrzUnh/hPe1TO28R3c1PE7YjRKMxnMDkqBVL+MXPbuedV60hb3eTalzCcfGNrNu0GC9jkA9ChMzBE+glYBVCzBQSgIhDzj0bmgfNNZhThrkGQoyXrhucefmVQxYVl5xx2ZWztgC9pLGuidvv+B9U4GBoOoQMbCNE4HrYIYOgNPhcQVNNjC997BLi1dW88vKrbGnJ8PM77+XVtl6sml6OPOkoHrzlTmprq7EKOu6uv9LYs5l0qJ7Gpvm8flEDx8U7SEYjROx6LNvCCFkoz8dUUJdIkvMUc49YiKMrIjHwsmnsZDXKclGeSTKRZHltDkbOhgKgIRqQMXyUm6E22YRh67i5EKuWLcPt6CCkWul+yaXh8MPo3vMy0aZTcNpa8Z3CoOcaT8AqF2GEENNJAhBxSLlnQzNX3fbUganTtPQUuOq2p7j5fa+RIERUlKVrTuHCaz4/qK1qoraOMy6b/W1VNU2jtyuN6WuYhPEDA58CrmcQKBMV6JRqLEp/rk3TJNPbQ0N9Na9bPY+CUyAai7I74/B3v7iTTXYHMSAUrcZzFdlcliPi3bx+TjVHxjRikYBoXOF7DoGlEQmFsBIhdF3HtGxwdfSQjaECAt1AM21c30PTDTQCMDVOOSygcVuRVsdGDSoX71ttzEtzmPsKbTUxXBeyuT10G3FUdwd/vC/DoqWvId6osHqKuF07cNpS6MlV2ErH9UODUrDGGrD+YVOrXIQRQkwrCUDEIcMPFNfevWlQ8AF9Jy4acO3dmzhrRZNcCRQVZemaU1hywppDdrBc256daLoPhonvZlHKI1A2ZsjH8wIgRF+/rH1MXPzAxlMeuqWjMgbzrDifv+IKVi+ux3MNNr28k9pkDbhZLC1BXV0KQ+WJRBJoukEkmSQcjROJhCkGAb5t4BkGpmETCoVwXQ/dstDtGJppg+7hhy28bA4tqvHZFW1cs34eWt/0kv1W1/e30Dn5dZixJHllYiRidPa0ks8YkPdp3qn461/SvOa1PvGqFO0tGcKpObzQ3EVI6biZ3KAidBg9YN0aWywXYYQQ004CEHHIeGJb54ArfgdSQHNPgSe2dZZ96NpIJFVCQN/V7UOxc5FSip6eTizLJp8rks3lWbDgMM456zyeeXIDhzU1kn74Mdg7Dd2yDFzXRdNMdC0g8BWWaaNFfEDh5128Qorde1rQLY10tpeUFVBnm9SYOr4RQq9KYlohQqEYlm3jWwbRcBWBbmOGI6hQCM+y0PIBa3fmafUM5sYtTpwXwdB1MHN4ToYLlzrYegdf3VhFS3HfP7f1RoGr6p5nWX2WO19oo7XNofGwGIl4DXZVQMfLGSKhOHv+1MPt2x3e+I63cPNfd7Kz5mjCGuTyDpqlEQRDtxIeLmBV6Fx6w4NyEUYIMe0kABGHjNbe4YOPiRxXDlKvIqbCTApqNQ3yhSyFfBawCYXCNDfvYdWqVXz+mi/xNyefQmMmR1U0ggJc1+1PTdI0DcMwcF2vbwK6CgiHQ7R2pKmqqaG7sxucIquXHcaaY44iCECPxuksFglyeSwrR1VVNe27uygWfWLhJHW1jTiEeDJo4htPw56cvXelAY3hAp8+Okvt7rUkQyF6e7qZ31DNr09u5E+vFEgHYapVL6vC3bi5Aj1ZxdvPP5d/+89f0NnRQ8F1aJoT5cWdOznplPPZ3v4X3n7F1fzPjvPInBIivf5FdEOjKuzRursVU9dgmJEeQwWs67Z2zMiLMEKI2UcCEHHIaEgM7hpzMMdNNalXEVNhpgW1GnvnfGTz6HELz3XRHYe7f3kHVjHHNZ//GD/73Ff6j9d1HaVU/5eu6wRBgB9AMV8kamiEIykyuTye5+Fme3nDiccS0Xyy2V500yDfmSEUCpPNdqEvjOPkTGzdoGPnq+zZtoWe+WdyzYuqf4UlrQWNT/0lzkfMGCdGWunqzWAkwhhdnRxfY/DSlueYf1gThYJLKBKFnENEh6MOn8/al/ewcMnh5NJpLC3OEYtMqt5wJC9u9Pjdn+8l5xawijFyXhfRkEXIs/E9Z1yf5Uy8CCOEmJ1kEro4ZJy4uIY5qfCQ5aDQdxoxJ9V3NXi6jVavAn2pEn4w1BFCDK0U1JaCD00FzMvvIrHrOb72g7v5/bO7pnmFgyml+oIOXds7rkPDMHS2bnoeIxJmV3N3/x8KDQiCYG/w0XcsQIDCMgKsKGTwKXou9Q1NONkixy5uwiaLYdnsaukhboZZUFVHtZGgIVxHprWT7M4udm/eRabDIaRX8fWXSm1sB/5tUqrzuMN/DSrrYmQD7G4LOhX51gLHLFmN4dps37KDna+2oAeKfK6NNWtWoPmKFze/ghd4HH1UCrelyCvbMtz8X2uxc4pIroDttZF0C9jZDF5va/+8krGaaRdhhBCzl+yAiEOGoWt86U0ruOq2p9AYWL9ZOo340ptWVEQqykytVxGV68Cgdkn2ZU7veISEn+0/5q/ffJDDr/4oy046dXoWORRNI5lIYBhdBEoRBAGJRJKnnnicbFHj8MOX8rDedy1N0ReABEGAaevohkEQ+BiWRhCYxONVOLkujj+siWe3bCekafzNaSdi6wbZQp55c+cRdGfZ2bKHgoKG+Ut4YWszrquYN7+RKttki5ukIxjpBF2jXUV5pNngna8/lQf/tJYnnn6GU086nrpIM/OqY+w2ltDtR6ktFDihKkegNAzdIezlOe+1J1Jw4aE9Dq/2vI58OEyQ6cBUvZhGGOX5ECiMIOj7i2scf12VLsK09BSGvLihAU0VchFGCDG7yQ6IOKScu2oON7/vNTSlBp5ANKXCFZXSJKkSYrLtH9Quyb7Mea33Et8v+ACIuBl+8+3r2fL42ulY4pCUUpguVKX6dh1My6RYLPCRT32QqKETCe1fjK1wXZcgCMgVFemMS9HT8QIDMxTGiERZteJILn/jiVx06msIK5/6uhqqqqpIJpNE41FsNFxT45HnN9B0+ln86C8v4S8/gV9vepEjT34tOwremNa9ufZodi89nruee4mW2Bye2JPFf937uLzndG7gjfyHdwrXFc7kA21vZLO/gCNSNZx/7NG86ejDufTNZ/Hn9c+QcTW0oJvAbcbBJ5NPUwwKOKqArxy0IcOI4ZUuwsDguKXSLsIIIWY32QERh5xzV83hrBVNFV2EK6kSYrKVglVNBZze8Ujf/x9wTOn7h37yfZacsKYi2vxqmk4sFqO+Psyul15GszRQimNWr8Y0Q6CBbuj7PwB0HUPT0EyLUCxKPJYksfhwmuqXYlVp9PQUOGXZMn7/0B9Qmk/RhbbEkezJaWjFZhrdFt54wol0bl7Phacexe5nH+arH/sA29c/Tr0JDN18aoCHrWU8/Js0sbP+iSXZzSxavoRPPeGClRpwXLsf4vr2Vbz3xLN45wlzePS+e3nTlScSFLNoXhplGFiaReC6oDTwvb40MwB9/CmYpYswB9YBNVVwHZAQYvaRAEQckgxdq+jUJUmVEJOtFKzOLTQPSLsaSm9HO7ue31gRbX81QDd1YjEb27ZwfAc/8Mjk8+SLGe699/cEe2shlALLjmPYIYiHSVTVUNUwh2i8hsjipVhWDfEmm9cuT/D4//0vF551Bs8Wmri9dzXte0rB/DKqEydwGX/l5K0bOD5eIKflaX3sXmKmycmpgJquLJ1EGUv+U5YQz8ZW8+wOANUXIA16h4rfhk/hnJcfZM0pb8BxNEzdxtZ0CMD3fXTAw+/v8KXrev9jx2smXIQRQsxuEoAIUYFmUr2KmBlKQW0skxvT8Znurile0dgEKkBZCtsJ8ApFdMsEzWfrzh2YsSjPb9xAaO+xumHQtGIZNbVzsOfMI5SqRY/UoNthqE/SEKnHCGXY091MS+sumuccy82FEwa9ZpcW5Tu8jvrqTbx5QYG8EcPIuvh4FAOXT5ov8c9tq9k3PWOshm+B0a3H+f2mDj4x/wj+8bobSIctqvAxTQtME5RCd200XUMptbfAvns8H+UAlX4RRggxu0kNiBAVaqbUq4iZoRTU5ozomI6PV1WPflAZaGjE43Fq62rQdAh8Hd+3WHXMaWBF+OFPf4Zt983i0HWD+uXHEF99ArWrT6R66Qpqli5k7vLFHF5dRyQF1Zri/k1bqa+v5xec0P8qg18VvpteSk9gopOnx2kj53aSShqckdjDp/VHqCM/qe+1aEXRk2Ee3foyK449DcuIo+sRfGWhheL4IZu8phOqrsO34yi5/iCEmKFkB0SICiapEmIynbtqDurvL+Cv33yQiJsZ9np8oraOeUetLOvahqfQPA8tCHD8AEMFeAbsamsjW8hy620/4en/+AkYoBkG8YVHY1TVY9ckSMRCJMIagesS9i3yWoAVj7PwtHPoeLqJ9u2hkV6VPa7NFifBUWo3dfVJQqZOMZdHdxQnq+0sqA5xddeJk/ZOg1wn3/v5XajUfFwrCYEJmoZhGhRcH0u3iESjKAxMK4Tmyd8DowkCf9BE+EqobRLiUCcBiBAVTlIlxGQ6b/U8Dr/6o/zm29cPe8wZl11ZMSdpmqaBH6AHAbZloxwoBEX+8UNX4WQ8Ln7PJXzub87qK6/QDcKhEPXJCNWRCKiAmB7C1XRClolSkC728mxnkXRncUyvv6erwEmL54LnYuom6ZxLe3ea6jl1bLUaYFIy1RRVfoal4V7+e+0LzD31nfRqYSIhE8/3CDSwNBOUjtJNXAWBpk+g+uPQsuXxtTx46/fJdLb33xavqePMy69k6ZpTpnFlQghJwRJCiEPMspNO5cJrPk+8pm7A7YnaOi685vMVd3KmaTqFQgHP99F0HV3Xqa1dQEPDPA5bfDi60XctTTd0ag6rJ1YTIRmHhhRYQZ5wSCePg6E5JCyb2NwUmc6OMb12fSyCrpuYNVE6ujrItHXTm8nT2DSPeXObJuHd9YURF+Qfob2gYdc3UdQ8LDuKrptomoEKQCkNP+jrgOX73nhnEB5ytjy+lrtuvG5A8AGQ6Wznrhuvq6hW00Icisq2AxIEwd6uHYNv37lzJwsWLCjXUoQQ4pC3dM0pLDlhTcWnpygUnl+gkPXRTB2/4EPgUT+nifv++DD/ecdt7PrxfwN9OyAx26QqZJAMGTiFApYdxdUMcDwcx0fXbIq+xYXvOIff/c+rZPXYEJ2pQEPRaLmcVKuhUKT3dGAAPekM2e4iWzbv5qijaqg3G2nzTMZejD6wcL3BKHCp9iRmZgt/SafpyGRJFopEYxA4RYqFAoZpYxhh3MBB0/rSigLl9u0OzcJAxA/UQaWdBoHPg7d+f8RjKqnVtBCHoikPQNLpNFdccQV33303yWSSD37wg3zpS1/CMPr+0Le1tbF48WJ835/qpQghhNiPrhsV0Wp3RAqCALraOihm81jY6JZBW0cz1fFqrv/a13lnTQMJy0bTdVKJEHHTxw1MCr5OzlNg2xTyRUIhG91QeJrG5qLLCcVn+WPkZA4MCkoD/j63oB1Ns8hn01hKJ53JEo6EiUfD5HJZNv71Ud7DHP5NnQ7a6B2x+kIZ+FDdDhq1HmrMAquMdlp2tPFXM8Qz27bhRRqwdR3lFfGcHJZuEgQaXtHFc32UEaBwMUxQpWnos8g9G5oHzSiZM84ZJbue3zho5+NAldRqWohD0ZSnYP3zP/8zzzzzDP/1X//F17/+dX7605/y5je/Gcdx+o9RspcshBBiCIZpEgpFMdAxdQNfB4eAZHWSb//7Nwlymf4uWJqmkXc8sp5Bj6PYUzTYkXbYuqeTHgwMy8DQFdnA45l2l8Wrl/P23ENUH9DNqsF0+O7infxNKo1jFshkeujt7sTJFzBDYVL1DdQ2NjBn4WLetbyWf659gXp9YE1JRPOI6QOnpjdaHt9e/AofaNjN60M7eW08jVss0NadxrBiuEqn6DqYloFXyBBoel/alZtBOT3YehYj6MXGQRXyzLbtj3s2NHPVbU8NCD4AWnoKXHXbU9yzoXlMzzPWFtKV0mpaiEPRlO+A/N///R8/+clPeMMb3gDAW97yFi644ALe9KY3cddddwF7iwyFEEKIAziOg/IdNB3skI3v+PieR87L890fXovjtxENH4uf7xvaqZs2OcclsExUKEw2nyOdLxCYBglHw3U8Mp7Hy0Wd3lCKZUEHX3D/h97UkfT4OocldV7X6GMaJq5m0d3cDpqPqXuYyTDprIMRC0HIRotG6C0WeH09XDD/JR5rU3QUA6q0LCdWZTHDBk/31pAJ1zM3qnOs3YFyoVAAzTRxvQDPUyjTJuP7BLpFoMAPXNzAR2GgKw0VBOiqb8dD13UK+b5ZLlp45M9uJvEDxbV3bxoypCrtLV179ybOWtE0ajrWWFtIV0qraSEORVO+A9LW1sbChQv7v6+rq+P++++nt7eX888/n1xubEOxhBCi0viBYt3WDn69fhfrtnbgB7PrinQl0PW+UZyGoeN7HoZhYOg60YjF2y96Gz/4ya24ft9Og6ZBtuBimiGq41G6uzrZ07obX3MwdRc7pBOxLaK6hWPabOpO057L4AQO9ZktvC7awol1RTy/iG9rFNwCFhCOhdFCBkY0RNXcelL1tVTNacCOR0g21ROvqcaMhjhlruLshgJHx/IozcRzDVaHuzjZ2snKeC+BbaKbIZRmUHR9unsyFD0XZZn8ZcMGfKWhKQtNUwSBA0GA6xbxnSKeUyTwHYqFHLqm0Aim9ecy2Z7Y1jlo52N/CmjuKfDEts5Rn2veUSsHNVg4UGW1mhbi0DPlOyALFizg+eefZ/Hixf23JRIJ/vCHP3D22Wfz1re+daqXIIQQk24yctXFGCiIRMKYprm3A1QRDMjn0mTyOdrS2f6r5kqBbkfodRUvvdrOi6154tEqQrpifkMjWqaHeCQMps6SsEmLmo+atxTVthnTUrTaGaqSKWINVbi6T2+xF8uC7s5ecl0++e522lv2UFdVB4Fi9TGrqT68AUyDYqYbI5akx2knXh3HcQr4vku0OkXWKeI5fW18PcvBM30UAYGh0dGdpTWdZuOLr+ImaqiqrsXLFzEU6HqA7xT73rsK8ByXIIAAE9sO7a0omR1ae4cPPsZ7nK4bnHn5ldx143XDHlNJraaFOBRNeQBy9tln8+Mf/5jzzz9/wO3xeJx7772Xs846a6qXIIQQk6qUq37g6V8pV10m1U8iTePlrdsJGQmcooMVjkNQYF7jEpJ1jVQvaeTVvSk5gYLW3iLhcJjWXIBmmFjhKCFbJ/ACenoyzJ2bIpvPk+3pIJcvED3mdfTc/zzVto4WKHJFjXCxiB0PEQqFCOsG+V6fF597gcZUPQkjSaOWJJft4dW1T7Pj0WdwHIfWnnYy2V6yhktgQKI2hRUPMfeIeSxfvQqPAM8vouk2vdkcmUIR1/Pw7RhtTi9GsoasH2CFQ3iehwoAQ6ECF9dxcRwHTdOwbBunkAcVQEjNmiL0hsTY8snGetzSNadw4TWfHzQHJFFbxxmXyRwQIabblAcg1157Lbt37x7yvkQiwX333cdTTz011csQQohJMZm56mJ0mqZx7HHH8dxft2LbNo7romkB6WwXv/7f/+PBRx7gdD+FTl9Dk7ZMgVxrF/ksxMI26ZY2qK6iLeLhamGe2d5CJBqnmHYxrSTr27N0FjXiMUW1EdDeuQfMBFVmNZFIBDeToanO5vhjlxDSQviOg22HmH/cMTheQM5zMEyNhb6PpWv07t5NPnBRcQsVNZg3dw6FYg4zFsUPfALXx3EDcoUijh+wszPDL/7wCF1WnMCyMG0L13HQAg1HKTy/L+2MwEA3A9xCEdsKoZS/dwdkdvyOnbi4hjmpMC09hSH/bGlAU6qvJe9YzZRW00IciqY8AKmurqa6evhCr0Qiwetf//qpXoYQQkyK8eSqywT7yfHi5s1ks0Uy2SzhaIIgUHS05bjlez9my6vr2fn/fg9uQKAUTmeePa/sIJpK0Z0PE06F6entpTGVIpNVtPdmoTtPLBSFTC95t0jq+PPZ8ef/wV+SIqBIPIiQd12yuQyWUuCZRGpiZNMFlG2gIjY7ezooFBzCsSiB42KbNlErjD8ngXLyhMM2kWiErmwLlhUCiijNoCudI93bheO4tHTkeaa5kw7Nws361CxeTN7Rgb7fLzfQsW2bcCRK0XXQfIXjFlBBX9t6bZYEHwCGrvGlN63gqtueoq/qZ5/Su/zSm1aMO6ifEa2mhTgEySR0IYQYh8nMVRejU0pRW1eNYemYmQxK+RjoJGJherpa6Whu758rhYK29k7Cho3nKwiH0c0whm6zdedumts6SXfncfIBmZ4c2c4suY5utm3bhmFZtHZ24QQa7V3ddPak6e7N0JvJki84aKZBqjpJsiaJT5G8myUSt8nnswRBQL6YpyubxlMBtQ31RBNxHM/F8XwyhRz5YoFMLk/RKRC2DDJFnVfSAf99/6OkfQs7Xk0kFscyQwQBoPT+4b2FfJ5sNksul+t/r6ZZtjnCZXPuqjnc/L7X0JQamGbVlApLWqMQs8zs+xtMCCGm0GTnqotRKIVpmsRiMcLhMMUgwNA1IpEw4UiERx99lONcq++quVKEkkn0kEeuWMQ3dLL5HMmwjZP1cLtzKDRyuYBCPk8sZGD7ipTTSWNM54W2ZqK+je+b+KZObSqJF2h054rEI2DgUFNTS/3cBkDHc30ioRiO6+KhsCMh8PIU81l6sz109vSgWwaBppFzfHrTaUK2SUtbDy92B3z3jt/hhsIUAoOFhy+h1/ewPBfNNLFMEyNQKBTRaIyi5xIOh/B9D9AIKmh+1kQnlw/1uHNXzeGsFU0HNQldCFH5JAARQohxmIpcdTECDSzLRqHQDR00Ddd1MCyTrq4u3vve97L1e3fjFHtRnk/QmaE7myXaWIeez6OUojdTIOjNoLsevqbhBj4hz8LN5Uhmt9FgOViJEEvtRWx68WV8fTE9hQxt7UVSiRi2V8CsryOZjFHwA1ROkUwlKCgXFxNfCzBNHd9VOE6A5xToTveQDRQ6PsW8hwp8cjmXbc2dbGtu4zdPvUy3aeMHGkcceRSGZoJTxAiHwO9rKazbJq7r0tObxjAMsp6LaViAjq6bQJbpHkY40W5woz1O0heFmN0kBUsIIcahlKsOg8t/DyZXXQxNBdCVSeOrIslULV6goSvwih4f/dBn+NCHrsFxHAB004SITVVtNXpvGmf3LoKWFgotneS6cxR6c/jd7VhuDr17N3X5ZvIvPEEocIiZAclohKOWr6Clo4vWrjStXWlyro9jWuRchVIW3d2ZvhqUjk56e3rp7UlTzDt0d6TJpnPkM91ksxkcz8MJoKvHoS3t8MIru3mxuYO/bHiFXe1ZXtrezGmnv46gmKW6rhZPNzBDMZRuEWgmmhki7yh8LDQzgo+F0nQ8BUqz0Axrmn8yE59cPlkTz4UQM1fZdkAMw6C5uZmGhoYBt3d0dNDQ0IDv++VaihBCHJRSrvqBV3CbZvAckCDwK7JbkKZrxGIxooclaej02fXqTvxA0WvP54yL30ci7mE8/gR+vgi+h//8C7jFIoZTwIvX0NO4FBUJQ2Tv8zl54m2bqEk3k3c6ScVtorEQmAUMK0wsarPcMunu7qJYzPHqtpdxAx8WHY7neFSnqih0t6GURlc6Q6ACIOCwww4j19tNPpcnV8jSk3foVRbPv/QqBTegK5dH00MsWryYbKHI4fM7iBo6rz/9FP784J9Y+dpTMc0QGCaW0ZdipZthdF3vq/vwfQw8fCegN5chGo2hpjENa6Ld4KSLnBACyhiADPcXZbFYxLbtci1DCCEmxWzKVd/y+NpB8xLiNXWcefn0z0tQSlEsFtm+ZSdBYJJLLqf7sHPx7RT3t+xda3IuZxcfoDa/h0T707S6Gvm6pfjzVg1+PitM79zXECreS4PvEArC7Nndw6LDbWxdJ6x8CgkL264mnQnjA4EPm3fuoSaa5bAmjW5bEQqHcFwXNA0/ULza2onnuaTzWXqzOYxIgj8++iiJuU24vk9dTRLLMPFzaZRlk2xahBMysImyatFcwMMLxTDMML7ywHdBC3C8Alqg4boulmmhGZBIREBTfXla05SCNdFucNJFTggBZQhAvvvd7wJ9vdx/+MMfEo/H++/zfZ8///nPLF++fKqXIYSYoSr1yjz0pWPN9JOkLY+vHXJidKaznbtuvI4Lr/n8mIOQiRYjj0TXNaIRi1Q0xubIEjpqB65lSfZlTu94hISfBR0uqCmQVQZ/rq3hJdh7kr4fTQOl6J5/GnO3/hI7gJe2PM8blh+PaRsoTxGJJPCiAfF4nILj4fga4WgU27RozWdIuyZhj77dD83ADwJCFCkWi+SKDplMAac7xxFHrQTPQUvo4HmErRCe8tnd3IIKogQFjbAZoaY2RUtPC5FwGDfQ8RWYVgjHC1C61XcBzwzj6Bpo4LkuhmFOa/XHRLvBSRc5IQSUIQD59re/DfRdxbrlllv2tUsEbNtm0aJF3HLLLVO9DCHEDFTJV+Yr0VgDgNJxe3py7PjhzSM+50M/+T5LTlgzatA30WLk4dZf9PrScpVS6JpOrlDk8dBxfQfuDSqWZF/mvNZ7Bz1PVPM5t/OP/N4MsTV2+OAX0jQ8K042Wk+k+xWWHb4Y3/eJ6CahaIRC4KACiIZsdB3iuo4X1bEsC18psuki6VwvuVyOkB3C8wOi0TCaphOLRQhHbLRAAT6BE6KQz5NIVuO5Ljlf4RQd5jUupL3oELVtVKxI78tbOWLRfHzTpS2n8HSbxkVH4QcBCvp2VTyF5/k4boFQKAT0AtOTvjzebnCln+2WPb2T+vxCiJlpygOQbdu2AXDGGWfwq1/9asShhEIIUTKZV+YPBWMNAPY/bl5+F29Ld434vL0d7ex6fuOIw9xKRcUHXpEvFRWPZYbDUOsHcAODQqFAsX4V2XS0v9JfUwGndzzS9/8HPFcpMen0jkd5OboIpQ3db6WoRcApMm/pXLKuTgKLcDSCm1XUVsfo6e0lGgnhBgHhaBjTNAmUIhqLoGkGSgUopaFrOr7j4hYdNMvE91ycfAG36BPSDcKpBErX0XSFltEJGwY9bhv5ngBLq8a0E6w6+hg0QCtkaTQ0fDdD+uU9WOE4WScgFknQ5YZA0/GCgMABLTR96X7j6QY33M92KNJFTohDQ9m6YD300EOHRPDxve99j0WLFhEOh1mzZg1PPPHEdC9JiBknCHwevPX7Ix7z0E++TxBI8woYe1ehA4+L+rkxPX+me/ggZbSiYugrKvaD4ROGhls/QNa3eLKnnrbiwH+u5haaSfjZYWeBa0DCzzC3MHxHpZAqUlVdTTKZxPVcEokEKEU8kQAFiXCUungSw/PQHAfNdbCVIqwpIkZAwjaojoZJhmySkTBhQwO3SFjXMQKfmkSMSNgiGrKJ2iaB66BrHtXxMIWONiKGRjKZRNOgt7eXZ555hiAIcF2XbDaLGWSJm0UaYj7VdFPv76RW7aYpnCbu7gaCYd/bVBtrN7j7NrUM+7M9kHSRE+LQUbYidN/3ufXWW3nggQdobW0lCAb+xfnggw+WaylT5o477uCaa67hlltuYc2aNXznO9/hnHPOYfPmzYO6fwkhhrfr+Y0D0q6GMpYr84eCsXYVOnN546DjckZ0TK8Rrxr+4tHBFhWPtP6S3/Uey5utJwfcNtbgacjjlMJwMtR4HfRmsyhNJxqOYJomGjqO72DoOtGwjee61KSq0DRFLpejWMhQU9uIaVpYloVh6ARBQCbdy8K5h5HJZuju7iYRCmNbFlV1DaR7e2lu20PEDoHhMKexGses5i8vd5GNNdCmVWPPr2VpLEZrayv19fUsWLCAbKabeCRMS0sLYcsmZZhEwjamUSStejCUPfjsf4jPd6oaJYzWDe6sFU2cdsODY65Vmcld5IQQ41O2AOTjH/84t956KxdccAGrVq1CO7AwcBa48cYb+cAHPsDf/d3fAXDLLbfw29/+lh/96Ed89rOfnebVCTFzjHTFfSLHzWZjDQD+a932QcftDs+h14gRH2EnIVFbx7yjVg77/AdbVDza+kGj24ugLIhrBTJBCDRtzMFTTo8MvGFvR8amtnXkc70YGPzvvX/gfWeehh2PYwYhyLWhaTqaYaEpnVg0jO86xKMxLF3HVRqe66J80E0bNIVmgBMUiYVsSMZxlY+m63RleigWi4RDUZTS0PSAKtvmeX0JLzcdS9Hc15jFnNdL9csPYBSb6eroRjc1Orp60YwQvQWHWMwmmyvgOA6mabIvxOxzYLDRlXX46m9HT8sbKUgZLYAZqRvcuq0dY9r5uPqMIzj1iLoZ20VOCDF+ZQtAbr/9du68807OP//8cr1kWTmOw5NPPsnnPve5/tt0XeeNb3wj69atm8aVCTHzjHTFfSLHzWZjDQBe6Ry8E6A0nYdrT+O81nsPOJXd54zLrhyxAH28xcgHGuv6i1aE04Pn+X3hWFBq1OBJKUUek1YjMeB2080wp+Uxwj0voYdtHNejqnYO0Xg1yjSwzRBKS+A6Hq4XYBg2hm5hhS1816FYdInHY/iGiWmaFD0XyzCJR6IEQUDg+5imiaFbBCiMkIOudEKmjWGYhB2TJ7xF/NJeM2jNnhmn7cg3Y237Pan0q+TyBQxdx7ZtLKuvG1YoFMIwDGzbRtPy/Y8da53FgXU5I9UOAWOqKxquG9xYf7ZLG+MzvpucEGJ8yhaA2LbNEUccUa6XK7v29nZ836exsXHA7Y2NjbzwwgtDPqZY7GvbWJJOp6d0jULMFPOOWkm8pm7ENKzRrswfKsYaACysGXrHYGvscH7fcM6+VrZ7JWrrOOOy0buNjacY+WDWH9fyJP1OEi8+T3bR+QShqmGDp9LYKVN5XLrz5zSHm8gbUWJBnsb87r7ix5iGhgsGaCrK8xs2s/VFE33v7rxSau/zlp5537vrH7+x97/7z7nqf5QGQaBQKDS0/kf7geK/55wBBgzXIrhn/umc9+pt6Fh7X8RHqb6WxFAESwPylCZobTbn8Y0hmgAMZf+0vCBQfORnTw/ZPOBDtz015OPH01jgYINTIcTsVbYA5FOf+hT/9m//xk033TQr068m4vrrr+faa6+d7mUIUXF03eDMy68csgtWyWhX5g8VYw0ALjl5ET98ZNuQx22NHc626CJWGR1cf94ikjU1Y563UipGvuq2p/q7T+3/2jByUfFo6wdFlVlgkdHGLs0i1PU84c4NFOOL2JJTRFJFTjZ1woa173W1vle3NbBRLHH2K0QfqvWKpqGCgGLBGfX9Hqyd4blk9ku7GmotWStBZ3QuhxV2l2484KB9n1SAxv3R14xrJkgpLe+ffr1hxOYBwz12rNPKDzY4FULMXmXrgvXII4/w3//93yxZsoQ3velNvO1tbxvwNdPV1dVhGAZ79uwZcPuePXtoamoa8jGf+9zn6Onp6f/asWNHOZYqxIywdM0pXHjN54nX1A24PVFbJy149zPWbkS2qY94nNJ0Pvyec1h5+huYv3L1uIK7UjFyU2rgleymVHjUK+Ujrb/k7U0vkqxKoTTVtzMR+CyM5Pn0O17PX9f/lV+3t/KXllcp+D6FAAqYFDBxlIZhWeiWjWZZYBj9/2+GQpihEFY4jBUKYYcjhMIRQuEooVCEUCiMHQpj231foXDflx0KYVoWummiGQYYBug6gaZR8H3ygU/WdXF1Hc8wcIC851LwHAquQ3f/vsXIuuwa4jW1o35l5q0mrUVGf8IhdGbdCT1u/8YCIxnr76bUfQhx6CnbDkhVVRVvfetby/VyZWfbNscffzwPPPAAb3nLWwAIgoAHHniAq6++esjHhEKhvcOkhBBDWbrmFJacsKZiJ6FXitG6EZUCgLEeN9E1DFeMPNH1A8RMl+NrOnB6+wYSlq7P79q1g+c2/QXd1HnyiWcpHn8q7doC0lmXaKKOWDxJ0LmDi09egSp2Ew6F2Lmni11GksBOEqLAknCBmGFh6wYNdVXEowls3cYKDGJ2GN/3KRQKhCwb18/T3d1BvpChtaeL9mwvnYUseRXQ2dHNxpe20msE9AYmy485mZb2HIctXoAZeEQ1Rc+eV2isCfPCzt0who/5mflncusXzx71uF+v38VPbl8/+hNOgbHUeEzl75wQYuYqWwDy4x//uFwvNW2uueYaLrvsMl772tdy4okn8p3vfIdsNtvfFUsIMX66bhzyrXbHYqwBwMEECqMZrhh5Iuv/8l0b6cq5WFpALBrllc0voRs1qCAA5aPpBosOPxzdjPA3572OaHwhXd0+ftD3lc4XiIar+NMTz3HmaxeyOajlf4yj6PFN2Fu7HcvlOS+8i2PCvTgFj55cD3E7jKsMAsvDD3yKTpGCUcAwAaXhOC65fJFssUBXNs3urgy9vb20ZXOkNcWK1SfS3dZFQ6qGzpdf6tslCUyyyuRVq4Z8NIEZFPE0e3ANCPQVsGgatjG2BIWJ1E9oQE3MpiN7cClnY33tqfydG6upbEcshBi/sgUgAJ7n8cc//pGtW7fynve8h0Qiwe7du0kmk8TjI+TEzhAXXXQRbW1tfPGLX6SlpYVjjz2We+65Z1BhuhBCTIWxBgAHEyhMpf3Xdf3vXgBclFL0ZrpJVVVRyIXQtAjx8ELseIr/u28r85acDXY96YIip3LY0TiGbaPrisAIsT2T4tlgIXd0DK4zyGphfllYQjb7LG/QuqlLpOjtTVMdiZMOCnT2dJErFKiKJQjp0JXuoquQYXc2zY6uNppbW+lJd7FhaytHnHA61dEwO3a1UlfXQCaTxlMKQymKqXm01xyDb8b2vbhS/cHGgNv2Gmut5Og1NIMp4KtvXsVXf7tpXI/rXxvjr92Yzt+5kTp9yQ6MENOjbDUgr7zyCkcffTRvfvOb+chHPkJbWxsAN9xwA//wD/9QrmVMuauvvppXXnmFYrHI448/zpo1g1stCiGEGBulFNmihx61IR6lqnERKhynoBK4Kk4oXEVVbR15x0E3DQqug+P0fXmeR6i6kf9pKXUAG6ISQYOHzeWs3/oKz2zZyq7ODvZku+npbCebTuMW8uS0gN2Zbnb1dvFqdyd/ePQxdnem8bGww1FSjQsxw404BZ2G+nkU8kV0Q+9be+wwWurW0OR0sTSzhXn5XWhq6AnmWqEDzc0Oed9wxlJDMxRdZ9T6jJHumym1G/dsaB5yEnupm9c9G5qHeaQQYiqVdRDha1/7Wp555hlqa/ddBXnrW9/KBz7wgXItQwghxAyiaQYdhRR/uOcpMvo8elQdXuAzr6kJK5/D1E2efOppYlVJqmtrcTO9eJ5HEAQ4jkuGKF7tSEXaGhlCtCXnEtF7CfwCbV15Ar/v5DpXLKLtaqGtuRkncPAJWLJqFVYoRGfbHkwzSnVdgoyr0H2DTG8B0zRxnCKhcJRIrI4Ldv73gBbHvUaMh2tPY2t0MZqbI/nKfTjp7RjtT5N93bfH/RmNVEMz9DuGL9+1kW+961jef+oi/nf9rgEF6U0jzAGZSbUbfqC49u5Nw3b6KnXzOnN5I0++0lXR6VmSQiZmm7IFIA8//DBr167Ftgd2AFm0aBG7du0q1zKEEELMIJm8x3/f2022qwHfLGCGLIxwiN50BsdxUEpRV13H/COX0NK6h7Bho/AxdAtdN8nv1553JHPmL2ZppJeCU8T1++pIstks0UiIQi7PvCULcJy+molMbw/prk405XPPnx5n2QkXQlBEeRZKOeScIlre4fDGFKd0/GnQa8X9LOe13svvG85ha+xwAt+lKsjx0rYOoqf449rJKNm/zuLRl9q56aGXhj1WAS3pIu/94eP9t9XEbN5y7FzOWtE04OR2ums3DsYT2zpHDMhK3bxOuv7+AQFYpaVnSQqZmI3KloIVBAG+7w+6fefOnSQSiSEeIYQQ4pCn6RCPkKyvxQwlMC0LI1AUCgUsyyIUChGLhvjL42vRtQACDwDf98nlcvje2FrN1uguKdMmZYdoSqWoCkeYW1vLYfX1zKlJUR2xqYmGMLwCmp8jZOkECo48+ngcpdPd3QuApywSqRpCkSTHBX2pxsOlMZ3e8SiaCnCql5ConsPyla89qDlZpTqLpY3jr6nsyjr8+NHt9OSdAQFG6TnffOw8Tl5SO2OCDxj7JPYD2xFXUnqWpJCJ2apsAcjZZ5/Nd77znf7vNU0jk8nwpS99ifPPP79cyxBCCDGTKA1cUIaOHbEwDUU4pKObBkWnSHe6B88rUJdKkLQtPCeHaVpousK0wC50o3uFAQXeB7wAtVbAqQuriNo6CdsgZug0JOM0pZLURCIsmjuHVCxKxLawNYhaFpqmozSTZKwa21YkUknyTh6lafRmHJKeT1S5w+5maEDCzzC30Eyx/lj2WHMJNTb2FWccpIl0xip9OtfevQk/GG9ZemWa6IT1SvksRkshg+lfoxATVbYA5Fvf+haPPvooK1asoFAo8J73vKc//eqGG24o1zKEEELMMEag8F0XEx3X8XCKHrquY1oW0WiUrONg6CYvbXmJ6qpaent7iUaje4cWusRanu97okFBSN/3lx9WJGQYJJNJEvEEsUiEkGUSj0ZIJWKELZuIZWNrOrZu4ro+vb1ZjlxyBEvmN0GQw3N9NF0BCk3TiBpj2ymI+jkAehpPYvuOFrRJmHFT6ow13r2KsQ4YHIofKNZt7eDX63exbmtHRZwUT/RzgIP7LCbLWFPIpnONQkxU2WpADjvsMJ555hluv/12nn32WTKZDH//93/Pe9/7XiKRiU1xFUIIMbspoOA6ECh0TUMpRRAEFHJ9J+7xeBwrEifTm8EKRdm2fQeZYh5jb0CRyeWIFzoxdj9Lb+NyfHPf8FfDyXPBohjKivBMh8PyhIYKNKLRKIV8BuX6BH5AsVigmM3j5Aq4+SKer5GMx9G9AnXJCHErhKtM7LhOIpJg586dmPNqgdyo7y9nRPta8YaSGHVHEGjauNviHqjUGeuq257qm3I/zsePNXWppFJrFA72c4DxfxaTaayvPZ1rFGKiyjoHxDRN3ve+95XzJYUQQsxwhhnC9z3sUJii30s0GsPEx/MCCoUikXAMzbKxbAOPgIZEjGxvL4Vcjvr6OXT3dKMXmmnMd5GPVKHbIQrKJl8zj7t2l05LbWptxRXzLdaYRZSn8FyPjs4OIvEIxWKRrnQ3djyK7hVxahbRFaohZETI+PdjBTrpYh5dC7Fg/nzWbXiOVUsjJCx9yLoOBWSMOLvD+07QAyvB+JrpDm+8nbH2N57UpVKNwoEn96UahZvf95ppDUJKn8Nnf/Uc3bmx1QPtb6JpXJNhrK89nWsUYqLKGoBs2bKFhx56iNbWVoJgYB/0L37xi+VcihBCHPJmQmvPwAqzZ/Gp7H9i3gOA2ttKdeB6FYp8EGDZNkXX4xVAn6f3nSCrvvSoAA01RHesDgdu2KoT2xbG0vo6NipVhWpVKNWEFtZwfI1iwkShQXHvA4+7BM1zQXm0odEG2E2n8Uj+Vc7r/lN/y9d9a+zzcO2pKG1fJrS75I1gTV5GwIETyOtiIT71i2fYkx56+OB4BwyOtc3tWSuapvX36qwVTXz5rk3A2AOQiQxbnGyjDZmshDUKMVFlC0B+8IMfcNVVV1FXV0dTU9OAK0KapkkAIoQQZVSpaTMlV5y+mK/9tq92IxjhpHy4tBoXwO4LMgb3XxxO379L2UBjyBLJoecHgqajrBAQGnDz1vAKfm+HOb3jkQFzQDJGnIdrT2Vr7PCBz2Pvm5QeCx18LQgMnkD+5QuHTkmayIDB8dQoTNcUdOhbZ0t67LtAlTJscaQUskpZoxATVbYA5Gtf+xpf//rX+cxnPlOulxRCCDGESk+bAbji9L6T8x8+vG1Sn7fo+XSNIRWnOmoRMvcFAUop2jJFRqqt1jWoj4cGXGDLJldwT9NyUj07CHJpckaU3eE5A3Y+AKoiFmGr7/ViIYNPnb1snO9sbIZLzZrIgMGZUqMw3tevpGGLk/nzEqKSlC0A6erq4p3vfGe5Xk4IIcQQZkraDPQFIaVAZLL8ev0uPn77+lGP+/KFK3nzsfP6v1+3tYOLf/DYiI8JFHzn3ccNe7W/tOukxrjrNFUpcgemZk30uWdKjcJYX//qM5Zw6hH1FZeKOFk/LyEqSdkCkHe+85384Q9/4EMf+lC5XlIIIcQBZkrazFSZ6EnzZFztH8+J5FSnyB2YmjURM6VGYazr/ORZyyr2pH4yfl5CVJKyBSBHHHEE//zP/8xjjz3G0UcfjWUNLAD82Mc+Vq6lCCHEIWumpM1MlfGeNJd2IbbsyYzp+UcLcMZyIjkTUuRg5tQozJR1CnEo0ZQadjzspFq8ePHwi9A0Xn755XIso6Kl02lSqRQ9PT0kk8npXo4QYhYaSyoRwM8/cNKsveJaOsGHoU9GSyf4Q+1CDKcUuDzymTMP6kTWDxSn3fDgsK85Wa8zmSq9oUHJTFmnqHxyvnbwyrYDsm3b5BYSCiGEGL+ZkjYzlcZS2DvcLsRQJvMq+kxMkTt31RzOXN7If63bziudORbWRLnk5EXY5hCdxKaR1FIIUTnKOgekpLTpMtRwJiGEEFNH0lH6jHQy6geKz/7quTFPzp7MjkQzMUVuqJ2FHzy8jYtPXMCiumhFnehLLYUQlaGsAchPf/pT/uVf/oUtW7YAcOSRR/KP//iPXHLJJeVchhBCHNKktWef4U5Gb3pwy5imZk9F16SZ0lmqZNh6lXSBb9//Yv/3kuokhNhf2QKQG2+8kX/+53/m6quv5tRTTwXgkUce4UMf+hDt7e188pOfLNdShBDikCfpKEPzA8WPH90+pmOXNiYm/Wr6TEqRG6ml84EqrYBeCDG9yhaA/Pu//zs333wzl156af9tF154IStXruTLX/6yBCBCCFFmko4y2BPbOunOj777AVOzCzGTUuRGq1fZX6XNmBFCTK+yVYg1NzdzyimnDLr9lFNOobm5uVzLEEIIIYY11tqKqqh1ULsQfqBYt7WDX6/fxbqtHfj7jVgvpcg1pQYGOE2pcEXtIIy3DmX/AnohxKGtrHNA7rzzTj7/+c8PuP2OO+5g6dKl5VqGEEKIMhhtivdUTfk+WGPd1fi7UxZPeL1jaQc7E1LkJroDVEkF9EKI6VG2AOTaa6/loosu4s9//nN/Dcijjz7KAw88wJ133lmuZQghhJhio51gV/I8htFqMKBv9+PqM48Y83PuH2xtb8/xnftfHNOQwUpPkRvLZzWUSimgF0JMn7INIgR48skn+fa3v83zzz8PwFFHHcWnPvUpjjvuuHItoaJNxWCbSr3KKISYnYbrilT6W+fK1y3m+3/eNuz9lZBiNNygwpJbxrHG6RhmWE6jfVb7m4nvT4ihyCDCg1fWAESMbLJ/oSv5KqMQYvYZyxRvTYNgmH91KukEdTL+/hzPMMP9zbQp9GMJsiopwBTiYEkAcvDKOgfE933+93//t38HZMWKFbz5zW/GNKdlHuKsNmxvdmmFKISYImOZ4j3SJa9KmvJ9sDUY42lRe6CZViNx4Ge1vT3Lz594lZZ0sf+YQ23GjBBiZGU789+4cSMXXnghLS0tLFu2DIAbbriB+vp67r77blatWlWupcx6I/3DJ60QhRBTZbJOnCvlBPxgajDG06L2QDOxRuLAz+rqM5dK+q8QYlhlC0CuuOIKVq5cyV//+leqq6sB6Orq4vLLL+fKK69k7dq15VrKrDeWq5CVcpVRCDF7TNaJ80w8AT/QRIOoOfsNGZzJNXyVXkAvhJheZQtA1q9fPyD4AKiurubrX/86J5xwQrmWcUgY6z98lXKVUQgxO4xlivdYakAqYcr3wZpoEPXuExZg6JrU8AkhZrWyDSI88sgj2bNnz6DbW1tbOeKIsbczFKMb6z98s+EqoxCicpSmeMO+ouOS0vcfOH1xXyAyzP2VMuX7YJWCsfG+k0V10f4avgN3sks1fPdskOG9QoiZrWwByPXXX8/HPvYxfvnLX7Jz50527tzJL3/5Sz7xiU9www03kE6n+7/EwRntHz6Ngdv8QggxWUab4v2581fMiCnfB2ukYGwkdbHQiDV80FfD5w+3jSSEEDNA2drw6vq+WEfT+v46Lr30/t9rmobv++VYUsWZzLZuw/Vml1aIQohymMpJ6DOpNmKsc0BK6Wf/+s5jeO8PHx/1eWdaq96pMpN+F8TsIW14D17ZakAeeuihcr2UYN9VyAP/4ZNWiEKIchitCHmiRcozrTZi/xa1921q4UePbkdj6AtDX3rTCtozxSGeZTCp4Zt5vwtCiH1kEGEFkUnoQggxvNGmrM+End3RTprXbe3g4h88NurzHOo7ILPhd0HMXLIDcvDKOgGwUCjw7LPP0traShAEA+678MILy7mUQ4a0QhRCzAazZb7RaAMOx9JJbLZ0Cpuo2fK7IMShrGwByD333MOll15Ke3v7oPsO5boPIYQQo5uM+UZB4LPr+Y1kuruIV1Uz76iV6LoxRSse3kgXhkrF61fd9tSIqVoz/cT6YHbnZdaVEDNf2QKQj370o7zzne/ki1/8Io2NjeV6WSGEEDNY6UT192NsPTtcbcSWx9fy4K3fJ9O57yJYvKaOMy+/kqVrTpmUtU6W2V7Dd7C1GzLrSoiZr2wByJ49e7jmmmsk+BBCCDEmY+0gtb+h5htteXwtd9143aDbM53t3HXjdVx4zeeHDEKms4ZutFStmWq42o3SjJOx1G7IrCshZr6yBSDveMc7+OMf/8iSJUvK9ZJCCCFmqOFOVIczXG1EEPg8eOv3R3zsQz/5PktOWDMgHasSOizNthq+yardkDqZsZNGNKJSlS0Auemmm3jnO9/Jww8/zNFHH41lWQPu/9jHPlaupQghhKhgI52oDmWk2ohdz28ckHY1lN6OdnY9v5H5K1cDk3OVXgw2WbUbh0qdzMGqhCBaiOGULQD5+c9/zh/+8AfC4TB//OMf+4cPQl8RugQgQgghYPQT1QONVBuR6e4a03OUjpMOS1NnMms3ZnudzMGSIFpUurIFIF/4whe49tpr+exnPztgKroQQgixv7GeqF568kLOWzVnxLSSeFX1mJ6rdNxM6LA0U9NqJrt2Y7bWyRwsCaLFTFC2AMRxHC666CIJPoQQQoxorCeg562aM2oQMO+olcRr6kZMw0rU1jHvqJVA5XdYmslpNVNRuzHb6mQmw0wIooUoWzRw2WWXcccdd5Tr5YQQQsxQpRPV4a7NavSddI/lRFXXDc68/MoRjznjsiv7C9ArucNSKa3mwJPLUlrNPWNsVTxdSrUbwKCfrdRuTJ5KD6KFgDLugPi+zze/+U3uvfdeVq9ePagI/cYbbyzXUoQQQlSwyS4yXrrmFC685vOD5oAkaus447KBc0AqtcPSbEmrkdqNqVfJQbQQJWULQJ577jmOO+44ADZs2DDgvv0L0oUQQojJPlFduuYUlpywZtRJ6JXaYWk2pdVI7cbUqtQgWoj9lS0Aeeihh8r1UkIIIWaByT5R1XWjv9XuaK9baVfpZ1tazXhrN2Zq4f10qNQgWoj9lS0A2d/OnTsBOOyww6bj5YUQQswQ01VkXGlX6Q/ltJqZXHg/XSoxiBZif5pSaqyzng5KEAR87Wtf41vf+haZTAaARCLBpz71Kb7whS9IdywgnU6TSqXo6ekhmUxO93KEEEJUCD9QnHbDg6Om1TzymTNn1ZXt4eZZlN6hzLMY2Ug7R7KrNHFyvnbwyjoH5D//8z/5xje+wamnngrAI488wpe//GUKhQJf//rXy7UUIYQQYkY5FNNqZkvh/XQabgdRdpXEdCvbDsjcuXO55ZZbuPDCCwfc/utf/5oPf/jD7Nq1qxzLqGgSUQshxEBylXagQ+nEcd3WDi7+wWOjHvfzD5xU8YX3lUR2lQ6enK8dvLLtgHR2drJ8+fJBty9fvpzOzs5yLUMIIcQMMdTJdk3M5mtvXsX5qw/NE6RKq02ZSrOt8L5kOoNq2VUSlaJsAcgxxxzDTTfdxHe/+90Bt990000cc8wx5VqGEEKIGWC4q7SdWYcP/+wpPrhzMZ87f8W0rG26HSrTv2dj4f1072BNtJ1zEPijtrAWYjzKFoB885vf5IILLuD+++/n5JNPBmDdunXs2LGD3/3ud+VahhBCiAo30lXakv/48zaOOayK81fPLdu6RHnNtnkWwwXVpUn25Uh9msiu0pbH1w4a4hmvqePMywcO8RyJpFKKA5Wt9dTrX/96Nm/ezFvf+la6u7vp7u7mbW97G5s3b+b0008v1zKEEEJUuNGu0pb806834AdlKWMUw/ADxbqtHfx6/S7Wbe2Y1J9HqfAe9tUnlMy0wvvRUp+gL/Vpqn+fx7urtOXxtdx143UDgg+ATGc7d914HVseXzvqc92zoZnTbniQi3/wGB+/fT0X/+AxTrvhQe7Z0Dz+NyBmjbLOAZk3b550uxJCiIM0268mjvUqbWfWnRGTv2er8aYTTeT3drbMs6iUSfbj2VUKAp8Hb/3+iM/30E++z5IT1gybjlUJuz6iMpUtAPnxj39MPB7nne9854Dbf/GLX5DL5bjsssvKtRQhhJixpjuHvBzGk9M/0wqQZ4vxnlgezO/tbCi8r5SC+vG0c96xceOgnY8D9Xa0s+v5jcxfuXrQfVLwLkZSthSs66+/nrq6ukG3NzQ0cN1115VrGUIIMWOVTvoOvJJaOumbLSkNJy6uoSZmj+nYmVSAPFuMN51oMn5vS4X3bz52HicvqR0wTG+qUsAmUyUV1Jd2lZpSA1+rKRUeEDhmurvG9HzDHTeeXR9x6CnbDsirr77K4sWLB92+cOFCXn311XItQwghZqRD6WqioWt87c2r+PDPnhrxuDkzqAB5KkxXKt54TixPXFwzZb+3k70bOJWfZ6UV1I9lVyleVT2m5xruuErZ9RGVqWwBSENDA88++yyLFi0acPszzzxDba3k7wohxEgqJYe8XM5fPYcP7lzMf/x525D3a0xeAfJMrKmZzlS88ZxYTtXv7WTXFkz151mJk+xHa+c876iVxGvqRkzDStTWMe+olUPeV0m7PqLylC0F6+KLL+ZjH/sYDz30EL7v4/s+Dz74IB//+Md597vfXa5lCCHEjHQoXk383Pkr+H/vOY6amDXg9jkHpIocjJnYoWe6U/HGc2I5Fb+3k91Rqlyf51hTnyqFrhucefmVIx5zxmVXDluAXtr1GS6k0pBdzENZ2XZAvvrVr7J9+3b+5m/+BtPse9kgCLj00kulBkQIIUZxqF5NPH/1XM5ZNWdKdiimskPPVO2qVEIq3njSicaa3z+e39vJ3FUp9+c50wrql645hQuv+fygOSCJ2jrOuGzkOSCVuOsjKkfZAhDbtrnjjjv42te+xvr164lEIhx99NEsXLiwXEsQQogZq9JyyKfKcCfuk51WNpUnnlOZzlMJqXjjObGcit/bydxVmY7Pc6ZNsl+65hSWnLBmQpPQZ0sbZTH5yjoHBGDp0qUsXbq03C8rhBAz2qFwNbGcdQ0zpTbhQJWSijfWE8up+L2dzN3ASvk8K52uG0O22h2LmbbrI8qj7AGIEEKIiZnNVxPLPbBsOmoTJiOdp5JS8cZ6YjnZv7eTuatSSZ/nbDbTdn3E1JMARAghZpDZeDVxOuoapuLEsxzpPJWWijfWE8vJ/L2dzF2VSvs8hThUlK0LlhBCiMkx3FC2ShcEPjs2Psvzj/6JHRufJQh8YHoGlk1Fh55ypPOUTr6BQWuv9FS8yfy9nayOUjP58xRiJpMdECGEEFNuy+NrB3XSidfUceblV9IaGlszksnMw6/02oSRzOZUvPGYrF0V+TyFKD9NKTW2RtkT1N7eTjabHdDtauPGjfzrv/4r2WyWt7zlLbznPe+ZyiXMGOl0mlQqRU9PD8lkcrqXI4QQk2LL42u568bh260ve89HuXqdN+rz/PwDJ016HvlkFr77geK0Gx4cNZ3nkc+cecgOUKxk8nmKsZLztYM35TsgH/3oR5k7dy7f+ta3AGhtbeX0009n7ty5LFmyhMsvvxzf97nkkkumeilCCCHKLAh8Hrz1+yMes+venzPnsPfSknbKnodfKbUJEzn5lcLeySWfpxDlM+UByGOPPcatt97a//1Pf/pTampqWL9+PaZp8q//+q9873vfkwBECCFmoV3PbxyQdjWUTEc7/3C+xT884kxLi+HJPPGcSDpPOdsPCyFEJZjyAKSlpYVFixb1f//ggw/ytre9rX8a+oUXXsj1118/1csQQggxDTLdXWM6bkW1Nmvy8Mezq1Lu9sNCCFEJpjwASSaTdHd399eAPPHEE/z93/99//2aplEsFqd6GUIIIaZBvKp6zMedu3L2tBgey67KdLQfFkKISjDlbXhPOukkvvvd7xIEAb/85S/p7e3lzDPP7L//xRdfZP78+VO9DCGEENNg3lEridfUjXhMoraOeUetBGZui+GJmI72w0IIUQmmPAD56le/yl133UUkEuGiiy7i05/+NNXV+66I3X777bz+9a+f6mUIIYSYBrpucOblV454zBmXXYmuG2VaUeUox9yQ0fiBYt3WDn69fhfrtnbgB1PaGFMIIYAypGCtXr2a559/nkcffZSmpibWrFkz4P53v/vdrFixYqqXIYQQYposXXMKF17z+UFzQBK1dZxx2ZUsXXPKNK5u+pRrbshwpPhdCDFdpnwOiBg76SsthJjNgsDv64rV3UW8qpp5R608JHc+Sso9N2R/wxW/l15Fit+FGJ6crx28skxCD4KAW2+9lV/96lds374dTdNYvHgx73jHO7jkkkvQtNmb4yuEEKKPrhvMX7l6updRMaZiGvtYTEbxuwztE0IcjCmvAVFKceGFF3LFFVewa9cujj76aFauXMkrr7zC5Zdfzlvf+tapXsKoFi1ahKZpA76+8Y1vDDjm2Wef5fTTTyccDjN//ny++c1vDnqeX/ziFyxfvpxwOMzRRx/N7373u3K9BSGEEDNQaW5IU2pgmlVTKjxluxAHW/x+z4ZmTrvhQS7+wWN8/Pb1XPyDxzjthge5Z0PzpK91skitixCVZcp3QG699Vb+/Oc/88ADD3DGGWcMuO/BBx/kLW95Cz/96U+59NJLp3opI/rKV77CBz7wgf7vE4lE//+n02nOPvts3vjGN3LLLbfw3HPP8f73v5+qqiquvLKvuHLt2rVcfPHFXH/99fzt3/4tP/vZz3jLW97CU089xapVq8r+foQQQswMkzmNfSwOpvh9MueWlGsXRWpdhKg8U14DcvbZZ3PmmWfy2c9+dsj7r7vuOv70pz9x7733TuUyRrRo0SI+8YlP8IlPfGLI+2+++Wa+8IUv0NLSgm3bAHz2s5/l//7v/3jhhRcAuOiii8hms/zmN7/pf9xJJ53Escceyy233DKmdUhOoRBCiKm2bmsHF//gsVGP+/kHThowy6RUszLc7sl4albKFRRIrYuYCnK+dvCmPAXr2Wef5dxzzx32/vPOO49nnnlmqpcxqm984xvU1tZy3HHH8S//8i94ntd/37p163jd617XH3wAnHPOOWzevJmurq7+Y974xjcOeM5zzjmHdevWlecNCCGEEGNw4uIa5qTCDBciaPQFAycurhlw+2TNLSkFBQc+V2kXZbJSuUardYG+WhdJxxKi/KY8AOns7KSxsXHY+xsbG/tP4qfLxz72MW6//XYeeughPvjBD3Ldddfx6U9/uv/+lpaWQe+h9H1LS8uIx5TuH0qxWCSdTg/4EkIIIaZSqfgdGBSEjFT8PhlzS8oZFMigRyEq15QHIL7vY5rDl5oYhjFgt2GyfPaznx1UWH7gVyl96pprruENb3gDq1ev5kMf+hDf+ta3+Pd//3eKxeKkr2t/119/PalUqv9LJsILIYQoh4kUv0/G3JJyBgWVMOhRCDG0KS9CV0px+eWXEwqFhrx/qk7yP/WpT3H55ZePeMzhhx8+5O1r1qzB8zy2b9/OsmXLaGpqYs+ePQOOKX3f1NTU/9+hjindP5TPfe5zXHPNNf3fp9NpCUKEEEKUxXiL30upW6PNLTkwdWt/YznZ11TA9g3PUNViHNS8mOke9CiEGN6UByCXXXbZqMdMRQes+vp66uvrJ/TY9evXo+s6DQ0NAJx88sl84QtfwHVdLMsC4L777mPZsmVUV1f3H/PAAw8MKGS/7777OPnkk4d9nVAoNGxgJoQQQkw1Q9cGFJqPduxE5pbs3+2qvXfwRUedgBP1F2igGzfj0tj+Crt/lmX33vvjNXWcefmVLF1zyrje22QETEKIqXHIT0Jft24djz/+OGeccQaJRIJ169bxyU9+kvPOO4+f/OQnAPT09LBs2TLOPvtsPvOZz7Bhwwbe//738+1vf3tAG97Xv/71fOMb3+CCCy7g9ttv57rrrhtXG17pqiCEEKLSjaeD1VDH6hqUSjzO0Z/gS9ZPmat1siVdy127jtp71OBdmAuv+fy4g5BSwTsMHTBJFywxEXK+dvAO+QDkqaee4sMf/jAvvPACxWKRxYsXc8kll3DNNdcM2J149tln+chHPsJf/vIX6urq+OhHP8pnPvOZAc/1i1/8gn/6p39i+/btLF26lG9+85ucf/75Y16L/EILIYSYCcYyw2O4Frgl5+hPcLP1nf7vf/DSiWQ8m6GCD4BEbR1X3PSf407HkjkgYrLJ+drBm/IA5P3vf/+YjvvRj340lcuYEeQXWgghxGww2swQnYBHQx+jkU50DXZkU9z56upRn/ddX7yO+StHP26o9ZRr0KOY/eR87eCVZRL6woULOe644zjEN1uEEEKIQ8Jo3a5O1F9gjrav01XfzsfoMt0Ta9s/nlqXaRP48MpayOyBeCMsPAUmUHwvxEww5QHIVVddxc9//nO2bdvG3/3d3/G+972Pmhop+BJCCCFmq9G6XTXQPeD7uOmM6XnjVdUTXVJl23QX3PMZSO/ed1tyLpx7A6y4cPrWJcQUmfI5IN/73vdobm7m05/+NHfffTfz58/nXe96F/fee6/siAghhBCz0GitbVupGvD9vGgPcbMIw1SMKMBO1TDvqJWTs8BKsukuuPPSgcEHQLq57/ZNd03PuoSYQlMegEBfu9mLL76Y++67j02bNrFy5Uo+/OEPs2jRIjKZTDmWIIQQYpbzA8W6rR38ev0u1m3tmJRp2mJijl9YzUglFk8Ey2lWNai9Bee6Bmc2bt1778CfW+m7s9//wQnNA6logd+38zHSbPh7Ptt3nBCzyJSnYB1I13U0TUMphe/LHyghhBAHTzodVZYnX+lipPgvQOfL7qXcYv8b7J0qsjTZwYU8z4N7lpDx9nWhzBhxVrz1EpaddOqUr7vsXlk7eOdjAAXpXX3HLT59zE8rRfei0pUlACkWi/zqV7/iRz/6EY888gh/+7d/y0033cS5556LrpdlE0YIIcQsNVy715aeAlfd9tSIsx7kRG1qjGXi+b3BifzlxO9w4gs39J+EL012EInDv/a+hY3uAiLJKq5691mct3reVC95emT2TO5xSDAuZoYpD0A+/OEPc/vttzN//nze//738/Of/5y6urqpflkhhBCHAD9QXHv3pmETWDTg2rs3cdaKpiHnVMzEE7WZEDSNVgNS4i97E5x7SX/3Jz/WwA5/OWdkXS6q0Pc2qeKNk3rcwQTjQpTTlM8B0XWdBQsWcNxxx6Fpw/8l8qtf/WoqlzEjSF9pIYQYn3VbO7j4B4+NetzPP3DSgDasw52oVfqE7JkSNJXmgLT0FIYMDjWgKRXmkc+cObsDjNEEPnxnVV/B+XCfVHIufOK5UVvyjjZ7RT7zySPnawdvyvOfLr30Us444wyqqqpIpVLDfgkhhBDjNZZUnwOPG23XBPp2TSqtiL0UNB14glm6un3Pczth28Pw3C/7/juNhcuGrvGlN60ABs81L33/pTetkBNh3ehrtQsM+0md+40xzQMZbfaKApp7CjyxrXPYY4Qol7IMIhRCCCGmwlhTffY/bjwnapUyvG60oOlc/QmO+5+PAh377pjmORLnrprDze97zaAdm6YK3LGZVisuhHf9dJg5IN8Y889vIsG4ENOl7F2whBBCiMly4uIa5qTCo6b6nLh43wDcmXiiNlLQdI7+BP/P+s6+opeS0hyJd/10WoOQs1Y0VXzNyrRbcSEsv+CgJqFPJBgXYrpIACKEEGLGKqX6XHXbU3ubue4zXKrPTDxRGy4Y0gn4kvXTvv8fdE6/NyK557N9J7fTNEPD0LWK2UmqaLoxrla7B5pIMC7EdJEeuEIIIWa0UqpPU2pgwNCUCg9ZTF46URvuGrxGX2F3JZ2oDRcMnai/wFytc4Shf/vNkRCzmtTdiJlEdkCEEELMeONJ9ZnIrsl0G+7qdgPdY3uCccyREDOX1N2ImUICECGEmKCZMI/hUDKeVJ+ZdqI2XNDUStXYnmCs8ybEjCd1N2ImmPI5IGLspK+0EDPHTJnHIEY204LIA3/vdALWhT9OA51oBzlHQggxNnK+dvAkAKkg8gstxMxwMEPsZtoJr6g8g36HCo9g/OKyvfcOkVA2jV2whJiN5Hzt4EkKlhBCjMNo8xg0+obYnbWiaVBgIbsmYjIMTjV7M2gHP0di2m38X3joOihmpnsl5ReKwxlfgJVvme6VCFEWsgNSQSSiFqLyrdvawcU/eGzU437+gZMGnCQezK6JEGMS+Ac1R2La3XQCtL843auYPnVHwtV/me5ViDGQ87WDJzsgQggxDhMZYncwuyZCjNlBzpGYdnt3PnwFrQVr3+17q+4H/PnR9gbve/8AabqOhobvB3sPUPseqGl7H9L3vdr7/5qmEQmH+5/YC+AptZQOUtTr3ZxkvYSOj2EYKKXQdR3P89E0DU3TUSrA8xVFTw18TW3vq+kGvh+g6xrRsE3YMmBvpU53Jk8oZJHJ5KgzshiaOjR3fsQhSwIQIYQYh4kMsRtpijX0nbY09xR4YlunDGwTh7zWgsXx963A1yASDhMEfUFFoMA2LVwDfBSGG4Cv4egKx1dogUYkHEW3NOxwmFw+R6GQJWZG8T2PkGXheR6WZVEs+piGyUXvuoiwp/FqweAv2RA5tW88Wsp3uHRZhuWRdkzLpq2tg0WLDqc3ncXzAwq5AltaHda3ajiOQygUQjd0im6BmmgtoYjJZz99BR2tuzmith5Nt3A8eLS5k3W78tzyvevJbH6B3e94BSPfOl0ftxDTQgYRCiHEOExkiN1Edk1mOj9QrNvawa/X72Ld1g78QLJ9xdhpmoah67iui+t5BBo4gY/jeziui2boqJBB0QRiEfR4iCBskAs8PDwCFVBTXUNVVRU1yQQtvQUy0QRGIkVBgRWLUNR8Mpk82/I6f8qEyamBf6p7PJt/31jNFqeRmuoqDpszh2y6F8swiEbCKKWwzL6dmlAoBIDnBYQ0i8AK07RgMV2tnSyrbySuK8Ajp3zu+NVvOaK2lvmJ5Sw44lg83y/zpyvE9JMdECGEGIeJDLGbyK7JTCbF9uKgKAVegKZraLaJrml9OxeGSdF3iVsh/unqT3DDv/8b6WKGw6pryGRzeKZBwfEpBCaB41LMdeKkC/z4p9/izEuvgsAhXFeL32tjaAYRK8T8+fO5bXN+7wsPfVnhJy/EqMs+y5LFi7Esg0KhSFd3F2gaiXgcTetG25vmZVsWGiaE4px47FKWNaQw8XCVxfPbd0JdLY8+8wTHnXQCmbY9BKGA3kyWuD2xj+re7ffylXv+kV7HASAWC/d/hKDQNHA9Rc6FUDhCIZ9DaQaa8knEbYIgwDQMgsDBMPr+Rgsw6M0FKBSq6GIZxt6/59TeNDbA84haFmY8hsoX6SwU0cKJvs9Q+diWgesrAjQs5WE4eQxDR9M0Al8RjkVxCzl8P8CManvT6GwUPp7rEo6kSGeKWCELz/OJ6D66ckHXKRYDzHCUOTVNXH3s1Zy96OyJfXhiWskOiBBCjFNpiF1TamDA0JQKD1lMPpFdk5mqVGx/YMpZS0+Bq257ins2NE/TysSMoWmYpoZhG8QTib6TZN2g6BUhMAjVNHHvU89x0y0/5sSjVvDb//4R7zjvPPJ+EcfW8DWwPI3efJLXX/F1/mOTz/s+eRNHHvN22na3kOlpRRV7MZXDq21t5AKd4YIP0OhyTDojc6mqTZLpbWfhYQ2Ymk3RUbywZRuB0nC9ADQDz/PwtICi20N7Os1LOcW63b18/D/u5hO3/BE3EeP1Z5/LJ//hkxj1eXa/8gpBf93K+H1v/fdIRxQqZaFSFhnTJ2P6ZC2frBWQMQOKYYWRUHhWDjMJVsLHTEJedyiaHlmtSN5QZAjIoMjhYUQDzKjCqjYhqaElNbSkDkmt76vGIpeAtJalN+ph1RiY0RxmNIsZKxDYWYxIDiuShWgRv0rHSUAxrnBT0GvmKMTBTenkLY28qZHTXfJ6gBsy6A0yaFEXz8hBqEje8sjaGllT4cU0CkaebT3buGn9TRP+7MT0kh0QIYSYgPFMG57IrslMdDDF9jIfRZQopVC2jWYatLa2E45F8LyAsG7QuqeVHhXmqDMO42PXfpUf3fgN1j3zFAsOX0gykaSjUMAwfVzTIO/n+d87/oNHfv8Dvvv7duILFzNnk82iOfNoa92FrWusffIxWDj6FfRM0aKQyVFwC7z46ot4AcTtEKFwBMsx8ZSH8gMsQ0cVC6CbtHS18YXv3ceuVzbxtrdfzPptT3P7bx7kh//9YxK1NYT1KCEjtm9XYQKybhYATUFc2QSBv7dAXu0td1d4viLn6oQjEbLZDKCjoUjGLfr2KHQULpapEwQBAQaZgoYKfALHxdZ1LMvE8z1sO0ShUEDzfKKmRaBr/5+9+46z4yoP//850+fW7X3Vu+Ruy5ZNsY0bGBxIIwSCSSM4JIE4hRISwpcETPgFSCCBkAYEQk1I7BiMOxg3We5qtnrdfvfW6TPn98fawsKSLVtC9bxfL5B27tl7z8zelee553nOA1LSiAEnP/O7LzPyro0fxshnV0Bij0xmWIaJfGZDAVMTxEmCkddIAct0iKIAZIbllmn6MZnMIANXTzG0jExKojAjyWsgfnL+yolHBSCKohyUuil8Yc/vx3Bwz66a/HRqUt9JlJr0covtVcqW8lyaptE9OMzWPbuhvYSvaeiaoN6sMXd+D9MC7vr+d7j7218FfxrLKXL5Nav49D//C21tbYQS3EKOVy/rojOV/MNHPsS6Jx5nx64aFyzvp82C1C0hNJcNG7dTnP3ic7rxtlu547vb+MDvXUfBEMTJJJ1WBy1/jCQOQYBhmKAJIkBrNMlpGqO7dvOxj36cWpTwoQtfyef+/u/504/9JefMX8ItX/s2Wx5ZCwcM2V+agrR4b3MVjeoOtu6qMH/BGRDuwJAZT+2u8fUne/mV91zPP/7Tp5n0NQrRBO+8/ix8rYoV2GjZ08xf2EGzPkHDGuQf7y9QqY6x5+a7WdXfzWzF9AAApchJREFUzXkrl9OY3EspN8iPHtmEPjnBL59+NjnXYLqZ8dEnJ9Ff93ZSz8RiDxevPJ17N4zia3mWVdcy+6Gvky+4zJ7Vz9Su3YjUYOlQNw9v3sLpv99NWspT6jifxzf8NyVdZ9XV1/Op/3mS6XCCdDrjlblxTut/Cju3mPvue4p7rzFJ7Piwr5ty7KgARFGUA1I3hUfeS1k1ORG9nGL7g/VHeTZlS/VHORVJNEsyOHeQST/C8wK0JCRnF6kaJpotcMKQX/zVt/Hu3/lNli+dz49uv4tUpGRejeFijnKUsDTfRntfG1see4iONKLca+FYNo1Gg9irU63sYPlQD3tij9Rw923X+9NzSVvTTG7axK5Gjb/69H+QJQFxs8Uvvf4Spn0fDBdNaKRpjI6OpQkwIY4SinmX//zfmzjvtDPxpsc5+5VLOGfJEPpklWVz5vOVVhXbdYCZGo6X28slTlJ2j07S2VZgydJebrzxbq65ciFR0ydNE+KkxcOr1zBaDxCFXkJvDJmmBGGGazJTc4NFsdjGeNVHM/JYlg7GzG3i3T98gCUL+pi9qJfm+i3sThL+4om1lHpyhLvG8Mun0Skszi5v4dXLXGJnmvsTSZR46CLEdnSmpiZZumABDd0gSVOi2MMwDUxLo1DOkc+7nHnWOax94CEcK09Pdz9nLDiDH3z7+0gkrmuRL1kMDQ8SxyMI+4i94ZRjQAUgiqI8j7op/Nl5KasmJ5qXWmyv+qMoB5NzBLtHRkgKJfJlF2+8jmWZOHkbL0nxUglCp3/OQqThcvp5Z5HXBTvXr+fMc1dSLhdZt34tHaNFamN7aNUqhFGEzBKEZmC5eV5z+ZXc+9CT5HY8SGP+xTNpS88NQp7p0+xsvY1ZswZxnHls37IL3wuI0ox/+u7/UWjvYN6SAna+RJBqeEmEwUySUyYlF55+OksuOJuvfuk/mLIzXnXO+ZjVlNcvu5SFK5eTyhDf8yAHxD58ZsUButl/4kW72ZuGTn93kag1ylObd/GWt/wcQe1phNAwDYPp6SkWLl5Mx6PrqYYGQtfRNIGmmRimIAhCTNMlSxN0I8MwjJm455n0q8XDs5memED4AV2uZDRtsOjSJazsGqL66Cbi/BR/t/ijDBhVSIEWvHNJifeNvokN2yVtuXZiL6ZZb5DP5Qj1kCSJSdMIKVOkTNm+Yxsd7dDR1kMmIYpT1j6xnlKpnSgcJwhbWIlPEnvYtk1EeITfdcrRpIrQFUXZz4vdFMLMTaHaVlX5aS+12P6lpGwpp5YsrPOqlSuY2vYU0dgYbqpjWBaVVh1fSkRbniAv+JvPfobXXf5a3vz6N1JKfJbPm08tkFTDgI42mzZDYktJ/2A38+fPw3YLDMyaQ6JZBMKkq6+Xy86czdD0aqxs//eiTch5+maWFjKmpis8sHo1wtQYnj+LfEeBUvcgF57/SjraBPfc9b/o+Gh6TBLHJDJj1YUX8pqrX8ecgbn89V/8Ja897RyuWnUhtXAvYrHOp7/0UX7zL3+TQltx5gWD6f2DD4D6CHzr7bD+xhe+XlmGZefwPY2e7m5+8IPbEZoAXWIAQ0NzSIVG5NXRMhtkjG055AyBjoUQBrl2m6pfx3FtNMtF6HmElMRpwCWvOh/TTGh5HlkEzpw+wr5l/M9TKaddnOebV47Rp1f3m1OfUefLQ19mlfEkvoRIh2KpSByGmFoO03TQhI5h6qSBS7ldMLK3SpROUyiW2L5nB296wy8jXJ0sFdSrCV0ds5BajJTqvz8nOhWAKIqyH3VTqLxczxbbw/P3FDpQsf2p2B9FORSSxdkezqw9zF9ds4IrX3MRVqGEKDjkezuI8y4yVySwcjy6eRu9cxaStHwGB+ewYMlSOtraOG3ZEprT01RGR5nd34eWpViGgY1g15YtaGlKd6lIdbxCZc8kzt6tXMPT/HKfzysL45wRPcGlxpPUt6yh0mwiEoMsENi6xRMPrWHvru2M7x3l3//tX7j1tu9jG4IHfnQ7xB66o5HqAi+KMTWbwJdMhTGzly1n3dMb+OpXvsFVb3gdvf2z2LB+C671QiuHz9xo3/L+mfSsg/D9gM/8/efp6O2ku7ubiy66AAEIoZMlsHv3CLNmz0MTgizLEGLm9s+282hahkTQUZ5DFhqkARgyo7ujHStXBDvHzXfch2eVuX3jOqYTn/5yF+M/uAtnYivvcDcA8NOLlM9+/cEz1tE2q5+67zNeqTKVJeRn9zPtt0AIMl1Hy0m6uuYimUCLMwzLRRo2P7r3AUzLIUlShoeH6e7qwjLMfc0plROXSsFSFGU/6qZQORwvpdj+VOuPohyabjvhXxbP3NSSPcIUOTa+54+ZXHAN//pf/82PHtmIW2xjyq/RNdxF5cerOW32PBo+zJ4/i92tzWx89FFWnnEGweQE3e0FiqagWvWZNa+Pzr4B6l7I5sefYPFAB/XJMc5bvISuti5KRsSW1Xdy9umnsXXnJLM6+ulc1IWvW6R33Yaf+py16jwGOtt54MH7mT1/mPVrN3LeOeeyuG+Q1RtvYnjZQrrKc+gpF2imEaWcg2XqPPj0OvoHepnjDnDbnbdw7qIlfOo//p3Wzf+E/YJlHhLqe2ZqQ+a+8oAj8oUiv/vuP0DKKZCSer1OR1Fg2yZSCjraO3lkzWOUOzrwpnSk0NE0jSSJcS0doRsUc910DsxH80zKacr2zZtp11Me37AJbAdDQipj4jRBoGOZJucO1+jPHXw1QhPQn4vQ46cQ5RITsc+e6Sm87ZuZracEYUCKIOeU0LV2HFsjxMW0bYrFEsX2doKdm8kQeGFAGAQYuiBNkpf/BlOOCyoAURRlP+qmUDlch1ps/2zK1mgtOGDKn2AmcDkZ+qMohyCeaQj406kZHXhc+MD/44fNJq9feS6/9YtXY+SKTAUxHfkiN1z/Z4xv2cWl55zHuofXUHYNhvp7mT/QQ93KsGRIWiggMo3+vh62bNvCrNkLyA8OUCh1sH3LVswsY96cfnbu2Ulbm8P41G4uWbWKyPfZvnsXQ7PaWHnWCnTDoKNUpl6vsnTpGUzWxnjbm9/Kk+EGtq16ijZXp8FWGmzlXf97OQuiC/m5V11H4O9l1bKz6R8epLmtzp9cfxMjcZPr3vVr/O48G+JD2NGpOXbQhwQgpKDRaFCvN1i8dCWVsadBZJiWhRCC1Q89wMR0DT3rJpEpXhiSyRgfgyjMM7Ir5q/+/Ns8/PAYtl2iWfXJ2RoJoCcxRs7GNvLUqg0M0wIp6LID4MW7KJq6R8t1mRApYQZhlDGR1PCzjKglAZsdu/bS8mNM0yZJItJUEMYxUezjxxnzFy1D18HSZlLONJXEc0JTAYiiKPtRN4XKkXAoxfanSn8U5RBkKYQ14PmbUQkgk7D80S/wTxNvJ4gScvkimYDtOzYj0pSLL7mEDWsfZ/6sXoY780StGuH4CH2lAvVaQF9nDzoVolbIwtmLkMKku7+b3bu3c8UlryKNE+rTk1TG97J40VwyA378+H2sXLyCJbOHCBstlnd2s37bZrxgpldFd6lE3PJ5oraO7LXN551SNZxgjfxfNn91N4t7l3P5hVdSWV/jNVdfSSglv/Jzv4AXV2gNBC+yAvKMQu9BH0rTlK/951d57VVnsm7deh58aANXveZc2tpzSFknywwG+noptLmsXztKZ3uBdQ89RSts8fTGcbZs2chfBT8A6ZC3y7QadXLmTGNF0zQxTRMhBLqu09nZSRBEpHHCuH8oE4dNtZDRWDI+2aS74BJoOmNxRGIIBCaaVmbuvBU0mveghylCmGSpxpYtO2lv68IaM6h6HlEWEmYHeJMoJxwVPir7ybKUXeueYMO9P2TXuifIXiDnVDk5vdQ8fkU5HC+1q7xyktpxH8iD5/VrArpNjzOdKQpaHgeNDY8/RHubTcfsEtPNGrNn9aElTfSwSqcjKJo6OQmL58xnVk8/ZyxaxtIl8znttAWsWL6AOcPdXHrRhRRMk458nuHebrrKeWq1SXbt2cqZK5bg5Az8pIG0YqT06Su69JgGUW2KuNZgsLMb+SpvZpIH+SdxvLSG73//Zup+k6994+tsHdvLrr27eeUZ85kc3YRmv9hqsoDS4MyWvAeRZSlvffsb6ewq8rrXvRbPa+G6LoHXwjRNfC+gp6uD3du3UrBN8o7N5GiN277/ALu2TGOZ7eTy7di2TpRGSMMl1Q16e3uxbZs0TXEclzAMqdVqJElCJlPu3yPZ25wJEA84LynZXZfcvjVmfKJCECVUGk12jO1hvNEg1nWmpqs4OZuNm9aSJiGJFqBpJmgabW3tGKZJq9Wi1QwRpoVuaJim+SLX7GcnzVIeHnv4mL3+yUKtgCj7bHrwPu780hdpVib3HSt0dHHpO97JwvMP/g+fcvI5FZrmKcePk70/inIIXiC96LnadA837xInPm0dBRqNJouHz6Czf5B4ZAd66KNnOo6VJ593KRXL6MKgnHdnipc1EwwD3bLRdRM9zih0dwIa6zau5ZILX4kftzBci1vuupfOhYtYMjyAFBGTExNMl2yqk5Nc2DmfIM143NuELLxAQbQAqyz4wA0f4MbvfJ/XX/la4qDJn/3tX3L5VVdjPPEoSbpj/2840FrgVTe8SD8QQWM6pjNfZmJqgj9853upTG8GYZDqAt1IWTR/Ngmv5LYfPEAzqnPPk48Rhjqm6RE1YvL5PCkCXTMQYYBpzzTaGBoaIgxDqtVpDE1naN4gmqbR8j3iOOZP76rylddrZBK056xMZM/sVPXRNTnqzXFyrkscx1DIU2u0qEWCtFKhf7rAino7/YMVJtflSM0Ep5AjSEPsvEHQCEklGG4vcWxD2kDXdFKOfh3I7Ttu54bVN7B3au+LD1ZekApAFGAm+LjxUx973vFmZZIbP/Uxrrn+gyoIOcWom0LlaDqZ+6Moh+AF0oueq5rmSZIEK2fS3tVOI4gYnD0PM0vYXZtmXlsR1zAxEOQtBy2T2KaBpRu4toNuGWi6BboxsxOU7SIMHdOwSZKEUi5HXGkhGz5vuOwy1m56itHRKn2d7ZTdHN2zSqT9Azz66ENkmk7HrPIhzfub3/kP3njmW5g/3E65twAyxXQbXHzJctL65pl8FKcdLPcAfUBueNE+IEKD/7vjFv7wXW9j9fpHwHYplyELYyxbkMQp8+cuYvPmxylrDXate5hcGmFYRbJMMhP0GGhpTFu5TGDOXI96vU6tViOXyxGGwb6Vh8nJSSI/QNd1bqsbvPsumw+d6zNY+smcRpqCP7kj5pYdPnNmz6ZWq5HJBE8m6AUXt9umNtXiqfUVCs5dzD7ToJDLqEwKHMdBN3S2b9tGp6uRJBKh56iOjWMGIVGkH0rpyRF1+47buf7u65FHoHO9ogIQhZml2zu/9MUXHHPXl7/I/PPORzuEjqzKyUPdFCqKclTMvnDmLvogaViZhEpa4MlGN5blMTk2gi8T6l7KgtlzWffYGgZ7eyiYMSINSMKILNNIpYGmmziui6abaJhYuoswZ47HmSSMEhJhMG94NrWpKRzLIssSNq19nL1bN3PRKy6gWCjhNRoUdMFUtc7yxUuYqldpMXpIp/cHb/89dty/jR2bnuaVnslN7/p5JiKbV77pj2j/n3ugMQqmC+9d+7I6oduazp/93Bux905w5Zz5iDTG9CTNIGRPKkmkxRc+/2XOWNTGyFNP4kiJLnVkBlEck2UpjUaDvG3QajZJshjkM7faAuIoAilJo5jRvSMYugYCXMchjmN+PFbkFf+ZcHZ3Qn9Ro5ra3L41JAg1gsinsWMHjusSBD5RziZoBCxeNI98LkPUEzZsHCXffxHLll7OooVtpLEgbxXwIomjgasJwj17GdDLaLkuLKtJ9Gz3+KMgzVJuWH2DCj6OIBWAKOzZsG6/tKsDaUxNsmfDOoaXn36UZqUoinLo0kyq1boTmaaDXYZgGin3rzF+tr7gz9YNcs/IIyRRjTPPWIxj5fjF117OYxvXMb1nL8NtNhkJpmVSKhTQdQ3HsTEME9+LMU2BpqUEQYSdz5MvWBiGTiYF5bY2/HqNqckJ5s+ehchSzjnjLO66/TZed8VlmGhobo5Wo0pMRhRFFApF+qdD8o5DSw8OXAMioT3XybyOJRSC/+Xih7+Be+9MD6VZQFTsw69OYj0bY2j6QbfafSF6mmGs34RfnaI9n8efrjI03M+k18DRi8T+BJe+cjHz2uGfW3sQmiSNYxxTYpo6aZLS1lHEjyMs08TVbCzDRBMC3/fJshTXyCGQOI6LYRhM1iYpFFwqEy1G9+zCyuXZEHSwU88zNTWFhUkQ+eQsm0jXyednVq+iMKWQd9k7MkHZNshqEmdsLZs37mDpsmFm9c2ivOIVpDIgdgSGrtEKU84LHTqqknu3G6RLjm596iPjjzDmHVqaoHJoVACi0KxOH9FxiqIoR9Mta0eeV6/Ur+qVTjymC8E0GQL9OZ80j4YWf7FhiNsq7cRZhNAlCSmL5szhySeeZGjRMk5bvoL67s1ocqbbtqFpJEmKrhsUCiWajYAkyTBNA8syMQyDOI5x8gXSFJrNJlYuT//AEPVaE9fQuevOuzjnzLMIfB+JQRiHBFGIlXOwUoOJaoUojLiospRbux+dyWJ6bhDyzClcM//tZA9+h6u2fB5+6hN0szGKeQQSC4QQ9PfPwukeIsx87I52vFaFnC4w9QwhpugqpnzoT/4I1wIDgWY7mJZOHKcMDvfTaNTIWQaOM1N0bhiCJIqwTQ3QcCx7JhhJI+qtOvMGBqlXq7iahmvbLFo4j8lKBSuLcbMYq1Ckp61MJFNqrSb1psdATy+jo6Mz2+hKiWvZZEmTmtCoejE/emQdy+b6nOYUaE018bKIYn83uxp1wpyBKfMs7IA2x2IK//Av3CGa8CaO2mudKlQAolBoaz+i4xRFUY6WW9aOcN1XH3leYsRoLeC6rz6idtI6AU0nDr/38By6HcneSPBQs4QMBcLUyeULpNImX2jjycfXM2v+UgoFi61rHmN2TkfIBD8M0NwcuUKBOE2oVqvomolpOhiWQxgnmKmGrpnUanUct0ChWCLyQ2zTwcxnjO7eyYIFCygXCxQcB6/ewtB1bMsmzhKiJEKKmYZ4c6I+lk0tYuuiPQR6a995yIbkDG8Jb/rVq5j1uUsBecCdBfe9d+XLT+9JLZPdy89l/YP3YGQhszpzaOWMVlAnabmYrZitj62lMtlC103csk2c+JiOQb7oMFmZwLYMmtU6xf5+0mSmH0crSJg9NESzWaeYz9HSwWu1WLRoPpbtUB0fZfZgL12dnXSWy+hxSKUyxZy+btJEolkWTS/AlAW0VFKvTdNZLlGdamAVLSIy4ixilpMj8j0SI4+Z7yM38TQ39NVIXQNz+iG+6dcZ7+ym4cCOZhMy4ChmhHfnuo/ei50iVACiMLh0OYWOrhdMwyp2djG4dPlRnJWiKMoLSzPJR25af8Cs7Gc/jP7ITeu5fFmfSsc6gQgheHDcIMPEzNkE1UmG5y7gqR076Op0uPr1r0cXEXu1vfiNJrWtW/GmRmjvWYSMJIbuYOo2tu1i6jaCDN2yiZOMvG1gWjppGoJlUSw6+KFHZTqmvauTLIlp1TJmzZlNnEToQhJ5TUzLJM0SMplhGAZZaiCzjGazSRRmDITdyB/24XW3KHSbeJNV9v54Bw+MrOGh0meZXx85+Pk++5f0MGoadJ3e885kJK0yvvdJ/E4Xz0sQscTbGVPuLnL7PXfQ0VWk1aiRRBHFXI5yuUiWJOiORUdHB0G+hCEEhXyJLMuYtWAOfrPJ8uFBkiAgNTV6FswjCAJefcmF3B7VWbpkAUkcM1FpMr+vi4UDvdSrNTQhKXd10/RDYqmzfXSMLSMjaJqJkzNJs4gEk8HBIbY1p9Bdh6lQ4kUN3jo1zfnhUwR1KLttfDdqsK6+E39nhYVtKeKn6mJ+1imYZ/ecTW+ul3FvXNWBHCEqAFHQNJ1L3/HOA+6C9axLrn2nKkBXFOW4snpbZb+0q58mgZFawOptFbWZwglECMEl552JsOG6d72bRx96hGYaE2s5/uFrX+WHd95BV8Gld3AYE8HIpm20mYI0aiJkTJok2FYe348JdUmxXEJ3HAx0MiSabmDYOkLLyDIT1ymSSkEziLANgWnPrHLowkDIBN000I2MVAoSzaQVNAjjAGEZGJZBmAYQQLlYZDA/i6ee3MDQ8HxueuxmTps7yJrbv82vnHYIJy5ffl1DmkmmGj69vXNoK+aQoU++w6Lp++TDaTqsKcZ2bMe2oNjVTs7JITJJ0moxMNCH3tmG32py7rL5WAgqe8c564wzcEt5hExpNKo0Wz5OIc+KxYswDY2w5fGbb/4lkshnx/ZtyGqDN7/ll/nWN77JnFn9LF+2kEfXrafNNBFumUp1ApnGCDOH7ur4fki10aC96JDUUhIbwkRSzwSNHaOYURFp20xHMY1UIy90znjlRTzx1F1UWpNQmDn3o5GCqWs671/5fq6/+3rEwRq+KC+JCkAUABaefyHXXP/B5/UBKXZ2ccm1qg+IoijHn/HGwYOPlzNOOT5IKRnsH+C2O76PJmP6e4fo6p/Pu//oN1m4bJhe6XDe/BWs2bINPwrYsOYRfuMXLiNvGURpxvbxScy2btZveIJGo0V3Tw/LFyxjfu8wWWKiWSZGLofm2BimTRjHaIaJRQYyQWgOQgdDi4ijANMykVGLMM5IYsiwafp1sihBhjGGqSNlQnV8ioeffBI3b+PaBkP9g8jUZTLSgUOoIRAv/0O+KMm4Zc3TCAmZUUTX29BDDVKJMzCXVZfDTd/5DjkjwRAGWSJpay/R7nbSUyzSVypg6IKergJx0+fnL34VHW1lHnjofpxcCafcxrzBYQZnDTFn6SJatTrVsUlK5Tx+0KLUWWb+vHnccfv3WXHaYjRdR7MMlsydSytJ2TZWwdINCq6DncsRZhHddh6vVWdiqkIu7+AnHl6WMRL6fLuWMeeKX0UIgYHkDa99K1mWsB0onnkmuakbaMo6zekFRy0F87LZl/Gpiz810wfEV31ADpcKQJR9Fp5/IfPPO39mV6zqNIW2dgaXLlcrH4qiHJd6ii/WQfqljVOOH1+98RaKHZ38zvUf4vN/9VeMPr2VD/7JR/nm6m9xhjvIsCiiLT2NhzZtpLe3FyIPL/SY8ny++f3b0czbaevqBiHwHnyU/9Pv4qrLriJpNnjzL/wSk3tG6O/sxtcauPkilqnRigPiMCRqBugSkijDNnNUKxUS12TXxCh+ErBj1w5qrQqz+3sItZQ0SEj8mEfWPAF5h5zTS1dbB9OTU4wFCTc/sIvk3y5Ab+w98EZZEnwsHk+XsjKTLy91SAhiI4euaWipgf5Mn5NMS0k1ycan1mHKGE2Dvt5+6pUaJUdnsM2kpEUsH26nu6sTA4NCqUi+mMdvecwaHMC0cxTK7ZTKZXr6+wikpFgsMtTbjx+0mBwfYdeOHSydN58Fc+fieR7NVpMkjTFS0MIAITM62or0h71s2bkX23LwAp9CPk/BdjBcg8ZEE10zmJ5uMFVr0Gs7BJlER0PGGmmWYeg6hpYgEUgpmNx1yVFNwbxs9mVcMnwJP9ryIy7l0iPynKcqFYAo+9E0XW21qyjKCWHl3A76yw6jteCANyEC6CvP5IMrJxYvksStiMXz+hn1Gkw6Dv/+/dsZ7mvD8DxsR6dkTuONj9JqTaE5y0mEhCTjtVddSZRYdHfOor1cJE4iAj/krrvupNBW5p++8mXOWLCMu3beySsuuoievi5MW+A4eWTsU61WiCMNw9DZUx/l/ofvR9omm3ZuY6pZ4bwzz+CWu+9jaGiQghHT113EtfOEpkTzIwa7Ovifr/wzfhCQz/URtDLuKLyJKxr/iPypQvRntxj+w/h3+UG4kv5P3PmyUofSOGH06Q1YlkWSaTMNA6VE1wwKpkVl1276u0qkQtBsNpFpgKPbLF+yACtM6CwVyFkamgaOkZE2qjhCMHtoANvJoVkOhu0SRRG+TNCSlCTLiP0WaRgz1NtHFvtESQhpgsgSRBbjmoIw05g3exiRy1FPM4QwmKi3MIVGmoQEvke50I0QOrpho+sGu3esY9a8XmyrgCVsJClZOtMjJhMZyIzUm0saFw96TX5WKZi6pnNO7zlH7PlOVSoAURRFUU5Iuib48BuWcd1XH9l/NyF+Utj74TcsUwXoJxiBYKC/n5HmNNVWld//5D/SKi3DtZo0swjLbzLc14ET1yl1z6Jq5BnL2hgUFTp6ukmbIbO7BzACg7HJGnv2VNE0jV9+3VtZ89B9GLUEI80YXjqXij+JXofHRjx83aaoxQxmDSpjDZ7eu5OYjF1TE+weGUG3DYaGZ/P0ul1ovkF9yqetv0Qh105s2Jx37pkUQ8GA7vK9WhPX7STnFlk8PMyKC1bw62edx7Wda+nUvX3nOio7+Ejydn6QrZz5+mWmDgmhoVtF0DQMLUVoAl03QRekWUpPeyejo9vRzRyZX0NPPebMWkK7ZSENDWFZJBnkDJ3ADyi4LjLNsKQgjWI03YA0Ros19DjGsl1SP8A1LIRloyUpaZbObK+rmVhWDhloRHqCYQvsOKC3vY3o6c14UURPZydpW8rY2BiGYRAlCbWGjyRAymlu+fq32fLUFlZefCmzFy3FkjZxkiCEIMoiMk0ik4MHH8+lUjCPTyoAURRFUU5YV63o5/NvO/t5Rah9qg/ICa29rZM9Xsj4eBPNbGIbIyQNjV1jk1iyRd+8Tr7XGKTq6NAPWwLIS58r9VGWF1Kq27Zz332P8Nbr/pgHxm5hy+bt3L1tLV/5uy9yy5e+zML+WTzy9MM85nRwyw6XSiyAEICSsDm7upMliYGWc1i7YQ1Z5NHW3UVlT42hconXvua16K7B9h0bmNM1i70TFYYLBeZ0d/KqV6zib7/zLwwtWMDE9jH0jiIXv/0XuL8ywj/dn3GWVadr7kVMWAM8JJeSoe0775ebOiQF4Jig68iZ0g9SJFJKHMdi7+QEzUadRmuSgoCBzgL97V1kmk7eyaHpBpphYOSK2KaFrRvk3ByB5+O6BTLDJJYZumFgWxaW5YJtEDRamMU2dCdH5PkzHwJIiZ82SPSETEIaRPgtj87OLhYND7Ph6XtIUojiiIWLFjFdqdCIAoTUSbIMwzBJpCCIMqr1Fu0tD91IkVKSZRlCSKQGwmgc0rVRKZjHJxWAKIqiKCe0q1b0c/myPtUJ/SQhkbjdnbz58su59VtfJQpbvPc9v8e8uT384KYbuf32R/nPam7/dulASzj8d3MOgfc0pzmCM89Ywt4tG3n1ijO55sJL6e+fxW3f+S86iyWEZmCedjH/+WSFn24OWM907i4vYWlnynVvuJyGlefHa35MJUr41V98M1sffIBNTzzM+RedgysyWs0WtpHS2LkZuTDPG3/jbSSmBlFE5NXpHOrmpq98gyUXnINtWEzNfR0PmCt/+mWfc/4vPXVISLClhkghygSappFlGYVijjAN6BzqJwuqoFlIr0UpX8SSgjBK0DWDotBxC2WcQhsg0SwHT2bkBwZndhBz88SeTxZFIHQ0J4cvNHKdeWQUksUxhu2TZRlxHGOjkWjQqEwjM4FpGdQnJxhu62Dx/Lms3rCJUqnMhs1P43kehXyZNGVm1UYKNN0mly+gmxZJmmEaAt0wsCyLYt5Fr2nouW3oZoMsLqoUzBOQCkAURVGUE56uCbXV7klCAIkf8l/f+jZZNcAyBZ/80J9g6QapkOhnv+UFvlNyn5jPmxb3YaBRrdbp6uwg77ZRnxxhqKNIoVggsiT/uGH6Od/33KeZeZ5vVHXm/t/3WJTP85pfvZZNGzcSr38Cy9vDFZeuIslCzj5tAZGE1p46i+fN4cvf/iq053nVuRdx/uLT+d63v4dXsqkEPg/ecS+u0PjjP/8Cf/HttS96HV5S6pCARGZoQsMQGmmaYlkWHW2dGAWHpaefxfjTm2gGATkSzj/vDNAhRZAIwbjfJLINZpc70DQNmXewLItCeze6UySKNaxCQJIE2HkXPwzJ5/MEno9p24Akyyya0zWCZossipCpoFRspxJNITODJA4Jo5gLzziT7aOjTFQmKJQ6aMuVqMYtTNMllSlSJEgtQRgahmVj2g5OvkASBri2SZakCARCSLqG72J86zUqBfMEpL34EEVRFEVRlKNF0O6aBNVRNAsSdGQqCeKYxO0Cu/C81Y/nfm81NdgTF7E0h77OAWSSEgYtHNukq6+XnsFedmY6lfiFGsoJplNBtVRieKCAH04yPKedXIdg/vJ5lMpl+gZ7EVpK02vQyHxKpQLTWkhquEjRzoicontRP7t3buaqV72CP/vAn6Kbgt/7rbcd0lV4qalDUkrSNCVIAnQdZBKy6cm1bNv4FB22iy019MRn1TlnkLMtRscmiHSdSujjdnaSWCZrK3vYHVR5eMNa1jz2CGseXcMD9/2QHZufoNmoYegmzekGWgKTO3ez8ZFH+P6N/8Oahx7gth/exS333s3W2gR78Ng8NcKOqTFqgYdbLoPlYBgmQaPG2UuWkIYpteo0Wljj1161ikUDPWhSYGgz9R4d7e04joPruhQKBXp6egjDkA1PP0WSJgAU2jfz+bedTV95/2vVV3aO6Ba8ypGnVkAURVEURTluSCRR08NohWiRQAoN27CRUmI6ZeJDeI56plMouMhMw0Fg2y65XI6UGNPIaE4nhzSXpkwwHY1csYPA81gw70LCoIlmZVQb40xVBM16izAIWXLaaSSmMVMoHUdc+upfZe6vzMKyLUxTR+oWl37zEgzN4je+9iSTzQN3Pn+5qUOaNvOZcl4TfPLPPgRRiuXY2CXBglKe9/zaW/jkv/0L82YNYRoaDa/FPMOhVC6jxYIsjtG9gG2bd9LyA6Iowsm5FCyb9rPPoTadECdlZBzTSlL8Rsj4rl3Eocc99zyOaxXQCy5Vv4FMdepRCyPJaI5PY2sOObdAkkQUXYuhwT5c06bTKvC5P/p9fvjj23jjFa/mk1/6Bpow6e4q02g2aTVbCCHwPA+zkKfRbNKYqCB7sn0foasUzBOTCkAURVEURTluCCFwdIPLL3gloGEYFrpuocUpVbvAmkN4jlwWIqWJaRoUSx0gUoKgSSFXAJHRZRzazemsdpvecp6WV6VYdDGtFDCoVaeo16o0pmskYUYqdTZs2kKiGfR2tlMolPj3f/0fbEsQBAGOadFstdAsg8gPoHM+DFz47An/5Nyf+fOlpw4JhGWQpimZMCj3DfCKCy+g4dUhS9h4350U8hb95Txlt4DjOJS72ygKQTw5hhfF1IOU7o4eOnOzcGji6R7d3WVIPO578H4uesWrIYzRNY0oDqk36wgtIW9YnH/6eTRaHp6vM70tIN9ZJGfmacubYKeErYDdUzsYmjMLPQMZRswa7GR2/xBTlTpvuOQKVk/USeOMzBTUWwGbn96EW+pg8ZLFCFtCpDOrv5v/++5/45zrEsb+vrNXKZgnHpWCpSiKoijKcSXvFp/pY6GTpTNb8xquRSlrYafRTPe+A5K0GxmznYBEJrh5m0QPEaZGW1snpuUS+AmDskWHkXHQSnAkPY5g5UAejZjOfBvlXJ4sCUiTFmkaQiJJ0PB1iSksIsMmi2I0xyL0PEQcEAchOoIkSTANA0vo5N0cTn0XnXvuRU/8/V715acOSWQW49gGZCkiDnjowft45IEHSKMIy84zZ/5SFs1fSNG16CzkWbFoEV2dZTQN1jz5BJf93Jv46sMb+Z3P/yfv/4+buPRtv8mm7bspOC7z+vpYffddiChERCFhvYY3Nk5r9wglBNWdu7nmN36HnYbFP995N3/xxX9n6arLWP3kBurNaTQbzjrvdNoLOTpci267xBkLlpLPFdm6axeJEHz5u98h0w1klJIGIdNTFUQmmdg7ypf++Z+pjo/wxb//LIWcgzzoz/9nJ8tSdq17gg33/pDdG168hkd5YWoFRFEURVGU44eEJI6wdAPHNohjia1rhFGAEIJF/k6ezM+fCUL2qwWZuSm9pqNCmEKYJURZQkGz0RE06w2yOGFyYgRTT3lrR8hnx8sHngDwW8MGWmRQdruJpUechKRIvDikHtUJSEhNB9+fRrMcPv8fX8bNlbCsIrrtEgVNLBw0Td93w5wl6UxgJTTcxm6s2i7+YsVOIiNHT85g5ftuelmpQ1EYsnHNI6RpysT0NMtPW87axx9HCMn9996LHYb09A8zb84sjDRFy1LmDM6iVpkgSSNmdw2w5vb7+H/vfAtf/uatDPZ1sPHuWzGDjB3btjO8YBChS0SW4nstpsZG8ZtNTjt9BSLLCP2IB772DVbNHiZbtZLTFi5i73330p1l5BMNV9OxEkmxvUziB7SmRjBlzGRjmrHUY7QyxP2Pr0eWO0n9BPQUdIkhYeumzWSBz3e//W10JKLlUZueRhxaG5AjYtOD93Hnl75IszIJQBAfSiKg8kJUAKIoiqIoynHD0AWXrZzHVLVGoVgkjmPSJMPS8ghNQyCYU9nBHV4fHj8pPs7JgGt6miy0PKQsEqeSWqOFzHTsTBI0GzS9Gq1GnaE5szk3GueDTsI/j9lMhNm+5+nQEn5jMKFn11Y2NDsYmjsHIy+IE5CGSSsKqDRr1Ks+lpPDI6Az30EjrNI9tByj3Em9Pk2xkCMKTDRDoBkJUoDAQAdkluGFdYRe5GzxFL16ANYAvMy6hSxNaTbqTFfqpImHlW9joG8Yr1VH023mDQzyiX/4HK+/4DR2b96BrZk0W1MYtqSztxcdiyweZfSxB3jVvDyGptMWJqyYPYxRsqhMjJHHpDq+F9d10VOBrsPYVAU356KVHYJGDVGTXH3BYhq1ceqNOr39nZTayhQclzhOyLsOtWaLnO2ix5L19z/CJW99C09N1YlKJlpcI5ezkHoOw3IoFV3Of+WFvP033sLcOfOZnKzwwP0/5v8KX8WjebhvtUOy6cH7uPFTHzsqr3UqUQGIoiiKoijHDU2DzZvWMmf2LLJwmpEd2+jt6UNiYFoWlmWxsj1lsb2WEdnGVJAR1saZ6yR0Zz0EoYmueRSKZVIJWZbheT5jE+MMDg2Tai533/Mws+fM56xcxtfPKbEtK7F9YhLDm6I/nSJnFxnLJQzM6mJs11byXT3kiy7j1Snqvo/nx2i6TppJ2tu6+MxnvoBdamfFOavo6+ilISZJowAv3UM5X6IyXkdoOrHWJOxsEuktLKtMznPQDpoGduhklrH6rh/T09NHlARsnlqHSE3KpR5ysxZRb8uRtXcza84itqx9ksZ0Qnf3PITbRs4yKTslbDPD1DSSKEYCYRizYO4QW3ZsoyOXY6JSJW141GtN4mmPethgyfKl1BoN2ts7cPpc3HwbbcUShbnzmGo2GRkfw3Rs/GaddtdGhjF6klFtVNGkxM0VcDt7+cDffZ6egQ66bYfQyPjFX/kdbrrp+9z5o7vRCw75vk6qT61narLC3MWL8TcH4B7+e+3FZFnKnV/64s/+hU5BKgBRFEVRFOX4ISXdHQX27NrKvPkLOevss9m2bRud/W3YrsP4+DhRFNDWVqZDi2m1Wuxq1QkD8Uz/C4cky5iu1+jutKlWptm0fh2LVyxh6549TExVGJgzh1oYMj3ZYEmuk3Z/L8W0yXgacfOPH+OCC85k0YIF7BrdS9HK49dbaEIjySDMZjqNZ0IQpZCFDp3tc5kK8qxebZNoEPk2baUuorCPnJUh4yrM2UTbG3djdsystsSMoxuS1ROdXF3de3iXDBC6hh9H6HEKsY8hTM4/7xWMnXYJ/oIlRME6fvTwaia9Cu3dOcI0oS2zcKwcObcIqQdOjrjZpNqqEWURLa9Kd2cbY9t201YoUjAdgsAnaLToKOWJq02Ge3pIs4yaV8ft6kcYJlEmiTODoVkL8KMQqUPme+hhgtdoUolaBKSYxTK7mh49HUUiYiZHR8nPmcO5r7qAvZUJXtvZzVve+nbue3A1s2YPceaS03j80ccolUrU4srhv9dexJ4N6/alXSlHlgpAFEVRFEU5bghN0NnZDmREcRM3p3PmWcuo15uMjo4wd+5cRkb34hRsPM+ju78LKXTGRivEcYJtZ0RpRMEV1Go1KnvHKfX34CFJ8jZFt5cw1TBtl0JXN3es28iSxYsBg9HmXlZcdB7S0Ng7UWdifJzu9j727t7G8OyFSNMgbMXoeoE086jVqxiFXmqej9B7yKhSLpZIrG6KJZepiTFqrYCOszLafvnp551rLZ7g/W06duRy2WFcMyklmvbMdrWahi6KJCT4oWQyg672DnaPJnSMNbGbGjICPdHIgogsA7OQp9UKaI2MYTsuRdOis72AF/kEYcTU5DT95U7qkxWiLCEiI4lC3GCm0D6Xy9HVO0xlaoKWqaPrOsVcEUfG2DKh2oiwXYdmMEWSJBgyQ0hJlGU88fQGqiKg3S3hlrrpGJiNzEx+/hfejGVZjE1NYOdc0DX8KMSwdA6+ecCR1axOv/gg5WVRu2ApiqIoinLcEEJQKucptxfp6CxRrU0xVRlHCIkmYMeObfT199FoNCiXy+RyOdo7ikxXp2h5DZrNOqZlYhomtm2za9dOpBSMj05Tb3hEUYTIIiwR0VHq5LyzziX2Qkquy1BHN12FEppt0owDEmHhJyFdA31s2rqVKAzJkpQ0EcRxigQ+/f/9DZ0DQ4hCTN/sJr//B5dhkNLdO4Xt7CGJJim99naEeH7/xGe//kRnO+lhXDMpJWEQ4jgOtm0DkKYp9XodLw6oND1C3eYVb/p5wkzDb/j4XhPfb5H4PmNbtyFrTfLSoafUhWPm6O3upeCW8Ko+hjRpK5bJ2TZpnFCv1hgfmaAgHPyaR7GzG+Hk0E0bJzUQjZi02qS+dxx/Ypq42iRrBqRxQpZJNMMmRaAX8jy4cR2ma2PYFpFMWbJiOR0dHQRBgOu6PPXUU7RaLeI4ZvPmTfi+j+d5h3G1Dl2hrf2ovM6pSK2AKIqiKIpy3BDAZGUSmaUEgY/5THO/6eoETa9KEIaU2op0d3dTq9cJwxDbtjn33DPZumUvtm3RbDSJvYS8m6dcKrB3915SaZDXdbZv3EhHPk/ONKgb6zDz7WRpytrGOFGriVW08V1J6gu27t5L+2AHCxbMpaevB10IZJTgeT6m4/LIIz/mdW98A7ffs4G2gQW04ml++VeW8zef+DK7Nkr++jO/wA2f/wp66QV2TRKCUcPgETPlvJd70SSYloUQAj8IiNOZGpUg9MkygW6ZeDVBYlokUqBJnSzOaMY1/LhCby5P0clhlTowcy55Pc+OvaPUpiaZmppmeNYsurp6IAkZLJaYqHlM11tMj1cYr1ewejvoGx6ivzCHxvgU+ZwkSCNEmlCZqmAbGl69TiFfoOHHiGqTJBPEAnTbIUg9wjAkMx1mz56NruuEYYjv+2zbuo3lp59BmqYsWriQTZueRps+Op+fDy5dTqGjS6Vh/QyoFRBFURRFUY4fQlAoF7Fch82bt1KtNkhiSX9fL+1tZRYtmE8a++ze8zQdHS4iztiyfS91qTEZBlT8gFqWIHMOUSZpG+jHcEyKOZ2h/hJnnL6I3q52ZJTg6Hm88SncVGdexwLmdS4gmc6QVYkpIi666Gw6ujoRhktHbw+ZLhmbnALdYrpepXfePC567dUkdOLXlhM3fo7LLv4WBXc5qbaYD1x3D6JkHdJpTxxO424BYbNCZXwbSVgDPSKVIY3aGMVyN6PTe0lkmTgOaEYZ9SQjyaA6OYkQEKORGgamY9Pw6zQqk1hZTOA38eOQ/nnz6Jq3mMGzL8CdMxe3u4NidyduW55F8+dghRFZrcnk1Di6Y5EJHaQg9UKSwCMKW3hRg0bkE2eSarOBT8p4Y5okCxFRhmM6GMLAMl0Mw8DzPNra2rj8sssgzXByLpHMEIZOoVA4jIt16DRN59J3vPOovNapRgUgiqIoiqIcV5rNJlEUMXfuXPr6+oiiiC2bdxBHEk1YtHV24zgd1CKX9ZMpP/+eD7Pk6rdx/cc/hWHbtKKA3ROjNEOfMGhiGQLH0mjUa+RyNiJv0bdkHk53G4Pz59LV34vn7aUW7yXfKeho1+nv68MxTRwNZKYzMj7FSHWa6SimmYZs37aZ3Nz5uMsv5N/u/AFxwaMe7yXfZtPwE3RHxy7NQ7ZmH9I5dx9GWYMQAquQ4/RzzwUy5syZjUwltVqVifEJMjLSNGGsHlCPM1pxTNNr4Ng2hmli5mxCXTIZTBPImCgNSJMEx3FYvHgxa9as4amNa1nz0AM8+vhj7Nq5h+7+XmpxQLGzjcwLaVQnsQxBEHvgzFRpxFkGhk6qaWRSpxWGCNOiHvn4aUSj2cTUNEqlElmW0dvby+DgEIZhEIbhzKpIlmFZFr7vE0cxcSiJ4+TlX6yXaOH5F3LN9R+k0NF11F7zVKBSsBRFOe5lWTqzG0l1mkJbO4NLl6Np+rGelqIoPwMykzimg12w8JoJrpPDESb5OMTt6GbDlEd7YR4Xvvm32dsMabtQZ1tdEmg2j2zYRBgI8knEeAxmWsGpNcjnc5Q7u/CnAwItw86XiXWDUIvI0pTtW7YhXdAsh5xp0NVZphn5RNNVFgwN8vTICCE64w0f3TTRIo9XXXY5X94yTZ9Rplqf4ONfeR9pHNEcncAIC2itMt/7n1tptLqQzTzkW8+rAZk5YUlfmnL2YfS2k1lG7AmSyETTCuzZOYUQNp09Q8R2ieFlS/DX3Et7Vx9tvb2EcYsoTXCEQyYg0QTS1DEMjXqzQdBoIZOEuudhYFDqaGfrxB7sfA4DnTPOOJupyRHKbe2MViaxdA1LBMQC7FwBy3GIbUgdHYscaeQjERiGS6XRINUM4iwjjHxSWUImEbrp0j84RCvwZmpawhAhBLfddhtLli7HdPMUNEEraNCo1yH38q/XS7Xw/AuZf975+/47JA2TD3331qM3gZOQCkAURTmu/XQHWoBCRxeXvuOdLDz/wmM4M0VRfhYymZEkAd5YBdvKs3vSoxnCitf8MkaxyNluLzE6I1KQ2Q5akhBoJjff+QSGbnDWJb9G5d5vwp6d1KSLU25Ht3KEmYnV1Unqx5iY5DKLaT8ijjxm9XYjDWg2a5TKBSzdgEKJznwv49UpCq5JrRXiZwml1KDUV+ThsSZvfcfv41smQuSIkoT6dIPysiEK0sJoZWz/8jrCWkz5zlXk3nD785u3IwDJ+6am0fXDK3jWLcGVV17Ov+7aht+aRgobLS+IG3X2ju2iN5EIBJf83M/zwH9/g4lGQK6zgJ4rICyDREAtqBPEIZGQYOro5TK66eA6OfK6Qej7kMYYbQ55rZMsy9A0i5SMSAia0xUsz6dbE6ClxEaKNASGqeMFGdVak73VKl4qmZiaRMoE07KI/RZ2Rw8Ds+ZTbuskTVOklFiWxfz58+nq6qLY3k6r2aLUVqItbGM6mjqs6/VSaZrO8PLTAajX60f1tU9GKgBRFOW4dbAOtM3KJDd+6mNcc/0HVRCiKCcZIWD3rkmGZy+lSY7TL38ddm8745MRcRFMoVGZnEYaDhkm961+Er29g3zPbKamxrlz9zT99ZAz587nyc3bGQ0lWdnEtHME1QZtpXaKTgFNasxt68T3fQxTYBoaqegnIaUVelTilBhBmGbsaYY8NbKHsutw2StewZaGx+ILVuG255kaHyeXL6DbNr0Dw9SmKqRGAydX5D2ffCdWbPH5j/4btf+7kOKrH0cvtfada7vby/tHd3OZ50PxcAIQQS6fZ8GCBbSaTSzLIkwgSVKCIKAzn0cIQZRGlHrb2dmYpuR2UKnX6OnrIdMEUoA0dHTXRmaSLEkxdJ3BwUGSTGK7BTIyojgky2L62rvwmnW8Rg2kRBoSmWTkOspM+U3yBQOr5BDrEm86wstiWnFIMwqYjjwmGlUcx0FmGUEqafgBXT19ZLqGlJIsyzBNk3q9zsCgwHVdPD+kXmsi5dHZhlf52VEBiKIox6VD6UB715e/yPzzzlfpWIpyEtHMHEt//v34UjB/oI1tE3vobhWZrO/hn2/4Kq9+w+tJcm2gxYSZidmzgObEJKKcUuxewFhlFx0XX8P0Ez9kwZw+pG7x2NMbaZW7WdgzQCONiPwmbUYOv1lBigzHshmvTNNWLFL3mow0pnHb29iza5Q9lSqhMHBiwYXnnsOewKIyuIgaefJRRpgm6DIjaDboKLbT3t5GrVYjzSTkSkRZwns/87vUpipYscUnP/1BNFsjq+b4+6/8Dav+46zDv2gC6lNVLN0iyyRhFCM0lyyOybkWjjCoBT4GKYEQXPS6K9j14x9STQNq1RqlUplYN9ECD0MkjO7azuRojdFKkzD4EXOHF3LaooW86sIL8HyPSr2KZxqASXupi1azQdWvYbsGUeShCR3dMMjilHqtQZpkNJoeUjPxwoCJRoMglvh+SJTGICWFjnbK3d20lTtA6Ji2RhgH2E4OKSHxY7I44+n1T1EpV9CKh3/ZlGNHBSCKohyXDqUDbWNqkj0b1u1bFlcU5SSg6xS7igxZBpkU3L9xK3ePPs72ySYX/8rvEJk5sAukSYrwWoSNaay8TiIdqpUm7Z1tTGqCoTNfTbrtCdqCOq8+5wK2797F7voUYZQw0N1PFnp4zQbDQwNIkVHoaKfeaLJrbIzMtZiaqHHbfT/mnLPPYU6xg8Xnnsm66RbTPf3Y/XOIgzp7RscwXIN8Pk8+r9GYblIo5CmXy8/0sbCIY51mKtHbuvCTiN993w0YqSBPjie372LVkbhmEtxCgfvuuw+ZZmhCQ2qCOInI4pgkDInTDNMw2bp1O/PmL2bTgw8icya7JyZwi3l6+rpoEiOSkIXDQ5QbGvPpYjIICKKY1T/6MTs2PIVbzOMHAdu3bSIndBbMm0O1XqHY28HsRUPEokGxqwcBBGFCmGTUWgGtMKaVRozUGmzdtYtYZti2Tc52aLV8Vp5/Pm0d7ZimiSZmtl4OQ4/p6WkG+oeI4xjHNOkoFtF0HQ6rc4pyrKkARFGU49KhdqBVnWqV416Wwo77oDkGhV6YfSGoVbuDEkIjaqY0spDx8QoXveoSph7aytlndCIdFy1NyeKANIxp1OskicSxDHTbJWtMk5MmwraYMNvpWn4urXWPY9XHmDdriKc3byPMMkYaNfRIIsIYvTqNkJJqvUGGpBpLpMhY/fDjvPqiV6HVPRbNH+aOzeOUVl1BsbMThMTNF9gzNsLc+bOJEsnExBhdHR0kSYrj6MSxjkwzHNMm0zPiMCYFzLxFlmRMRHUsLKI4xTnsiwZ+q84999yDYVmIOCIVGlEcQZqSphm6YeAHAWOVKgvnLmDNk5voOGcJSeYxVZui2OmSJgmGodGMfaKCRZaD7qiNOR1DtNKURhYjTAMJLO3tQZAxWZ+k3NOOW85h5SwwBY2pKQzbZrrWYHq6RjXwiQWMNxs8tmUzqaEh44wszpBhQrFYYGBggO7u7pn0K5mhaRqOM9MXJE5ioijC9wOuuPxSbnnwP/BoHv6bTTlmVACiKMpx6VA70KpOtcpxbf2NcMv7oL73J8dKA3DVJ2DZNcduXsexVKaMGBLPl+xoJJR3xhiD83DSlDiO8TyfOEqI4wTDNrBzNogMQYxhxGTCwrVdYl8wJQsMnHsZYvPDiIkRFs1dxNh0hcnpKnEco0cZ0dgolmUhLYtMAIUcjXqDlWcu5/SBubSWl5lacA5OVw16+kmziCSIcRyTzo5O4gwcMbOVrAQ0XZJJELrEkOYzBdgJmQ6OlSdLUoQBkWGRRDHygFtjvURSousG1/7qW/jzD38IgwyERhKBk3hUfI0Oo0mq93LFRSsJAosksxmvjjHcM8BEw6cwNY2p6yRIbNehrc+kMlKlONRLw3HIOS55BKZpMj09jWnkSbOIXC4jbVXpn9OLH4UQCcIsRhMBYRQQpRGNIGSy4bFx227iNMXNGYStDN0y2dus0NHZy8L5C5FpRmaBrulIKdE0Hdu2cfN5EjJaQcCdP/oxwlFdJE50KgBRFOW4dCgdaIudXQwuXX4UZ6UoL8H6G+Fbb2emI8Jz1Edmjv/yV1QQcgAagqeeniByCzj98wh0HSOKSZ75VNzzPIQQ2M5M529d16lP1xgc6iFNIuIsQSYJlmsTEDKlOziDi6lM1Jgd+fR39GJKwWRQJacV8H0ft1gAy6LVaBI3feb3DdLR3s1eoTPrFa/lvi0jdM0eJooiHGHRMDL8IKC/v5tm5BMEAWmaIsiwLJMw9DFNE0IJEqQAzTbJMhC6RpakuLpBbM6s+BwJjuPw53/xIXTLRKQxAkGaRWh6SL6Ym1m10fNs27yNz37u3/EnJpALFzAyXiXrSNHHob1QxjFNgjiikHfont9DFIaMjo8jJbiOje/76LpOEIb09nQxvHCQbtlDqxlQ9wLiNCGTknDqmbSrKKURNhmbmmTX+CgN3yeNNZIwAE3j8te+kTPPOpcwlQhdwxAQxzG5XI4sywjDECdXIEszQOLkXPyWB+4RuWzKMaICEEVRjjtpJlm9rUrh4l+g+d//dNBxl1z7TlWArhyfsnRm5eOngw945piAW94PS65W6Vg/JU7B6BxECA1dQBpHREGAlJI4jtEMg2Iuj5ZmtOoNbNuh4JTwPQ9D12k2mnS0tWEZJtJMaSUpYrCPnu4raU9CJlc/QE9fjpI/zejEBG35IlGaoWkmeaFx+lnnUdMcokXz2dP0yIDuoTY0MnRpEIUJkJEmCUEQYWgSWxPknQJCz2hFEU7OndlK1oIkS9BkRuyHGLq9bwcny9TRhDxwb5CXIQgCfvM3f5svf+3LpFGK0EGg0ZhukVRCSp5gx7Yx/vvfv4Jr5ZizeCHlcjdJnDLtR4RT03iBpJhzyTk2hWIZ09Yo5h0WDi4gSyW6rpHJjCzNyEyTMPLRDY3pySrTnkfLD4jSmDhLiWs+1SDESwQbt+7myY3bmL/8ArLRMUbrY2BJBgYHWX7mKjoGB9HtPEmSzKxGpTO7YLVaLUqlEkITFItFdN0kikKEp1ZATnQqAFEU5bhyy9oRPnLTekZqAaAxv+dKLp6+l1z8k3zfYmcXl1yr+oAczEwAV2G8EdBTdFg5twNdO0J3Ocqh2XHf/mlXzyOhvmdm3NxXHrVpnQgywPMCoijCztn7tmR1DBNdQio0KpOTFNwcmqbTarXo7Omc+fRcsygO9NNqNfdt40oUkjQiIkNjj12i9MrX4o+OEWxbxyzbIY5aJKFOuXc+dwVbKJx3EZOmxkBXkaURRI2Ilq7PBAqxxPcbRGmCm7MplW3SzAYp2bt3L50dnfh+E6fdRKTZfsGlYRjoQkMiSZIYKXV0/QgFnwIyEibqTWQClukSJwFx1UM3NBr1CoNOB//1ta+R6S4lU9Cq13GtblKZMTo+RSra8KpjDAz20Gg2KedzSGlgazqTzUly+TydpQ4a03X0vIMfRkg/Zmq0gnA0Mi/DSySTVR8pJbVGizCGnXsn2LJ7hEVLl7B1xzbc7lkUTElYF9TGJvnR9/6Lq3/xLXR2taNZJonMcIQFmU4UpNRqdUptXezevZs4jsmiEMs28Yle8mVKs5RHxh9hwpugO9fN2T1no6sPAI4JFYAoinLcuGXtCNd99ZH9PjPekp/HttwcBoIRfn9VDxeeNk91Qn8B+wdwM/rLDh9+wzKuWtF/DGd2immOHdlxpxBNCNo7HKLYJAgzkBIBRH6AYRhUKtPouk6apgSeT1dHB0KmeE0fN18gjkKSJCGKIuIkwTYFiR8ji0Vk1GAic7DcAtOJweanJlhoOzwathhY0snyX1/FrmmfTk3HC2MCLyUzbZIwIA5DYi9FCEGWSQqFHG7OYMOGbQwPDaFpGpZt4aQ2cRjRbDVp7+omimM0TcMwDDRNo9lsksvZxLHEMI7MbZium1iaTVyrkJJgCp1UpvTOm4PnmLhZjae//x2GaGFZBrVKhXPnD5F3XQw3R0d7G49uXEd7bw/1LEXzAvaOjNNZLuIUDPKOS6tVY2p8BM0ysQMDTbMhTtANk5GJKaZbAeOhz86pKcIkAWFQr7Woej7z586nWCzz5MY9GD2SnDOAK3LUK1t55MlHGauOcv2H/pJcoYhuFZC6RAiBYRgsX76Cx59cT1tbG1mWMTo6glUy8V/iJli377idG1bfwJj3k9+53lwv71/5fi6bfdkR+Tkoh06tYSmKclxIM8lHblp/wISVTGjscQf5zLYiA0tPU8HHQTwbwD03+AAYrQVc99VHuGXtyDGa2Smo0Htkx51iYi8k8XwIW7SmJ4gbVbQ0Qs9iTFK6SkVcwyDnWGga6LaDbdhkUmC4NnEWk4kMw9TIMo2i6RKN7aXPLXPz336a9T+4nc++75N87db7uXOiweaJBjd95/8oZT5zO2xK7Rael5FKDWJJkuroeg7TdZGawDEFPZ05bCT93X1oUpBzbbQsxtEsdKlRdIsEfoDv+5iWiZQSKSWu66IbBrZtkSTJkblgWUoYRUynAa7jUpCSpfPnEqYt2r0Rghu/QXttDCE0HMOiq70NmwhDzOwoJkg4+8wVuIlOc6qKZtlsG59g50SF3ZUpmllMLQjY3WqxeWKCnZUaE/UJJrwqY16LXfUaI2HIrffdT67QhoFNtVpFZhH9XSW6SkVIUirTFRIkUjdIMtCNIkuWnM/kaMDNN95JGqToGSRpiq7rZNlM3YcQglKpNNMRvbsD8RLz1m7fcTvX3339fsEHwLg3zvV3X8/tO24/Mj8H5ZCpFRBFUY4Lq7dVnnfj/FwSGKkFrN5WYdX8zqM3sRPECwVwz1Qc8JGb1nP5sr6faTqWSv96xuwLZ3a7qo9w4DoQMfP4bJVG+DxS0qhUCZOYYjFPOZ/DNi2iOENKiW3bAIRhSC6Xw3EcdCkwbYdQQpxltLW1I4OQLjdH2Grw8T/+KL/7wfdBJWL+009R2r2BS1Z0oxXLPL19E4llkgiHD/7aH/Hrf3gdpXPm4hh5fD9AItA0jSyeWVVJ0xTb1HBcA0OApWskQYu8bRFHHpaVo+V5mLaFKyzIYqLpJkITNKKQ7u4u0jQjljGWLY5IDYirC84a7GeeViTo7qdlWZQGhgmnphH13RSTBK3kogsdqdvYrkN3fxlNT2jvayPvWPitFp3LF9DyfMYmxskMDU+DvXHCo/c/THW6gu83cV2XwPdxTAO3WMIplHHLZWp+kyXLl1Fv1sAQ9PV2kwYRXcUyYbOFqaU4rkCGLdrac0wENh2DS3n4gQc57dwz2bRxJx/5i08wXavywT/5farVaQZ7+nny6Yfp6u1HJimtZpOBniG0XdkhX5s0S7lh9Q3IA/weSiQCwSdWf4JLhi9R6VhHkQpAFEU5Low3Dh58vJxxp5rjIYBT6V/PoekzW+1+6+3MhH/Pvfl55o7zqhtUAfoBSdrLLkLkEdrMp+BCCFzdZGpyGttw0DWdwPcp5PPEUUSmC5JkZmte12kn0yx2j+xG1up8/I//kl9874cZiw1y0x53PL6BN/W2c5aRo24HvHJ2LxtqO3h63qXYPSZ3//s3+ONX/TW7agmlsk2rJUmlhiYB2yaNE/IlB82UmEJgmCZxGOI4DkmiY2gS19IRZM8UrqeU28pUqzWKjotXbRDFMSEhvX29HInwXAidgZ5ZPDI1Cl2DxBrUpI6WLxIELRzHIY5jykUHL4yoppJmUKTNAk1K8raDjBPsnINrGxTzNomETGo0mi2Mco6iZZBLO3FsB8PQkTBTp1PKkSEpWzZGLofruLS8FlEQUu7oIgojcPPoacwFZywkdtuZSAT5chmv6TNr4UJqtZl0NaGbtJU7+bu//2eElhJFEZZl8uZfeSsLFy1Ax2DThg1oJf2Q+xA+Mv7I81Y+9n+3SUa9UR4Zf4Tz+s47Aj8N5VCoAERRlONCT/HQWnEd6rhTzbEO4A5UvwM/Sf/6/NvOPvWCkGXXzGy1e8A+IDeoLXhfgKHrCJnRO3YPhXCCltPD0+4ZpGlKqeTObMNr2yRJgm3baBpIKTFNE6/VoNzbxoKlc5nYPs51N3yGqUoLNzXZ4zj81q138bVP/CXVjRuZTcA1nWcyN3NZvv0hWo0aX9zTYt1EhOlaBF6A0DQMdJJ4Zqcp0zRpK+UwhCAMEpIwnrkpFxpRnCB0B4GOJjR8PwAEvh9QKBRoegH5fB4rjhGBSbMSkB1ogewlCoTG1o5OkjhGtmbSsLJmk65yGd8xkHImjSlotRCmi50r8t2bb+WP3nYVOhoyySjm8ghDp61cZKIyRU4TQEY5X2agvx2ZCEzdQtN14jim4fsYOgRBA8exSRug6zqNRpPuUhuNrAZJikwSTNvBzGC4u0zDLFGrCbIU0pxGkiZsXPsEQ3NnxhWKZarTLVzXolTuoFar8g+f/SL9/T14fp2zzjmH7LxDv2gT3sQRHaccGSd9APLXf/3X3HzzzTz22GNYlkW1Wn3emJ07d3Lddddx1113USgUuPbaa/n4xz++X3HY3XffzfXXX8+6desYHh7mQx/6EO94xzv2e55/+Id/4JOf/CSjo6OcccYZfPazn2XlypU/4zNUlJPDyrkd9JcdRmvBwRJW6CvPpPQoz3csA7jjJf3ruLTsmpmtdlUn9ENWCsf4g1vPwo7raPwk1SZDwzeKpPpMA4hnb6qft8IkADGT2pSlIOUzqTZ7BFJmCE3wngugubiCLjQM80ncRQ5hs04UJ/xuVxfiu2eQZhm6/uxza8DMblya0NA0gRCSLJMzfTyk3JfiI4SYmRuCTEpmahi0/Wb57BiQ5ILxw75mUkqSZgtd09AcC9s08GIN4Vg0xqsUCgUkKZnQQCZUGlMMLDqDzp5BIER3LLJYYAnQ05TuchtCA3RJGGaYhk0QhqQyQ5JimdBrF0BKAuOZVSo3xXZsSnmTIAgoDvUzMTFBEKa0dxcIPI3Z9hxGpcODWzfT3tZDKgWhkCxftpxcqcR0vUHkB+RzM/1GItsmCiLy+Rz1ehNNM3jo3tXoC2qIwqFdm+5c9xEdpxwZJ30AEkURv/RLv8SqVav413/91+c9nqYpV199NX19fdx3332MjIzw9re/HdM0+djHPgbAtm3buPrqq3nXu97F1772Ne644w5+67d+i/7+fq688koAvvnNb3L99dfzhS98gfPPP5/PfOYzXHnllTz11FP09PQc1XNWlBORrgk+/IZlXPfVRw6WsMKH37Ds1LuBPUTHMoA7HtK/jmuarrbaPRSr3g23/hkAblx93sMaGfmkBkntiLxcOffs3wKIauQtwAL8Y7RZg32Id9QHkWUZaZpiGAatVgtN02i1ZtKvGo0GxWIRIeXMio7u0kwi/vW7t3Ltz19NW6mIH7ZIE4gSgcgyCjmXNMvo7i4RhSGRZZJmGUma4NgOSRiRZikl2yLNZvqiCCGo1WrkczaT01Ucx8B127Esm5xuEMUpj9+7lnKpi3q9iaFbOHaOpFmn1fRwHAeZCaLYR9M0gmBm57MkSWa2VAaEZb6kIvSze86mN9fLuDd+wDoQgaA318vZPWcf1vVXXpqTPgD5yEc+AsCXvvSlAz5+6623sn79em6//XZ6e3s588wz+ehHP8r73vc+/vIv/xLLsvjCF77A3Llz+du//VsAli5dyo9//GM+/elP7wtAPvWpT/Hbv/3b/Pqv/zoAX/jCF7j55pv5t3/7N97//vf/7E9UUU4CV63o5/NvO/t5dQR9p2odwUtwLAO4Y53+pZwkLvw9kBnc/uGZPw9GaJDv5Yh18Dse2AW45M9e9rc/u6Ly7PbEpmmi6zqe56EbBoVCYeaGPg7QIhC2jpeCLPfwXzf9gD/5jTeTz7vEiY6WSUSUoKc6lmWS+hFCRjiajmbbmGaBNMuw8zmazeZMb45MEMmMJEloLxZo+h62Yz6TMldC0y2Cuo+u54hSA00zMQ2BZTnU6i2iMGTL05tYsnw5mjAQQuwLQHRd3zd/z/OwbeeAH7IcjK7pvH/l+7n+7usRiP2CEPHMv47vW/k+VYB+lJ30AciLuf/++znttNPo7f3JVohXXnkl1113HevWreOss87i/vvv57LL9t8j+sorr+S9730vMLPK8vDDD/OBD3xg3+OapnHZZZdx//33H5XzUJSTxVUr+rl8WZ/aSellOFYBnKrfUY6YgbNeOPiAmcd/4Z/VqtJzSAm6Zsx88iAFURiTpgG5XA7PbxFHEeVyGRELDMskSWMKmsZkS8csdLNlosHSgXbcnE0SRgSxT6Jr6Lo9ky2YgqbryFQSZxmOY+MHAVLqICRJGoNmInSNJEnYs3eMgVmzEAIsy6IZRphuhtM+l8jYSNIKkUgi6VEul0gsi+XFHJPVKeYvWMr05Pi+zQds255Jo5MghEaapgjJSyrev2z2ZXzq4k8dsA/I+1a+T/UBOQZO+QBkdHR0v+AD2Pf16OjoC46p1+v4vs/09DRpmh5wzMaNGw/62mEYEobhvq/r9fphnYuinCx0TZyaqTpHwLEI4FT9jnLEqAaOL4sopFhvf/aayH3/L6hQYGaFJGIKHfZV1SQShCYYQfBpsZmC76KHM/UkaCAziQie++/Gc367Wz91RHvmb7pAmhKWSSTr9qVKSWtmwarl30ryCwJN8Ex9jCB+9jmylA6ZUdceR5NgCTClRBM1JJIUMJ9Z35XuS+xCyEwQcsnwJaoT+nHihAxA3v/+9/OJT3ziBcds2LCBJUuWHKUZvTwf//jH96WIKYqiHClHO4BT9TvKEaMaOL4kb1/2dv6/Nf8fMBOEPNdP/7Yd7GvJzI62NRpw6O01Dv7kgoMvT8zsH7Dfy+wrzAdmQoF037eL543e/+XyZv4lTVPXdLXV7nHihAxA/uiP/uh5O1D9tHnz5h3Sc/X19bF69er9jo2Nje177Nk/nz323DGlUmmmo6muo+v6Acc8+xwH8oEPfIDrr79+39f1ep3h4eFDmreiKMrxRNXvKEeEauD4kly7/FoAvrL+K8d4Jkdf3szze2f+3rGehvIynZABSHd3N93dR2a7tFWrVvHXf/3XjI+P79ut6rbbbqNUKrFs2bJ9Y773ve/t93233XYbq1atAmbyG8855xzuuOMO3vjGNwIzu1Hccccd/N7vHfyXw7btfR1dFUVRTnSqfkc5bKqB40t27fJr9wUiinKiOCEDkJdi586dVCoVdu7cSZqmPPbYYwAsWLCAQqHAFVdcwbJly/i1X/s1/uZv/obR0VE+9KEP8e53v3tfcPCud72Lz33uc/zpn/4pv/Ebv8Gdd97Jt771LW6++eZ9r3P99ddz7bXXcu6557Jy5Uo+85nP0Gq19u2KpSiKcipQ9TvKYVMNHBXlpCfkTCeck9Y73vEOvvzlLz/v+F133cXFF18MwI4dO7juuuu4++67yefzXHvttdxwww3Pa0T4h3/4h6xfv56hoSH+/M///HlpYJ/73Of2NSI888wz+fu//3vOP//8Q55rvV6nXC5Tq9UolUov63wVRVEU5aSQpaqBo3JcUvdrh++kD0BOJOoNrSiKoiiKcnxT92uHTzvWE1AURVEURVEU5dShAhBFURRFURRFUY4aFYAoiqIoiqIoinLUqABEURRFURRFUZSjRgUgiqIoiqIoiqIcNSoAURRFURRFURTlqFEBiKIoiqIoiqIoR40KQBRFURRFURRFOWpUAKIoiqIoiqIoylGjAhBFURRFURRFUY4a41hPQFGUY0OmKd6ah0kmJjC6u8mdew5C14/1tBRFURRFOcmpAERRTkH1W29l7GMfJxkd3XfM6Ouj94MfoHTFFcdwZoqiKIqinOxUCpainGLqt97Knve8d7/gAyAZG2PPe95L/dZbj9HMFEVRFEU5FagARFFOITJNGfvYx0HKAzw4c2zsYx9HpulRnpmiKKe8LIVt98CT35n5M1P/DinKyUqlYCnKKcRb8/DzVj72IyXJ6CjemofJn7/y6E1MUZRT2/ob4Zb3QX3vT46VBuCqT8Cya47dvBRF+ZlQKyCKcgpJJiaO6DhFUZTDtv5G+Nbb9w8+AOojM8fX33hs5qUoys+MCkAU5RRidHcf0XGKoiiHJUtnVj44QFros8dueb9Kx1KUk4wKQBTlFJI79xyMvj4Q4sADhMDo6yN37jlHd2KKopyadtz3/JWP/Uio75kZpyjKSUMFIIpyChG6Tu8HP/DMFz8VhDzzde8HP6D6gSiKcnQ0x47sOEVRTggqAFGUU0zpiisY/LvPYPT27nfc6O1l8O8+o/qAKIpy9BR6X3zMSxmnKMoJQe2CpSinoNIVV1B8zWtUJ3RFUY6t2RfO7HZVH+HAdSBi5vHZFx7tmSmK8jOkAhBFOUUJXVdb7SqKcmxp+sxWu996OyDYPwh5Jk30qhtmximKctJQKViKoiiKohw7y66BX/4KlPr3P14amDmu+oAoh0s1uTzuqBUQRVEURVGOrWXXwJKrZ3a7ao7N1HzMvlCtfCiHTzW5PC6pAERRFEVRlGNP02HuK4/1LJSTybNNLn+6vujZJpdqhe2YUSlYiqIoiqIoyslFNbk8rqkARFEURVEURTm5qCaXxzUVgCiKoiiKoignF9Xk8rimakBOYlmWsmfDOprVaQpt7QwuXY6mCvoURVEURTnZqSaXxzUVgJykNj14H3d+6Ys0K5P7jhU6urj0He9k4fmqoZOiKIqiKCcx1eTyuKZSsE5Cmx68jxs/9bH9gg+AZmWSGz/1MTY9qPIdFUVRFEU5iT3b5BLY19RyH9Xk8lhTAchJJstS7vzSF19wzF1f/iKZ2vVBURRFUZSTmWpyedxSKVgnmT0b1j1v5eOnNaYm2bNhHcPLTz9Ks1J+1tJMsnpbhfFGQE/RYeXcDnTtpz/xURRFUZRTjGpyeVxSAchJplmdPqLjlOPfLWtH+MhN6xmpBfuO9ZcdPvyGZVy1ov8FvlNRFEVRTgGqyeVxR6VgnWQKbe1HdJxyfLtl7QjXffWR/YIPgNFawHVffYRb1o4co5kpiqIoiqIcmApATjKDS5dT6Oh6wTHFzi4Gly4/SjNSflbSTPKRm9a/UI9XPnLTetLsQCMURVEURVGODRWAnGQ0TefSd7zzBcdccu07VT+Qk8DqbZXnrXw8lwRGagGrt1WO3qQURVEURVFehApATkILz7+Qa67/4PNWQoqdXVxz/QdVH5CTxHjj4MHHyxmnKIqiKIpyNKgi9JPUwvMvZP5556tO6CexnqJzRMcpiqIoiqIcDSoAOYlpmq622j2JrZzbQX/ZYbQWHKzHK33lmS15FUVRFEVRjhcqBUtRTlC6JvjwG5YBB+3xyoffsEz1A1EURVEU5biiAhBFOYFdtaKfz7/tbPrK+6dZ9ZUdPv+2s1UfEEVRFEVRjjsqBUtRTnBXrejn8mV9qhO6oiiKoignBBWAKMpJQNcEq+Z3HutpKIqiKIqivCiVgqUoiqIoiqIoylGjAhBFURRFURRFUY4aFYAoiqIoiqIoinLUqABEURRFURRFUZSjRgUgiqIoiqIoiqIcNSoAURRFURRFURTlqFEBiKIoiqIoiqIoR43qA3ICkmmKt+ZhkokJjO5ucueeg9D1Yz0tRVEURVEURXlRKgA5wdRvvZWxj32cZHR03zGjr4/eD36A0hVXHMOZKYqiKIqiKMqLUylYJ5D6rbey5z3v3S/4AEjGxtjznvdSv/XWYzQzRVEURVEURTk0KgA5Qcg0ZexjHwcpD/DgzLGxj30cmaZHeWaKoiiKoiiKcuhUAHKC8NY8/LyVj/1ISTI6irfm4aM3KUVRFEVRFEV5iVQAcoJIJiaO6DhFURRFURRFORZUAHKCMLq7j+g4RVEURVEURTkWVABygsidew5GXx8IceABQmD09ZE795yjOzFFURRFURRFeQlUAHKCELpO7wc/8MwXPxWEPPN17wc/oPqBKIqiKIqiKMc11QfkBFK64gr4u888vw9Ib+8B+4DUb7mFib//LFmrdbSnesxp+Tzdf/AHlK668lhPRVEURVEURXkOIeWB9nVVjoV6vU65XKZWq1EqlQ467lA7oW953dVEW7f+LKd8XLPmzWP+924+1tNQFEVRFOUkcqj3a8rBqRWQ41BrzRqKr371QdOphK6TP3/liz7PsysfUghoL4MATdOQWYZhGERRCAIEGRJJlmrU6006O9uI44gkTcgycGwbw9AADU3TybIUCcgMkBKhQZomaM9khmVSogkd3TAASZrKfeMEIMnQhE6aSZACoWnoukGWSbIsRSCQSKRk3zFdNzAMgzRNAYn+zLXJsgwpwTB00jSbmcB0BbLslFz5URRFURRFOd6pAOQ4tPt33kVzcPCAaVUvh2wr0vrcHzI0XGL1Qz/kvHOXYhsaG9dvJYs6GRnbyZx58/jMp77J9X/4/9C66uzaugF0m23bdnPlqy/GIiXvmjSbHoWuc9C1FqN7H2XRkjl4QZm1TzxGf7dNV3c3O/ZM0daeI80yGs0J8m6RtmIHu3Zsoq+vgzS1SWOXts4BVj+0mnLnfDo7lrBzZIL1TzyGreuc84pXsnnTFi6/9BK2bdvO8mWL2blzBExwdIOnnniCJPRZcsa52K6DbVnUm022bttO9/v/hHR8/Aj8JBRFURRFUZQjTQUgx6lkbIw973kv/N1nDjsIEZrkx/fezJz+NlasmMueTVuYbGogDc46fRDdnaAyUcHKOZTbA9ryOqfNHWDn1F6uffNvEIQhk9PrKBQ6WbN6LRe/YjlOrotqRSP2HFJs5g0NMj4maHoltuwcZXRyM14rZef2UQb7h+jvTrnoosv4xje/zopl82j548yalSFw6OrQKRcNsqSP7le9ijBOGB4cZmBgmFqtxtw5s5mcrGCaGsViEYg58/zzCfyU7q4STz72JD/84T38ylvewuJ586iorEJFURRFUZTjlgpAjldSghCMfezjFF/zmsPa3SqKfK55w0r6+nq4/8FHiHzBD+95lPf96XvYuO4JOns6+OGdP+L/feC3cPIak5NTrHl4HVdf9Sb+8Lo/5N2/fy2toMKTjz2O0CRrHv02q1b+HDfdfAtPbq2wdtMk2zfsZWQsZOfeMSQZptCwbJMsjfH8+8k7BXL219DNiHlzHuSsFYtxzBxZ0GD7xgnQYqxyB4VyiamJUeI4pqd/EEsI0jQlTVPGxsYo5F0cx8D3Y4r5AkmWMjR3NucnKXv3juB7DToOtlWxoiiKoiiKcsypAOR4JiXJ6CjemocPqebjYGzL5R+/eCPnXHQRX/3ObVx++dW0DS9i+55R4qTIrp0BUVziie17mD1rNoYxxNWvewWFcsaf/Pm7eOrJx5k7ey5D53Th2iV6Bk9j286I+58M+Nr3v0fQamCYFjJLsF2TWr1GM/CxbRfLtBF6SjOYIs5stCBh3bocO7ev5/G1Da55/ZXYXky5GDLUqbFnyxYKhSJLFy9AaAZpKmm1WuzcuZOOjg42P7WehYvnkUWS6ZrHRH2KWcNzWL3mIS46fxWdnZ20PA/rCP4YFEVRFEVRlCNH9QE5ASQTE4f1/UGQcM55r8a02nn/e/6IrLWdN121gunqbnQr4bOf+hphbLDyvMu58X/vZvOWvVQbLe574HE+8jf/Sm/fudiyn8GBJTilTj74oU/zc2/5AI+tn2ByvIptu/j1Jq1qnbDZJGeY6MIiDiVZrJGEgsjPqE43iUONql9lT2WSNevW8bdf+Df+8d+/y/otu+kot9FeyJFzbWzTZPPmLfh+k56eLlqtJnNmzyZJEwwrh25b3H7HD3jg3h+Tz7m86ZqfZ/68xcybtxCVgKUoiqIoinL8UisgJwCju/uwvl8i2bF9K10Dc1hw2iwuvPhSnniqSo657NqzldnDy7lg1Up2btvIlqef5k1v+CX+5m/+jotWzeNPf/vXkXoX37xjDQ/9zTeYms7YtmcUNMjZJrqMaDXqJHFAksQIAYHvk6FTLBZJsoA0iRFCIEipN2pouiSOE1zXIQ5T6tM+//LFrzM8MMyVV15CZXIPu/bsJM0C6o0KXV1dDA8PsXPXbhYtPgPHKXDFZa/mrrvuYtfOETZt3Mqahx/ksqsu4+s33sjSRh1bqNhaURRFURTleKQCkOOZEBi9veTOPeewnkZKyemnL+fbN36f1G5j66bVLFmwmD1j46w6azFeEx57ZCOOu4DOriKrH7qHs85eyqx5S7jxB/fyH9/6FJFw8D2fNDMRRkLmhTSbTUxDIOMIKSVZlhElEY5lkgpJqzkFPLPMlmU823ImTQSmrhP7LWQcIo0mie3w0U/+A1/48tf5u//vr8npOnEcEUUxlcoU8+bNJU0lmibwmh6f+MQN1Go1Nm5ex/kXnMWCoJ/vfu/rtHeVaGsvQ7VxmBdfURRFURRF+VlQHxMfr54ppO794AcOqwAdZgKQycoo7/79X2PxQptZ/UMMdJ5Gd+k07rlnDZdetYRVr+ngnnt/xM/9/BWsf2o1UrT4u3/4El/8r/uZaGY0JycIqzW86h70EKanJhFpTBIFCMG+1Y80TYjjmFajgUwTZJqgaRJEhiQlkwkg931PmiYEYQ2hZ2zbvZOt20d461vfxbe/eRN9vbN44vF1gGBqqoKu6zz2+Bq+819fZ9v2pwijOu1dOiNj20gSn0tf8Uq2PPX0vmunKIqiKIqiHH/UCshxyujtPWJ9QJI0ZWwsRl+3lRu/ez9Xv+YKdmx9HN0OOX3lbLaPbifLNBYvWEHcnOLKV1/M175+P9s2j5NWa7iaSWgahGmGZedoeFNYloYmIE0lUZKQZRIhJJqmkSQphg4yS2ZWRpAYuk4iM2baHqbESYrQIIoDbMuh1QqwNANdJlQqNW6/8256etu47LKLqDen2fT0RkzTxG826O4q84UvfBZDD5g9f5AH71/D6Og4jpMDqZEmqXpjK4qiKIqiHKfUCshxaOifvsCCO24/IsEHgGPZTO6pcst//5jff/e7WbjIxTJ2YesJiV/EopewpbFj6xa8ZoTQCqxfv5ddoxUwdGr1Bmks0HWTTCb4QRMdgUwzZJpBJjE0iS4yNFKETBBSYggNSzcgS5FZDDIFUvRs5n+WgLxpQhYTBR5pHOI1KnitFju37WDrpqcZG3+a7duexHUMBvr72bt7J3HY5FWvvJB6rcLe0d0ITXL+BefQ2dXOitOWIdQKiKIoiqIoynFLfVB8HMqfe+5hp109Vxh6vP3XruTG//0BW9b+Lzt37iFOFrBowen84J7/4vxX9WJZBq//pYt4+KGH+I9//E+e2uNiu2WafhXDFGhZSubVkInEJQcygSxDZ+ZmX4gMAQgEggxdGGRphqbrWJZJFkeYho6maWiIffUgUmakxMgkJZYR0tEhzmjVfe6954ecefocLNuhXttDq1Yn0kOe3LyWjq4ytVaNaI9kxfIVbN++jY6uTnLlIoah3taKoiiKoijHK7UCcgqwbZMbPvwtnHKBzlmz6O4/i3K+A2Hv4va7H2XN2kfxshyf+8K/0fJns2uXRSkn0QBd6iRpShR7pGkKOsT4ZFkKgBAzwUSKxv/f3p2HyVHV+x9/n1NVvc0+mclM9gQCASKEABICqEACiRc1/FQELyKLl6uAIrvAVVBQQEBwQ3Aj8Nx7FfGKILLLbghbTDCQEJKQhSyTdTJ7L1V1fn900jIkQICkE5jP63n6yXTVt6tPf1NP9XznLIXxwFkCG+A5SBmflLMEkSPtp6jyE1T5HlWBpV8mSX06Qb90kkovIIFHoeDIh4ZMfS1d9LCwpZUZs+bjrM+Bh3yUJcuXYm2CupqBZJL9SAQZWtu66epxjNxjFMNH7s7wobuTy2Z3bMJFRERE5C3pT8V9QBRDT9jKhEM/xz33PcQL02Zy6PiDuOeu5+joyvPPl9ewZNkMRg2p4anHHse3Pi5IUMh2kfAtcd4Rbiw4wjDEWgtxBDis9TAWrAVLTMJYPN8jYQ1RISTl+eBbXBiSCXx8C1hHKpnA4cj35MB6FGxE0kA+14N1DhPFtK5p5bHHpjHxqMO44493Yl0FyaqQAQOaGDZsCIsXF1i65FU8k2T6318iSCWpqMiwdxTt0HyLiIiIyFtTAdIHJFMVrGh5nWkPTaOxci/GfDTNVy48nlF/H0pn9CRHH3c4v/vDY4zqtxvVgyD85/OkPEt7Posr5IkLIbgIYwye52GMKc75sMVhYsYYEsZgHST9oLh8cFzAT/gExuAHBudbfB98HInAI5XwiaKIMBXgYwldcTJ7LsoTFQzJRJqKVBUrW1bwwMN/wdiIMR/Zl6Wvv0rCT/O73/2BkbvuyYABzQRJn/aOtbguSxw3EgQJyBV2cNZFREREZEs+9EOwfvCDH3DwwQeTyWSora3dYowxZrPH7bff3ivm8ccfZ7/99iOZTDJy5EhuvfXWzY5z4403Mnz4cFKpFOPGjeO5557bDp/o3TMOPvvZL9IaV0FFF7f93/9w+TX/x+yXHbvuPZQsll12G0pg0qxYspw4XyDK5/BcRByG+A6SNiBhIBHHZDBUGEOl71HhWSp9j4TxSAeWZMKR8R01lSkySUsmafFdRIUfUJtIU5OspDaZosoPig/PJ5FMkk6nSRmPhHNQyJLPdlDId+ATMPO5f3L6af/G6N2qOWTfkaxduoIjDz+SXHYDa1raePrpFxgyYhewMfPnv0Ic617oIiIiIjurD30Bks/nOfbYYzn99NPfNm7q1KmsXLmy9DjmmGNK+xYtWsTRRx/N4YcfzqxZszj77LP5j//4Dx588MFSzB/+8AfOPfdcLrvsMv7xj38wZswYJk2axOrVq7fXR9t6xvC3h57ERgGVNSGfnjKWUbsM4LnpMxj30Y/z/LTnSMQRf7nr/+hoaye2hrZsG4FvcXGIteDyOQIgHfikfI9U4JP0DAlrioWJNaQDn6QxpAK/2BuSTJLwAwLPI2GLy/Z6ZuMNC/N5jDFYz6MymaIqkSAd+HgUT8qEb3FxBKRoWdnFglfXsvz1Vlw+ST4bMXvmbNava6OpqY5kIiTM5xnQfwijR+0NLt6x+RYRERGRt/ShL0C+973vcc4557D33nu/bVxtbS3Nzc2lRyqVKu27+eabGTFiBD/60Y/Yc889+frXv87nP/95brjhhlLM9ddfz2mnncYpp5zCXnvtxc0330wmk+GWW27Zbp9ta0VhxB6jRrFozhwevv95apKjWTDnVYi7+PVNv2SPXXZhz137cc6pJ5Fv7SAVWZImJNfVjo0L+DYmmfBI+5aKwCcTeFT4PklnqPB8KvyAisAjAWSMT8LFWGOwYXFlrGTCw9oInxCfYnGwafK6MYaUD1XpJLWVKSqCgIQPxkWkkx6x6yKf72bevFfYfdQQuttyZHs2sPvIQTTWVpMOYpJBnvVrVpHv6sIPQtAqvCIiIiI7rQ99AbK1zjzzTBoaGjjwwAO55ZZbSsvEAkyfPp2JEyf2ip80aRLTp08Hir0sM2bM6BVjrWXixImlmB3J9y2Ll6wj028oDf335J77n6Yn7E/ytfWM7y6QmPk8HW2vMn78OOLI4mjDs5Y4NAT4JI0lcMXej4TnSHoxvu/wfEdgYpImxjchgW+ITESEw7oYiLAuxsbgG0shDIlMMa9xHBPH8cZ5JQGpwKd/Jk19hUfCD0jYBC62JKzFc47uDSmefOQZlq9dRX1NI/n1BUY17IXriVi9ZgWe7SC2PVQ21hUnyYuIiIjITkmT0IHLL7+cI444gkwmw0MPPcQZZ5xBZ2cnZ511FgAtLS00NTX1ek1TUxPt7e309PTQ2tpKFEVbjHnllVfe8n1zuRy5XK70vL29fRt+qjcyRFHMA/c9yN77HsDxA/fiyAf+RmV3D2wAlrXTPmMNdz79AyoqKunsaiXKFQsENk08tx6+Z/GMw7iYOI427i9ORLeu+DDmX7/8+0GAjYtVrrUWYxyeF8AbekF838cai7WGKJGgoa6e7Op19EQRqUSAby3WOJYsXMTQQw9k1O57s2D+bMJChJ8JCLMeo/bfl6VLl9Cebcdbt6rYLhERERHZKX0g/1R80UUXbXHi+Bsfb/eL/5t95zvf4ZBDDmHs2LF861vf4sILL+Taa6/djp+g6KqrrqKmpqb0GDJkyHZ5nzAMOewTE3jiiaeYlEhzzOxZVHT39IqpykVMmbOKvdpb8Xzo6uohjmOcc3ieR+AHpWFTm3qHrLWlR9IP8I0tPXr/f1jAEgRJjPnXylmb2lbI5YlyeUwUU51MM7i+npQxGBcTeD42BqKYUSN3Z9YLz9DWto7afjVU9qukvqmR7mwPu+25ByvXrGDBwjmEUbhd8igiIiIi798HsgfkvPPO4+STT37bmF122eU9H3/cuHFcccUV5HI5kskkzc3NrFq1qlfMqlWrqK6uJp1O43kenudtMaa5ufkt3+fiiy/m3HPPLT1vb2/fLkWIwfDi/HlUPjGN8fNe3LjtzTFFJ+Q6eTAfE7vilmQyie/7BNbDFLIYayB2OOPw/QDrHH4iIMhHOFssOCIXk7EeMY6QmAgInE/kIlwcEW28z4fBkEml8JzB9wIMDt9Z+lXX4gUJXluxHL+igrZcD2s788ybv4xMUEFN/WCWLFrCwKGGbPsGeshz373/xxeO/yyQw7t/1jbPoYiIiIhsGx/IAqSxsZHGxsbtdvxZs2ZRV1dHMpkEYPz48dx33329Yh5++GHGjx8PQCKRYP/99+eRRx4prZ4VxzGPPPIIX//619/yfZLJZOk9tidjLJUJeP1Pv+Owjra3je3nYvYMY14IAlwYYY0llUrhogicTxwVigUXHl4EnudjQkdsPXzfx8UxHpY4jgldTD4KCUNHFBeIjCN2kEj7BMaDOCYXR2SSKZKxoTKZBhxRHFNfXcPKNWvBOFwhx8pFr7Fi4SImHX04a1evY/chu0A+JqoaQPeGtew15kBmv7qShfMXcbENgPx2z6uIiIiIvHsfyALk3Vi6dCnr169n6dKlRFHErFmzABg5ciSVlZXcc889rFq1ioMOOohUKsXDDz/MlVdeyfnnn186xte+9jV+/vOfc+GFF3Lqqafy6KOPcscdd3DvvfeWYs4991xOOukkDjjgAA488EB+/OMf09XVxSmnnFLuj7yZKAo5++unk/rH8/TMfvEd4wcnU7yQ68ZaSyKZIJ1OE+YLtGdzWCyxczgiTOywkcNSnCeSdIaE9fBiyLuYyEE2jIljR6EQEhlwBggdJjAkAp9cIcTkshTCEN96ZFIpXBjhFWJG7jqSxWuXU+1b+uVCnrnrL5zzzXN5vOt55rcu5Jm//52KBp8DDjuI2m6firoKgvo63HO6E7qIiIjIzupDX4Bceuml3HbbbaXnY8eOBeCxxx7jsMMOIwgCbrzxRs455xycc4wcObK0pO4mI0aM4N577+Wcc87hJz/5CYMHD+Y3v/kNkyZNKsUcd9xxrFmzhksvvZSWlhb23XdfHnjggc0mpu8Ivh+wbPky/vfnP+XCrYjvClIExsP4jkwqSRAEdHR0gGcI8zFEIYUAXBxjiEng48cRsXNASNr4eL7FOoOfzoCBsFCgK5elp1Cgsz1HIRFRlUlTmfDxbICLY9qzXeTiHNVBBi921KTSVKczpL0E/VMZsus76OhZwqu5Z3mm8x8sb15Nfk2O6f8znS8e9zmiXIHlS18jm8uS3t5JFREREZH3xLg3rjcrO1R7ezs1NTW0tbVRXV39vo83/xOHEa5aRVRTS/LW/2PAwHqWf3oy0erVW7xVhgOylVWcQYrFr71KbV0d1Yk0mUyGljWryfZ0YY3BxA4HRFGEi2NiwEURybRPTZCgwktQkUqRwNLjQrrDPO3tHbTnchQiR2gCCoXiUr5NVUlSQRLfs1RXZLAGahMZAhsQW+jxfFImohboWLaeq++7iUv+ci2Dhg7nf/73L4zfa39aW1uZM3MuG7rbuOKK7zLhJ38msaETv6mJ3Z54/H3nUURERGSTbf37Wl/0gVwFS94d5yL+69vf5K8P/Il+F15Q3PbmmI3/dn3xBA6sTvHJ6goOrqnGN5Z8Pk+2uxvPWDzr0Z3Pke8JwXl05UM68wWyxrC+O8uqjk5ycfFGhJ7nkcvlyGaz5OMI41mSlRlSlVXYRBrPD2DjPTviOKarqwsTx0RhgTifJQ7zDOrfSNK3RFGBrlwXz81+mo99YiIvPTOXjwzdk6ceeYr5Ly+ksqaOIYN358H7/057e0f5kisiIiIi78qHfgiWgB8kGbvfgUw+cgJ5W8D73vlEP7sF1q4vxXj9G0kccST97/oTp69ZA6kEdLezHsPUnGOV51Ho6SHvInJhSAcFEqGP51nSQYIom8XDQuQo5CK6bQ9+KoMBfOtR4SeI8wVcGOPlO6hIZUhaS5WN8b0E1hgSFrx8hLVRsS4xhkK2m/bW9TTXVONnEvSEMddc/WPq/TSdre00DurHmtYNrG5ppX9zP3pyrRvvA+LtqHSLiIiIyNtQAdIHRFHIkGFDqanrTy7OU/35f+fZQSPIvLKQ/sajevhwvO5ull94IbxpRF4tjnN9Rzbh8XBXjMNQXVEFuZA4ikj5FpfPggdeHGGsI2/z5CNDhCPpBfTk8zhjsCbGehZSxVW50kGSpPUxNsZai6O4qpaLPZzxKYSOfD5PvwED6Hh9FdmKgLY4oipdy/qWVhqadqWiwiMsQEN1f16eM5e21lZ8fwjoViAiIiIiOyUVIH2A7/usW7uWKIpI+sVlfz9+6GFw6OGAwUURCydM3Kz4gOIYvRg4LRUwzffwgoBCoUCtBYdHFMeEEeCBCyMSiQQepjgEK3ZYP6A6lcLzLLkoReSKNzeMwgiIcMZgIkfgB3iehzXFXpQwKu4rZAs0Nw9lwaIV7LX/GE467nzmd3Zzx9RbWPjaPGqqalm9ZgXDRwxiz71G8IMffB/7H99n093WRURERGTnojkgfYBzjoGDBmKtxfCvx6bbD3a/MIOwpeUtX2+Nob9n2b8yTZjP4RnwKA6Vik2MCwI8LJXpDL71iMIQEzuIHclEgqpUhpS1ZDxL2nokjSEVeFhiCnEB48BiMK7YVmstZuNNDRM2IJ8rUNuvPxuyPVx93Xf42yMP0t3dzYABA6ioSjB48GBa1/Yw55nX+PlPfom1Gn4lIiIisrNSAdIHRGHMmpZ5/OPv99Hd0UEcQ6Gni9XLl2DiLB2vvrJVx2mwhppUigpjCYKARMInsIaU71PhGTzfx3g+CZLF3gwHXgy+9fFsEs8lsKElSUDKBSRjn1Tk4bsQG+Xx4gJeHBJ5htgv3syww/awfm2OVF2KutoML06fz+nH/gcd+TzL1rSwbPlqamrrSFUk+fSXJuEnArLZ7HbOqIiIiIi8VxqC1Sc49hm9G488chfLFs3jkxMnM+v5mYwYNpi/T/8L/srXqdmKo6yP4tLyvTaOcM6RsAYMWN+n4Bye50EM+XyenhAwBj+ZwPM8CoUCwMZJ4hRjAesM1vhY42F8j8g5Nq0O7XsR1g9ZG3WxZF2OqHEoN//ufzlywgSyHR3U9avlySens27ZBrrW5xk6eEhxSa8trTMsIiIiIjucekD6AGMtTz47nYmfPpy6gUlmzp/Ger+T3zzwJ+a1Lue12pi4umKzpXk3iZ1jbRwzLy5GeJ5HQEwCQwLw45AwLM76rqiowBhDIQyJ4+J8j46ODlpbW8lms4RhMdaYYoVQLDQ8nLMYE0Dc+5Qs5AzZvCOfiljh1tDeuZrddhvO3DmvMu2J5wlNgqAiw8ixu1E/uIaFy1/B9zUES0RERGRnpR6QPiCOI1q7VrNg/RLCQsTHDv04I/x6Erv258mH/84/n3qReRUpjmvv2uy1mzoTbunuwcUeJgbP5bA2iYsdxjq6s1mcAy+whD3d+NaQ8ix+2sdPWiqCBJ61JJNJ1q5dSyEydBeKRUjK84mBKHYQhgRBUJyd4oDYEeQ98qk2DjnmCPZKt5Mr+IzcdShf/M/JdHd1s3zRYi68+FSeePQxBg4axusrVpL86YPQkStvkkVERERkq6gA6QuMYdzhH+efC57jowfuy7L1Lbzw3N9Yu76FyVM+yeD6gaxf2sNfnnmeSStWkOrsKb10vYFbe0KeiwpY44E1uJjN7mRoPY8glSTbnaMqkcJ6Fmc88mFMIZujUCiQSCTA+iQTAT3dncUJ587hWw9rfIyB2ICzAI6Ci0gYsJ5jxJBmmuvq6F8ziJaVq/C6s9QlDO02yx2//RmfP/ZYOja0kktkIX6rvhwRERER2dFUgPQFDpYsWcr+Hx1PrtDG3x56gKa6wXRu2MAL059nxbw2TjzmKww+5mt0FJbQ8erTPDf9EWxjPdff/iRxtyWMYxKeoVCI8J3DMwbrWWKK80JCYjpbW6lIpsiGeQKbJB/G4HtYP0nCTxSHZOGIo4ggmSCby5ErFCBhMFFIOhGAbzFecZ6In0yQCwvUZKoZ2FzHhsR60n7E6N13J5fvpL2zhTH7jGDQgEpWr1hAZU0tYKjIVEBXfgcnXURERES2RHNA+oAwLLDHyFHsMXIAtbVVtK1ezbx/zOb4o/+dF554kY+OOQBDnkQiT1U6xaq6JHWfH4e/x3D61aeJTYIodBuX340xzmF9Q2Qd2bBADnAmIPBS5AqO7tDRkeuhI9dDZ7aH7ihHIQ4JTUxITM7ERM4RJBKEHnTHBXpcSBTHxPkQE8YQFeePhDaio2sNdVVJBjQ2s2TJa0Rrc2TCFIlkBR098Nrra1mfy9LR005tY4I4LuzolIuIiIjIW1AB0gd4ns8Bow7imb8+TVPQTGWqmqG7DiUT+hw28kBeeuI56Ogi6/IUjEc+6+HnUgzdo5aLLj8LG3ikkhmiKCIKC3jGEkYhhSgk7yKiN51FsQGsIYxjsoViT4QzxV6N2BV7TALPJ/B8UskUYRyRLeQpxFExZuMDwPN9glSSu+6+m0fveYRXZ84jbO2hX1UNry9dzKN/+xuBl2L/fT9KRXU1S5auII40BEtERERkZ6UCpA/I53I8++h0Pj/xi7zw6D+JNvgsm7+ekXsewKnn/RdnXvoddjlwX+p2HULdkMF8YuLRJF01nWuzJL0MNdWVOM+BNZjAJ7YG5xkKcUzsHMb3MDbG8x3Wi8FEWM/DsxYXx+QLBaKouGyv53kExiPp+QTG4mPwUykKLqYQFQg3FTS+R2wNsYmJPYPBJ92ToM42cc/v7yXsCil0d9Ovqg7yjrUrWrnrTw/Sv9/QzeaniIiIiMjOQ3NA+gDPs1TVVdGZy/Gl408lKmT5yF7juPayOtpWr+LRhx/myCOPoHXdBmbMfpHJRx3JhEM+zX9dcBHVNav5yOg9mRl1sGF1JxaHK976g9BFGN8DB8bEmNhgjSXwfUzsiOKIwPNJJBP4xmI8g8EU7/vhWWJccUI7FHtXnCOOHY5ib0kYxxRyIR898mOM3Wc/Olra2HXER6n5WC1xoQuvkKTQ5Th6yjHc+ac/M6x+dzqXZQmCBI7NV/QSERERkR1PBUgfEMeOg8YfStL2kHMF7nvoMb5+ztn8+Y//xzGfPYYvfOl4sJZ8Zyvj9h9DV9t6VixYTGUyxfqVqxnSvz/PduZJV1bQ09VBHMVYY7AYXBST9AJyUUyuJ4tvLflsgThIYJyjYKC7az3GgsFQUZHBRCE28DHW0pXrwUukSPkB1rPYwCd04BxgPSpq0/z5jr/iB0k6W7toWb6BPT6yH1W5BKtnr2TZsmU8cOd9hJ0xXetzLF21giOiWF17IiIiIjspFSB9QC6Xo2vZBtra20hXVzB5zCcI9ypgUinalq/H8w1RXCCKCtT3b6DQk2XPUWPY47v7YIxHGEXMW7KYF2e8RC4sYJyHZxy+72OBzq4esgDEWCzWQMGBh4eLHOkgQdL3SSaT+J5HMh3jBT65KMSYmJ58BMbgHITGQRwTuZhkKo2zji8c/3k621upSVaS8SyZhGHM7rszetjXaevKcd75F3L9j39K64ZOmoYPZdWUEzQKS0RERGQnpQKkD0gEAakwIGEb6WjrJrY5st3d1NX4eNYjSBiiCPK5gNVLl+FheH3Vq9Q0N5BMBljPcOv3f8L+Rx9OgRgv9ot3Qk8k6M5m8X2fCmfwvSSeMxhr8E2IZyCTTBF4Fs+DIDB4nsHGEBXyBL5HaKAilQZjiHEUogjrWbxEgOf7/OnO21nTtRYvDZXpWmxXSJ6Yto4CbWu7mDN3Jhecez7333M/L8x6kUM/dhCjC3md2CIiIiI7Kf2e1gdY67Fi4QpIGSqCFD09WRobG3jq2Zl0dGaprKwhnyvQExbIZrPU19fT1dVFz4LXqK2qwkV56morOfqIf+PPjz5AtrODzkJEYENCHM46bGSJjMN5htjFxKZ4cnXlc1hr8a0ljUcKHxN5xMYS5R3Y4k0L47h4bxEXx2AjiCIqkw10t+aoTzaQbcvjOi2Bl8EUQoI4QW2/WvofOghjYOTwfTjuc1/CAEtv/TMRnTs67SIiIiKyBRoq3xcYh/MtiXQNq9etpa2jnUIc8ZGPjKZffQ1NjXX41tFUn2b/fXZnUP8qqpKOuuoaDBZHgpWrWhk1bC/8LGxYt4FsIaI7XyAfOwoOCqa4whVRTLDptDJgrSWKIqwtbisUCuTjkHwcUYhCYgOxMXjJAAIP51ucZ4mAGEgn+5Fvj0lkDRV5S+fq9dhciJcL6Vrdiu0skMhCKmeI1nfDhlB3QhcRERHZiakA6QOiKOKJJ59iQ2uWJas7WLEhx/RZr/LUc7PI1Pdj+qzZtOdjOnu6WbZyObPnvEyyIs1uIway225DiVyBjmwOk6zh2OO/TFVDI16QIIwcUQyxM0QGClFUXBErijGmuOLVpvt5bGqHtbZ4z48wBM8SupgYR+yKq185IHIxqUyaXFhg70M/xg9/8Uu8dCXZbJZUJl1chcv3SFdkMCG4fAwFR9J4UMjhnAoQERERkZ2VCpA+wPqWmgkNLKj9J2sHtrC6/zLaBq/G28cyvfV5mg5uJhwW81LnUjK796N6z1oqd0tRPayJfCLHsNENpKuqCCsNv/79rQR+CgOlhzUG4wLy1hD7htg5otgSxgZnAozxiaKYOHLk8wU838f6HngW63nF1wMuLhYjnk2Q685iTMyqtUu48Y7fsdeEown9SlyYxQtj4lxE3hlwMXEckS/kiI0jJtqxyRYRERGRt6U5IH2BgSfmPkumXxXGhbStXcsuQ4bT3tZNul8Fv/vTf9O/oZHBwwcz4+/TaGpupGXucioSNQwa0J9Zz8xkl6aP8+gfnmXFWsduAw0FzxKG/3qL4lCq4nAqAgsuKr4xMc44nDGE8cabEVqv1Dvi+T6xc8RRsXCIwxg/4eEbSxzlyUd5olwPXRWGgz/z7zx57x/w4hwJW8CFEbYiCVGMicH3LfkwxOyQJIuIiIjI1lAPSF/gYLdBQ1m+4DVefv4VPK+aX/73HfhBilx7B5/7zCcZ3FhNY3UFB487gMD3GT1mLAceOZ7+uzSy+957c89fn+K1RcuITTsWi+8HxTkfQBiGhC4mimPyYUghCsHEYB3WAsbRU8gXbzy4cV6IMQZjDM45slGBbFQgNA4/EWBcTGAdnnHUJaqwuS7aO1pY2rOWjxx1NGurQlobcnQPgu5qWG+7yaVisokIqlI4oxJEREREZGelHpA+wPc8upesY0C+hu5sNwNrKrngGyfSUF9NRaaKnnzE6L0+gu9X8tKcF0gEBsKI1xespKm+maUvv0rHqjW4sAcXRhQwhC7G+B7OxWAN1kEUQexZ8j7YMMbzwdkI3waEUUQ+joitwUQRxnjko4hCLiSwloQf4EWOhL9xNSzj48ICAwc2smHp63RnO/ASCbLG4+iTvsyXz59I7VBYNKeLgY3NJI1lYP+BVGbSZMIsyR2ddBERERHZIhUgfUAcRwyorifIe5z11a8SVBheWTSbTKYSPwiobq7EBJCqTNOvdgwLXu+H81M01lST9gbxowt+R3triCME51jZ0kJdVRpih3Hgez7OGawxOBeCM+Q9Q2yKK135cYQLLAUX4ZvihHXrihPVbeCR8jwCzyPpB/jWYDb2ksRxTDoZQJjHBB5RPkveJXl90Voa0nvRvaGdxgHLSVf4pNMZNkR5Vq0tsF8i2NEpFxEREZG3oAKkD6isrOLTxx+Pl0yRMCFzF72CX1FLVUMVPbkOXl3yGpmqDLlFlurKYVx21vcJC5a1S2IyFZWQj0n4ObpzESaOiSKHKxSLEc8Vi4VNEy8cBmstgZ/EEpPw/jXUynh245g/g28NvjP4xsPhsMS4OMT6CcARxzHOOeKwQEUmSTZbIMxlsX5Aodvxg2/9kvVdWZoGNvCfZ/4/hn90AK++/BIZ04BnAt0JXURERGQnpQKkD+jMdjDztQdoaWmhKlNBujJJvpDjhSVrSPo11KWH8eorG7j+2t/SsTYiYSrZsG4NmbShu5Al8D0wBp+ICEchjunK50gmfKxxGByeXywkTOSwJsYjwsRgjMU3FmOLPSTWeviAZyj2dOCIXIxvPDwLlhhjLc44CoUC2UIWz1qS1pAvhERhD2EUsW7lalJVjSxfsITLL/wFWMuwQUOYPHEC+0ZOE9FFREREdlIqQPoA6/nMnD+PVCYNgUecreL5Jxby0D1/Z/HsFVQ27IKJPQJbQdTTQ3t+DVHUiov7YSyEYZZ8IUvggZf0CfNZ8lGMjWICawgMGAs2cvh+sZAoxG5jDwbEviEwHha7cZWrgOJtBmNi4/CtVxyOZS0xYBwU8gXyUUgun8fzPAxhcdJ7CDExhbCLClNLIZ9n/dr1GOuTbe9mwStzOLIOGlWBiIiIiOyUVID0AZ71GFi/G4WemEu/djNBVEsyrKGtzZDK9MNGOeI4R7bb4EKICwV848jlcsQx1NRk6OlpJ5/Nkgj8jUOqDC7ycMYRx+BCSHoJigtQOXwM1kDg+/jG4luvtAQvUCwqjMUR41u/NEwrjh2xiynEjmwYEUVRaTgWpngzQyzkC4Xi6lv5iGTSx/M8wnw7MR7OJVEXiIiIiMjOSQVIH7B+XTs/PP9OonwCv6OCru41tBVex0ulgIDu1naSniMXFzDOB2fw/QryhZBUKkNbexuGYu+G7/mExoAD64E1HmFUICDAOYcf+MRhjOdZEtbDw2Ac2I23LTQbl8g1xmItxHGxB8RhyBcKWA8KDsI4Iiw48oWIfCEEY/F9vzip3VrG+obBYSfLA3i6PUscGIqns2Z/iIiIiOzMVID0AS5yrFqyAhuD9Qvkcm0EeNBT7FlwUUQuNlgSOPLgIqLIEbuQQlzAsx75fAHjACKCRCWEHcTOgufjLMRRAWyCXDYqDqnyHc7EGCzWsxSiPL7vE8VxcZJ4Psb3PAKbopCLwTMYEoRRSBiF5J2jK5uju1CgKwwp+AlMmOXwigwXNdTQ7HtABBmPlppqruuI+FtPjB8kdnC2RUREROTtqADpA/pbeLhhU8+AB6Ye3NuPUXIbexIMG2eL1/V7w16DoQaMwVCc8O3YNOrJFPs6zBtiDcUhVKVNpjRCyhCDBbfxX5zB2WJvivN94soK3Mbjp4yhxm5+78wmz3JtrWFDNeSBfuZfrRERERGRnYsKkA+x+pNPZvUPfwhAk/9+b3rvvb+Xb+3dyTfFvYu7mRdDDXVvaqKtqNjqY4iIiIhIeagA+RDrd8rJAKy/9dYd2o5tIc7niVtb3zHO1tVhEwlsRQWNZ51VhpaJiIiIyLthXK+xMbIjtbe3U1NTQ1tbG9XV1Tu6OTuVtr/ey4rzz3/HuIHXXUfNp44uQ4tERESkL9Lva+/f+x2XI1IWfmPjNo0TERERkR1DBYh8IGQO2B+/ufmt54YYg9/cTOaA/cvbMBERERF5V1SAyAeC8TyaLrl445M3FSEbnzddcjHGe5+T5UVERERku1IBItuEiyK6nn2Otr/eS9ezz+GiaJu/R/VRRzHoJz/Gb2rqtd1vamLQT35M9VFHbfP3FBEREZFtS6tgyfvW/tBDrLryKsKWltI2v7mZpksu3uZFQfVRR1E1YQLdL8wgXLMGv7GRzAH7q+dDRERE5ANCq2DtRD6Iqyq0P/QQy795Nrz5NNo4LEo9EyIiIvJh8kH8fW1noyFY8p65KGLVlVdtXnxAaduqK6/aLsOxREREROSDSQWIvGfdL8zoNexqM84RtrTQ/cKM8jVKRERERHZqKkDkPQvXrNmmcSIiIiLy4acCRN4z3RxQRERERN4tFSDynunmgCIiIiLybqkAkfdMNwcUERERkXdLBYi8L7o5oIiIiIi8G7oRobxvujmgiIiIiGwtFSCyTRjPo2LcgTu6GSIiIiKyk9MQLBERERERKRsVICIiIiIiUjYqQEREREREpGxUgIiIiIiISNmoABERERERkbJRASIiIiIiImWjAkRERERERMpGBYiIiIiIiJSNChARERERESkbFSAiIiIiIlI2KkBERERERKRs/B3dAOkbXBTR/cIMwjVr8BsbyRywP8bzdnSzRERERKTMVIDIdtf+0EOsuvIqwpaW0ja/uZmmSy6m+qijdmDLRERERKTcNARLtqv2hx5i+TfP7lV8AISrVrH8m2fT/tBDO6hlIiIiIrIjqACR7cZFEauuvAqc28LO4rZVV16Fi6Iyt0xEREREdhQNwdqJuI2/lLe3t+/glmwbXS+8wIbly98+aPlyWp54gooDDihPo0RERETeh02/p7kt/YFVtooKkJ1IR0cHAEOGDNnBLSmzCRN2dAtERERE3pWOjg5qamp2dDM+kIxT+bbTiOOYFStWUFVVRUdHB0OGDOH111+nurp6RzftQ6e9vV353Y6U3+1L+d1+lNvtS/ndvpTf7WtTfpcuXYoxhoEDB2KtZjO8F+oB2YlYaxk8eDAAxhgAqqurdRHZjpTf7Uv53b6U3+1Hud2+lN/tS/ndvmpqapTf90llm4iIiIiIlI0KEBERERERKRsVIDupZDLJZZddRjKZ3NFN+VBSfrcv5Xf7Un63H+V2+1J+ty/ld/tSfrcdTUIXEREREZGyUQ+IiIiIiIiUjQoQEREREREpGxUgIiIiIiJSNipARERERESkbFSAlNHixYv5yle+wogRI0in0+y6665cdtll5PP5XnH//Oc/+djHPkYqlWLIkCFcc801mx3rj3/8I3vssQepVIq9996b++67r9d+5xyXXnopAwYMIJ1OM3HiRObPn79dP9/O4Ac/+AEHH3wwmUyG2traLcYYYzZ73H777b1iHn/8cfbbbz+SySQjR47k1ltv3ew4N954I8OHDyeVSjFu3Diee+657fCJdi5bk9+lS5dy9NFHk8lk6N+/PxdccAFhGPaKUX63zvDhwzc7V6+++upeMdvieiH/ovPu3fvud7+72Xm6xx57lPZns1nOPPNM+vXrR2VlJZ/73OdYtWpVr2NszXWjr3jyySf59Kc/zcCBAzHGcNddd/XavzXf7+vXr+eEE06gurqa2tpavvKVr9DZ2dkrZmuuHR9G75Tfk08+ebPzefLkyb1ilN9twEnZ3H///e7kk092Dz74oFu4cKG7++67Xf/+/d15551Ximlra3NNTU3uhBNOcC+99JL7/e9/79LptPvlL39Zipk2bZrzPM9dc801bs6cOe7b3/62C4LAzZ49uxRz9dVXu5qaGnfXXXe5F1980X3mM59xI0aMcD09PWX9zOV26aWXuuuvv96de+65rqamZosxgJs6dapbuXJl6fHGvLz22msuk8m4c889182ZM8f97Gc/c57nuQceeKAUc/vtt7tEIuFuueUW9/LLL7vTTjvN1dbWulWrVm3vj7hDvVN+wzB0H/nIR9zEiRPdzJkz3X333ecaGhrcxRdfXIpRfrfesGHD3OWXX97rXO3s7Czt31bXCynSeffeXHbZZW706NG9ztM1a9aU9n/ta19zQ4YMcY888oh74YUX3EEHHeQOPvjg0v6tuW70Jffdd5/7r//6L3fnnXc6wP35z3/utX9rvt8nT57sxowZ45555hn31FNPuZEjR7ovfvGLpf1bc+34sHqn/J500klu8uTJvc7n9evX94pRft8/FSA72DXXXONGjBhRev6LX/zC1dXVuVwuV9r2rW99y40aNar0/Atf+II7+uijex1n3Lhx7qtf/apzzrk4jl1zc7O79tprS/s3bNjgksmk+/3vf7+9PspOZerUqW9bgLz5gvNGF154oRs9enSvbccdd5ybNGlS6fmBBx7ozjzzzNLzKIrcwIED3VVXXfW+2v1B8Vb5ve+++5y11rW0tJS23XTTTa66urp0Tiu/W2/YsGHuhhtueMv92+J6If+i8+69ueyyy9yYMWO2uG/Dhg0uCAL3xz/+sbRt7ty5DnDTp093zm3ddaOvevP31dZ8v8+ZM8cB7vnnny/F3H///c4Y45YvX+6c27prR1/wVgXIlClT3vI1yu+2oSFYO1hbWxv19fWl59OnT+fjH/84iUSitG3SpEnMmzeP1tbWUszEiRN7HWfSpElMnz4dgEWLFtHS0tIrpqamhnHjxpVi+rozzzyThoYGDjzwQG655RbcG26H8075zefzzJgxo1eMtZaJEyf2+fxOnz6dvffem6amptK2SZMm0d7ezssvv1yKUX633tVXX02/fv0YO3Ys1157ba9hKdvieiFFOu/en/nz5zNw4EB22WUXTjjhBJYuXQrAjBkzKBQKvfK6xx57MHTo0FJet+a6IUVb8/0+ffp0amtrOeCAA0oxEydOxFrLs88+W4p5p2tHX/b444/Tv39/Ro0axemnn866detK+5TfbcPf0Q3oyxYsWMDPfvYzrrvuutK2lpYWRowY0Stu00W5paWFuro6Wlpael2oN8W0tLSU4t74ui3F9GWXX345RxxxBJlMhoceeogzzjiDzs5OzjrrLIC3zG97ezs9PT20trYSRdEWY1555ZWyfY6d0VvlbtO+t4tRfjd31llnsd9++1FfX8/TTz/NxRdfzMqVK7n++uuBbXO9kKK1a9fqvHuPxo0bx6233sqoUaNYuXIl3/ve9/jYxz7GSy+9REtLC4lEYrM5Y2/+znqn64YUbc33e0tLC/379++13/d96uvre8W807Wjr5o8eTKf/exnGTFiBAsXLuSSSy7hk5/8JNOnT8fzPOV3G1EBsg1cdNFF/PCHP3zbmLlz5/aalLd8+XImT57Msccey2mnnba9m/iB9l7y+3a+853vlH4eO3YsXV1dXHvttaUCpK/Z1vmVt/du8n3uueeWtu2zzz4kEgm++tWvctVVV5FMJrd3U0W2yic/+cnSz/vssw/jxo1j2LBh3HHHHaTT6R3YMpF37/jjjy/9vPfee7PPPvuw66678vjjjzNhwoQd2LIPFxUg28B5553HySef/LYxu+yyS+nnFStWcPjhh3PwwQfzq1/9qldcc3PzZquDbHre3Nz8tjFv3L9p24ABA3rF7Lvvvlv/wXYS7za/79a4ceO44ooryOVyJJPJt8xvdXU16XQaz/PwPO9t/w8+SLZlfpubmzdbNWhrz98Pa37f7P3ke9y4cYRhyOLFixk1atQ2uV5IUUNDw4f6vCun2tpadt99dxYsWMCRRx5JPp9nw4YNvXpB3vyd9U7XDSnamu/35uZmVq9e3et1YRiyfv36d7wuvPE9pGiXXXahoaGBBQsWMGHCBOV3G9EckG2gsbGRPfbY420fm8YBLl++nMMOO4z999+fqVOnYm3v/4Lx48fz5JNPUigUStsefvhhRo0aVeqyGz9+PI888kiv1z388MOMHz8egBEjRtDc3Nwrpr29nWeffbYU80HybvL7XsyaNYu6urrSX5TfKb+JRIL999+/V0wcxzzyyCN9Pr/jx49n9uzZvS7ODz/8MNXV1ey1116lmL6U3zd7P/meNWsW1tpS9/+2uF5I0Yf9vCunzs5OFi5cyIABA9h///0JgqBXXufNm8fSpUtLed2a64YUbc33+/jx49mwYQMzZswoxTz66KPEccy4ceNKMe907ZCiZcuWsW7dulLBp/xuIzt6FnxfsmzZMjdy5Eg3YcIEt2zZsl5LvG2yYcMG19TU5E488UT30ksvudtvv91lMpnNltX0fd9dd911bu7cue6yyy7b4jK8tbW17u6773b//Oc/3ZQpU/rEMrxLlixxM2fOdN/73vdcZWWlmzlzpps5c6br6Ohwzjn3l7/8xf361792s2fPdvPnz3e/+MUvXCaTcZdeemnpGJuWib3gggvc3Llz3Y033rjFZWKTyaS79dZb3Zw5c9x//ud/utra2l6ruHwYvVN+Ny2nedRRR7lZs2a5Bx54wDU2Nm5xGV7l9+09/fTT7oYbbnCzZs1yCxcudP/zP//jGhsb3Ze//OVSzLa6XkiRzrv35rzzznOPP/64W7RokZs2bZqbOHGia2hocKtXr3bOFZfhHTp0qHv00UfdCy+84MaPH+/Gjx9fev3WXDf6ko6OjtK1FXDXX3+9mzlzpluyZIlzbuu+3ydPnuzGjh3rnn32Wff3v//d7bbbbr2Wid2aa8eH1dvlt6Ojw51//vlu+vTpbtGiRe5vf/ub22+//dxuu+3mstls6RjK7/unAqSMpk6d6oAtPt7oxRdfdIceeqhLJpNu0KBB7uqrr97sWHfccYfbfffdXSKRcKNHj3b33ntvr/1xHLvvfOc7rqmpySWTSTdhwgQ3b9687fr5dgYnnXTSFvP72GOPOeeKS+Xtu+++rrKy0lVUVLgxY8a4m2++2UVR1Os4jz32mNt3331dIpFwu+yyi5s6depm7/Wzn/3MDR061CUSCXfggQe6Z555pgyfcMd6p/w659zixYvdJz/5SZdOp11DQ4M777zzXKFQ6HUc5fedzZgxw40bN87V1NS4VCrl9txzT3fllVf2+hJ0bttcL+Rf+vp5914cd9xxbsCAAS6RSLhBgwa54447zi1YsKC0v6enx51xxhmurq7OZTIZ9//+3//r9Yc357buutFXPPbYY1u8zp500knOua37fl+3bp374he/6CorK111dbU75ZRTSn8o2mRrrh0fRm+X3+7ubnfUUUe5xsZGFwSBGzZsmDvttNM2+yOE8vv+GefesP6oiIiIiIjIdqQ5ICIiIiIiUjYqQEREREREpGxUgIiIiIiISNmoABERERERkbJRASIiIiIiImWjAkRERERERMpGBYiIiIiIiJSNChARERERESkbFSAiImVw8sknY4zha1/72mb7zjzzTIwxnHzyyZvFG2MIgoCmpiaOPPJIbrnlFuI47vX6F198kc985jP079+fVCrF8OHDOe6441i9evX2/lgfasOHD+fHP/7xO8b96le/4rDDDqO6uhpjDBs2bNjubRMR+SBTASIiUiZDhgzh9ttvp6enp7Qtm83yu9/9jqFDh24WP3nyZFauXMnixYu5//77Ofzww/nmN7/Jpz71KcIwBGDNmjVMmDCB+vp6HnzwQebOncvUqVMZOHAgXV1dZftsfVl3dzeTJ0/mkksu2dFNERH5QFABIiJSJvvttx9DhgzhzjvvLG278847GTp0KGPHjt0sPplM0tzczKBBg9hvv/245JJLuPvuu7n//vu59dZbAZg2bRptbW385je/YezYsYwYMYLDDz+cG264gREjRrxlW3K5HN/61rcYMmQIyWSSkSNH8tvf/ra0/4knnuDAAw8kmUwyYMAALrroolLRA3DYYYfxjW98g7PPPpu6ujqampr49a9/TVdXF6eccgpVVVWMHDmS+++/v/Saxx9/HGMM9957L/vssw+pVIqDDjqIl156qVfb/vSnPzF69GiSySTDhw/nRz/6Ua/9w4cP58orr+TUU0+lqqqKoUOH8qtf/apXzOuvv84XvvAFamtrqa+vZ8qUKSxevLi0/+STT+aYY47huuuuY8CAAfTr148zzzyTQqFQ+nxLlizhnHPOKfVEvZWzzz6biy66iIMOOugtY0RE5F9UgIiIlNGpp57K1KlTS89vueUWTjnllK1+/RFHHMGYMWNKRUxzczNhGPLnP/8Z59xWH+fLX/4yv//97/npT3/K3Llz+eUvf0llZSUAy5cv59/+7d/46Ec/yosvvshNN93Eb3/7W77//e/3OsZtt91GQ0MDzz33HN/4xjc4/fTTOfbYYzn44IP5xz/+wVFHHcWJJ55Id3d3r9ddcMEF/OhHP+L555+nsbGRT3/606Vf/GfMmMEXvvAFjj/+eGbPns13v/tdvvOd75QKrk1+9KMfccABBzBz5kzOOOMMTj/9dObNmwdAoVBg0qRJVFVV8dRTTzFt2jQqKyuZPHky+Xy+dIzHHnuMhQsX8thjj3Hbbbdx6623lt7nzjvvZPDgwVx++eWsXLmSlStXbnVuRUTkHTgREdnuTjrpJDdlyhS3evVql0wm3eLFi93ixYtdKpVya9ascVOmTHEnnXTSZvFbctxxx7k999yz9PySSy5xvu+7+vp6N3nyZHfNNde4lpaWt2zLvHnzHOAefvjhLe6/5JJL3KhRo1wcx6VtN954o6usrHRRFDnnnPvEJz7hDj300NL+MAxdRUWFO/HEE0vbVq5c6QA3ffp055xzjz32mAPc7bffXopZt26dS6fT7g9/+INzzrl///d/d0ceeWSv9lxwwQVur732Kj0fNmyY+9KXvlR6Hsex69+/v7vpppucc87993//92btz+VyLp1OuwcffNA5V8zvsGHDXBiGpZhjjz3WHXfccb3e54YbbthijrZk0+drbW3d6teIiPRF6gERESmjxsZGjj76aG699VamTp3K0UcfTUNDw7s6hnOu15CgH/zgB7S0tHDzzTczevRobr75ZvbYYw9mz569xdfPmjULz/P4xCc+scX9c+fOZfz48b3e45BDDqGzs5Nly5aVtu2zzz6lnz3Po1+/fuy9996lbU1NTQCbTYYfP3586ef6+npGjRrF3LlzS+99yCGH9Io/5JBDmD9/PlEUbfG9jTE0NzeX3ufFF19kwYIFVFVVUVlZSWVlJfX19WSzWRYuXFh63ejRo/E8r/R8wIABmrgvIlIG/o5ugIhIX3Pqqafy9a9/HYAbb7zxXb9+7ty5m83v6NevH8ceeyzHHnssV155JWPHjuW6667jtttu2+z16XT6vTX8TYIg6PV804pdb3wObLZq1/Z6703v09nZyf7778///u//bva6xsbGrTqGiIhsP+oBEREps01zETbNVXg3Hn30UWbPns3nPve5t4xJJBLsuuuub7kK1t57700cxzzxxBNb3L/nnnsyffr0XnNKpk2bRlVVFYMHD35X7d2SZ555pvRza2srr776KnvuuWfpvadNm9Yrftq0aey+++69eivezn777cf8+fPp378/I0eO7PWoqanZ6nYmEolevS4iIrJtqAARESkzz/OYO3cuc+bMedtfqnO5HC0tLSxfvpx//OMfXHnllUyZMoVPfepTfPnLXwbgr3/9K1/60pf461//yquvvsq8efO47rrruO+++5gyZcoWjzt8+HBOOukkTj31VO666y4WLVrE448/zh133AHAGWecweuvv843vvENXnnlFe6++24uu+wyzj33XKx9/18bl19+OY888ggvvfQSJ598Mg0NDRxzzDEAnHfeeTzyyCNcccUVvPrqq9x22238/Oc/5/zzz9/q459wwgk0NDQwZcoUnnrqqdLnO+uss3oNIXsnw4cP58knn2T58uWsXbv2LeNaWlqYNWsWCxYsAGD27NnMmjWL9evXb/V7iYj0JRqCJSKyA1RXV79jzAMPPMCAAQPwfZ+6ujrGjBnDT3/6U0466aRSIbDXXnuRyWQ477zzeP3110kmk+y222785je/4cQTT3zLY990001ccsklnHHGGaxbt46hQ4eW7mMxaNAg7rvvPi644ALGjBlDfX09X/nKV/j2t7+9TT771VdfzTe/+U3mz5/Pvvvuyz333EMikQCKvRd33HEHl156KVdccQUDBgzg8ssv73WTxneSyWR48skn+da3vsVnP/tZOjo6GDRoEBMmTNiqvG9y+eWX89WvfpVdd92VXC73lquM3XzzzXzve98rPf/4xz8OwNSpU99Vu0VE+grj3uqKKiIisg09/vjjHH744bS2tlJbW7ujmyMiIjuIhmCJiIiIiEjZqAAREREREZGy0RAsEREREREpG/WAiIiIiIhI2agAERERERGRslEBIiIiIiIiZaMCREREREREykYFiIiIiIiIlI0KEBERERERKRsVICIiIiIiUjYqQEREREREpGxUgIiIiIiISNmoABERERERkbJRASIiIiIiImWjAkRERERERMpGBYiIiIiIiJSNChARERERESkbFSAiIiIiIlI2KkBERERERKRsVICIiIiIiEjZqAAREREREZGyUQEiIiIiIiJlowJERERERETKRgWIiIiIiIiUjQoQEREREREpGxUgIiIiIiJSNipARERERESkbFSAiIiIiIhI2agAERERERGRslEBIiIiIiIiZaMCREREREREykYFiIiIiIiIlI0KEBERERERKRsVICIiIiIiUjYqQEREREREpGxUgIiIiIiISNmoABERERERkbJRASIiIiIiImWjAkRERERERMpGBYiIiIiIiJSNChARERERESkbFSAiIiIiIlI2KkBERERERKRsVICIiIiIiEjZqAAREREREZGyUQEiIiIiIiJlowJERERERETKRgWIiIiIiIiUjQoQEREREREpGxUgIiIiIiJSNipARERERESkbFSAiIiIiIhI2agAERERERGRslEBIiIiIiIiZaMCREREREREykYFiIiIiIiIlI0KEBERERERKZv/D/eiy6BL0J16AAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label: 2\n", + "Epsilon: 0.041233333476868195 \tMinPts: 3\n", + "Clusters: {-1.0: 60, 1.0: 4, 2.0: 4, 3.0: 8, 4.0: 4, 5.0: 20}\n", + "No. of clusters: 5\n", + "Noise points: 60\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6245f1e2dff44e668092c828581c6546", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACh80lEQVR4nOzdeVxU5f4H8M8MssmObIrIJqSguICSSykKYpreDJe6laKpZe7ovan93FPymmYuud1Sy3I3s9xFzVxS03BFQxNRYpEQEEiQmfP7gzuTwyzMwGzA5/16zcvmzHPOec4w0PnO83y/j0gQBAFERERERERGIDZ1B4iIiIiIqP5gAEJEREREREbDAISIiIiIiIyGAQgRERERERkNAxAiIiIiIjIaBiBERERERGQ0DECIiIiIiMhoGIAQEREREZHRMAAhIiIiIiKjYQBCRERERERGwwCEiIiIiIiMhgEIEREREREZDQMQIiIiIiIyGgYgRERERERkNAxAiIiIiIjIaBiAEBERERGR0TAAISIiIiIio2EAQkRERERERsMAhIiIiIiIjIYBCBERERERGQ0DECIiIiIiMhoGIEREREREZDQMQIiIiIiIyGgYgBARERERkdEwACEiIiIiIqNhAEJEREREREbDAISIiIiIiIyGAQgRERERERkNAxAiIiIiIjIaBiBERERERGQ0DECIiIiIiMhoGIAQEREREZHRMAAhIiIiIiKjYQBCRERERERGwwCEiIiIiIiMhgEIEREREREZDQMQIiIiIiIyGgYgRERERERkNAxAiIiIiIjIaBiAEBERERGR0TAAISIiIiIio2EAQkRERERERsMAhIiIiIiIjIYBCBERERERGQ0DECIiIiIiMhoGIEREREREZDQMQIiIiIiIyGgYgBARERERkdEwACEiIiIiIqNhAEJEZistLQ0ikQgbN240dVfqrDlz5kAkEpm6G9Xi5+eH+Ph4U3eDiIh0xACESI82btwIkUgkf9jY2KBJkyaIjY3F8uXL8fjxY6V9ZDeAsodYLEbjxo3x8ssv4+eff1Zqf/XqVQwcOBC+vr6wsbGBt7c3YmJisGLFCqW2EokEGzZsQPfu3eHq6gpra2v4+flh+PDh+OWXX1Rew2effQaRSITIyEi11ynr65IlS9S+B+qOb05u3LiBOXPmIC0tzdRdqbP279+POXPmmLobenXmzBnMmTMH+fn5ej1uUlISRowYgeDgYDRs2BABAQEYOXIkMjMztT7Gs39LGjRoAFdXV4SHh2PixIm4ceOG1sfx8/ODSCRCdHS0ytfXr18vP8+zv+uV/541bNgQzZo1Q79+/bBhwwaUlpaqPN7333+Pbt26wcPDQ37tgwcPxsGDB7XuMxHVHgxAiAxg3rx5+Oqrr7B69WqMHz8eADBp0iS0bt0aV65cUbnP6tWr8dVXX2Hjxo0YN24crl27hhdffBHJycnyNmfOnEFERAQuX76MUaNGYeXKlRg5ciTEYjE+/fRTheP99ddfePnllzFixAgIgoAZM2Zg9erVGDp0KM6ePYuOHTviwYMHSv34+uuv4efnh/Pnz+P27dsar3Px4sUoKSnR8d0xHzdu3MDcuXPrdQDyf//3f/jrr78Mdvz9+/dj7ty5Bju+KZw5cwZz587VewDy/vvv48SJExgwYACWL1+O1157Ddu3b0e7du2QlZWl9XFiYmLw1VdfYcOGDZg3bx7at2+PTZs2oU2bNli6dKnWx7GxscHx48dVnvvrr7+GjY2N2n1lf89WrFiBkSNHIi8vDyNGjEDHjh1x//59hbYff/wx+vfvD5FIhOnTp+OTTz5BXFwcUlNTsXXrVq37S0S1iEBEerNhwwYBgHDhwgWl15KSkgRbW1vB19dXKCkpkW+fPXu2AEB4+PChQvtr164JAIQZM2bIt/Xp00dwd3cXHj16pHT87Oxshedjx44VAAiffPKJUtvy8nJh8eLFwv379xW2//777wIAYffu3YK7u7swZ84cldcJQGjbtq0AQFiyZInW74Gu7t69KwAQNmzYUONjqbJjxw4BgHD8+HG9HreoqEivx9PFX3/9JUgkEpOdvzLZ59AQfH19hWHDhhnk2JosXrxYACDcvXtXr8f98ccflX52P/74owBA+OCDD7Q6BgBh7NixSttzc3OFTp06CQCEffv2VXkcX19foWfPnoKjo6OwbNkyhdfu378viMViIS4uTul3Xd3fM0EQhM2bNwtisViIjIyUb3v69Kng6OgoxMTEqOxH5b9rRFQ3cASEyEh69OiBmTNn4t69e9i8eXOV7b28vAAADRo0kG+7c+cOQkND4ezsrNTew8ND/t8PHjzA2rVrERMTg0mTJim1tbCwwNSpU9G0aVOF7V9//TVcXFzQt29fDBw4EF9//bXa/nXp0gU9evTAf/7zn2p/g56fn4/JkyfDz88P1tbWaNq0KYYOHYrc3Fy1+3Tv3h3du3dX2h4fHw8/Pz+FbVu3bkV4eDgcHBzg6OiI1q1by0eKNm7ciEGDBgEAoqKi5FNGTpw4Id//wIEDeOGFF2BnZwcHBwf07dsX169fVzqvvb097ty5gz59+sDBwQFvvPEGACA1NRVxcXHw8vKCjY0NmjZtitdeew0FBQUa35fu3bujVatWuHjxIjp37gxbW1v4+/tjzZo1Cu1OnDgBkUiErVu34v/+7//g7e2Nhg0borCwEACwY8cOhIeHw9bWFm5ubnjzzTeRkZGhcAx1OSCbN2+W7+vq6orXXntN6ZtrADh37hz69OkDFxcX2NnZISwsTP4ex8fHY9WqVQAUpwbJSKVSLFu2DKGhobCxsYGnpyfeeecdPHr0SOEcgiDgww8/RNOmTdGwYUNERUUp/Rw0KS4uxpQpU+Dj4wNra2s899xz+PjjjyEIgkI7kUiEcePGYc+ePWjVqhWsra0RGhqqMA1ozpw5+Ne//gUA8Pf3l1+TbBStvLwc8+fPR2BgoHzK44wZM9ROPXrWiy++CLFYrLTN1dUVKSkpWl+vKo0aNcLWrVvRoEEDLFiwQKt9bGxs8Oqrr+Kbb75R2L5lyxa4uLggNjZWpz688cYbGDlyJM6dO4cjR44AAHJzc1FYWIguXbqo3OfZv2vqHDlyBF27doWzszPs7e3x3HPPYcaMGfLXZb8n27Ztw4wZM+Dl5QU7Ozv0799f6TP9008/YdCgQWjWrBmsra3h4+ODyZMnq/wbd/PmTQwePBju7u6wtbXFc889hw8++EChTUZGBkaMGAFPT0/55+mLL76o8pqI6roGVTchIn156623MGPGDBw+fBijRo1SeC0vLw9AxU1ZRkYG5s+fDxsbGwwePFjextfXF2fPnsW1a9fQqlUrtec5cOAAysvL8dZbb+nUv6+//hqvvvoqrKys8Prrr2P16tW4cOECOnTooLL9nDlz8OKLL2L16tVISEjQ6VxFRUV44YUXkJKSghEjRqB9+/bIzc3F3r178eDBA7i5uel0vMqOHDmC119/HT179sSiRYsAACkpKTh9+jQmTpyIF198ERMmTMDy5csxY8YMtGzZEgDk/3711VcYNmwYYmNjsWjRIpSUlGD16tXo2rUrfv31V4Vgp7y8HLGxsejatSs+/vhjNGzYEGVlZYiNjUVpaSnGjx8PLy8vZGRk4IcffkB+fj6cnJw09v/Ro0fo06cPBg8ejNdffx3bt2/HmDFjYGVlhREjRii0nT9/PqysrDB16lSUlpbCysoKGzduxPDhw9GhQwckJiYiOzsbn376KU6fPo1ff/1VZRArs2DBAsycORODBw/GyJEj8fDhQ6xYsQIvvviiwr5HjhzByy+/jMaNG2PixInw8vJCSkoKfvjhB0ycOBHvvPMO/vjjDxw5cgRfffWV0nneeecdeT8nTJiAu3fvYuXKlfj1119x+vRpWFpaAgBmzZqFDz/8EH369EGfPn1w6dIl9OrVC2VlZRrfQ6AieOnfvz+OHz+Ot99+G23btsWhQ4fwr3/9CxkZGfjkk08U2p86dQq7d+/Ge++9BwcHByxfvhxxcXFIT09Ho0aN8Oqrr+K3337Dli1b8Mknn8g/p+7u7gCAkSNHYtOmTRg4cCCmTJmCc+fOITExESkpKfj222+r7G9lRUVFKCoqqvHvAwA0a9YM3bp1w/Hjx1FYWAhHR8cq9/nnP/+JXr164c6dOwgMDAQAfPPNNxg4cKD856OLt956C+vWrcPhw4cRExMDDw8P2Nra4vvvv8f48ePh6uqq0/GuX7+Ol19+GWFhYZg3bx6sra1x+/ZtnD59WqntggULIBKJ8P777yMnJwfLli1DdHQ0kpOTYWtrC6AiaC8pKcGYMWPQqFEjnD9/HitWrMCDBw+wY8cO+bGuXLmCF154AZaWlhg9ejT8/Pxw584dfP/99/IALzs7G88//7w8sHV3d8eBAwfw9ttvo7CwUOWXQ0T1holHYIjqFG2mHzk5OQnt2rWTP5dNWaj8cHZ2Fg4ePKiw7+HDhwULCwvBwsJC6NSpk/Dvf/9bOHTokFBWVqbQbvLkyQIA4ddff9W677/88osAQDhy5IggCIIglUqFpk2bChMnTlRqi2emeURFRQleXl7yaWXaTsGaNWuWfLpXZVKpVBAE1VOwunXrJnTr1k1pn2HDhgm+vr7y5xMnThQcHR2F8vJytX1QNwXr8ePHgrOzszBq1CiF7VlZWYKTk5PC9mHDhgkAhGnTpim0/fXXXwUAwo4dO9SeX51u3bopTW8rLS0V2rZtK3h4eMh/3sePHxcACAEBAQrT+srKygQPDw+hVatWwl9//SXf/sMPPwgAhFmzZsm3yT5/MmlpaYKFhYWwYMEChT5dvXpVaNCggXx7eXm54O/vL/j6+ipNCZT9/ARB/RSsn376SQAgfP311wrbDx48qLA9JydHsLKyEvr27atw3BkzZggAqpyCtWfPHgGA8OGHHypsHzhwoCASiYTbt2/LtwEQrKysFLZdvnxZACCsWLFCvk3dFKzk5GQBgDBy5EiF7VOnThUACMeOHdPYV1Xmz58vABCSkpK0av/s76YqEydOFAAIly9f1ngcX19foW/fvkJ5ebng5eUlzJ8/XxAEQbhx44YAQPjxxx9V/q5rmoIlCILw6NEjAYAwYMAA+TbZ3wI7OzvhpZdeEhYsWCBcvHhRq+v95JNPNJ5PEP7+PfH29hYKCwvl27dv3y4AED799FP5tmd/j2QSExMFkUgk3Lt3T77txRdfFBwcHBS2CYLiZ//tt98WGjduLOTm5iq0ee211wQnJyeV5yKqLzgFi8jI7O3tVVbD2rVrF44cOYLDhw9jw4YNCA4ORlxcHM6cOSNvExMTg7Nnz6J///64fPky/vOf/yA2Nhbe3t7Yu3evvJ1sCo6Dg4PW/fr666/h6emJqKgoABXTUYYMGYKtW7dCIpGo3W/OnDnIyspSmh5UlV27dqFNmzYYMGCA0mv6KAvr7OyM4uJi+VQPXRw5cgT5+fl4/fXXkZubK39YWFggMjISx48fV9pnzJgxCs9lIxyHDh2qVqJ+gwYN8M4778ifW1lZ4Z133kFOTg4uXryo0HbYsGHyb3AB4JdffkFOTg7ee+89hUThvn37okWLFti3b5/a8+7evRtSqRSDBw9WuHYvLy8EBQXJr/3XX3/F3bt3MWnSJKXRFG1+fjt27ICTkxNiYmIUzhMeHg57e3v5eY4ePYqysjKMHz9e4bjafnu8f/9+WFhYYMKECQrbp0yZAkEQcODAAYXt0dHR8m/6ASAsLAyOjo74/ffftToXAKXRwClTpgCAxvddlZMnT2Lu3LkYPHgwevToodO+6tjb2wOAyr9BqlhYWGDw4MHYsmULgIq/Ez4+PnjhhRf0dv65c+fim2++Qbt27XDo0CF88MEHCA8PR/v27auceib77H333XeQSqUa2w4dOlThb+LAgQPRuHFj+c8NgMLvUXFxMXJzc9G5c2cIgoBff/0VAPDw4UOcPHkSI0aMQLNmzRTOIfuMCoKAXbt2oV+/fhAEQeEzHhsbi4KCAly6dEljf4nqMgYgREZWVFSkMjB48cUXER0djZiYGMTHxyMpKQkODg7yKloyHTp0wO7du/Ho0SOcP38e06dPx+PHjzFw4EB5mU3Z1AptbzIkEgm2bt2KqKgo3L17F7dv38bt27cRGRmJ7OxsJCUlqd33xRdfRFRUlM65IHfu3NE4jaym3nvvPQQHB+Oll15C06ZNMWLECK1LeqampgKoyNtxd3dXeBw+fBg5OTkK7Rs0aKCUT+Pv74+EhAT897//hZubG2JjY7Fq1aoq8z9kmjRpAjs7O4VtwcHBAKBUtcvf31/h+b179wAAzz33nNJxW7RoIX9dldTUVAiCgKCgIKVrT0lJkV/7nTt3AKDaP8PU1FQUFBTAw8ND6TxFRUXy88j6GhQUpLC/u7s7XFxcqjzPvXv30KRJE6XfOdlUu8rvReUbSgBwcXFRyktRdy6xWIzmzZsrbPfy8oKzs7PG972ymzdvYsCAAWjVqhX++9//KryWl5eHrKws+UPbzxRQ8fcH0O3LiX/+85+4ceMGLl++jG+++QavvfZatb8kUHf+119/HT/99BMePXqEw4cP45///Cd+/fVX9OvXD0+ePFF7vCFDhqBLly4YOXIkPD095ZXDVAUjlT9DIpEIzZs3V/h9Sk9PR3x8PFxdXWFvbw93d3d069YNAOTvsywY1fTZf/jwIfLz87Fu3Tqlz/fw4cMBQOnvCFF9whwQIiN68OABCgoKlG5QVLG3t0dkZCS+++47FBcXK92MWllZoUOHDujQoQOCg4MxfPhw7NixA7Nnz0aLFi0AVKwZ0rZt2yrPdezYMWRmZmLr1q0qy15+/fXX6NWrl9r9Z8+eje7du2Pt2rUacwv0QSQSKSUPA1AapfHw8EBycjIOHTqEAwcO4MCBA9iwYQOGDh2KTZs2aTyH7Oblq6++khcDeNazhQEAwNraWil5GACWLFmC+Ph4fPfddzh8+DAmTJiAxMRE/Pzzz0oBS008+61tTUmlUohEIhw4cAAWFhZKr8u+wdbHeTw8PNQWOpDlVBibqmsGoPIzp05NR/Du37+PXr16wcnJCfv371e6WX/11Vfx448/yp8PGzZM68U6r127BgsLC6WgVZPIyEgEBgZi0qRJuHv3Lv75z39qva+q8wNQ+zfQ0dERMTExiImJgaWlJTZt2oRz587Jg4DKbG1tcfLkSRw/fhz79u3DwYMHsW3bNvTo0QOHDx9W+/NURSKRICYmBnl5eXj//ffRokUL2NnZISMjA/Hx8VWOsDxL1vbNN9/EsGHDVLYJCwvT+nhEdQ0DECIjkiXials9pry8HEDFt4aVA5BnRUREAIB8wbKXXnoJFhYW2Lx5s1aJ6F9//TU8PDzkFYuetXv3bnz77bdYs2aN2hvdbt26oXv37li0aBFmzZpV5fkAIDAwUH4zogsXFxeV02FUfbtsZWWFfv36oV+/fpBKpXjvvfewdu1azJw5E82bN1d7oyibguPh4aF2ITZttW7dGq1bt8b//d//4cyZM+jSpQvWrFmDDz/8UON+f/zxh1Lg+dtvvwGAUrWvynx9fQEAt27dUpq6c+vWLfnrqgQGBkIQBPj7+8tHXNS1AypuKDW9R5re46NHj6JLly4aAyhZX1NTUxEQECDf/vDhQ61GJXx9fXH06FE8fvxY4Ub+5s2bCsfXhbpr8vX1hVQqRWpqqnyEBahIRs7Pz9fqXH/++Sd69eqF0tJSJCUloXHjxkptlixZonDtTZo00arf6enp+PHHH9GpUyedRkCAihGKDz/8EC1bttTqSw11dPkbGBERgU2bNlW5EKNYLEbPnj3Rs2dPLF26FAsXLsQHH3yA48ePK3w2ZSObMoIg4Pbt2/JA4OrVq/jtt9+wadMmDB06VN6u8jRO2edQ098vd3d3ODg4QCKR1PhvCFFdxClYREZy7NgxzJ8/H/7+/vIyrZrk5eXhzJkz8PLykpeiPH78uMpvYmVzmGVTbnx8fDBq1CgcPnxY5QrpUqkUS5YswYMHD/DXX39h9+7dePnllzFw4EClx7hx4/D48WOFHBNVZLkg69atq/LaACAuLg6XL19WWRlI07fNgYGBuHnzJh4+fCjfdvnyZaWqN3/++afCc7FYLL/RkJVEld3cV15QLjY2Fo6Ojli4cCGePn2q1Idnz61OYWGhPICUad26NcRisVYlWcvLy7F27Vr587KyMqxduxbu7u4IDw/XuG9ERAQ8PDywZs0ahXMdOHAAKSkp6Nu3r9p9X331VVhYWGDu3LlKPwdBEOTva/v27eHv749ly5YpvX/P7qfuPR48eDAkEgnmz5+v8tpl7aOjo2FpaYkVK1YoHHfZsmVqr+FZffr0gUQiwcqVKxW2f/LJJxCJRHjppZe0Os6z1F1Tnz59VPZNtvifpvcdqMg56NOnDzIyMrB//36lKUMy4eHhiI6Olj9CQkKq7HNeXh5ef/11SCQSpVKx2hg5ciRmz56NJUuW6LyvzDfffIP//ve/6NSpE3r27AkAKCkpwdmzZ1W2l+XnqJpKKCOrHvgsWYBU+ffsyy+/VJiWunPnTmRmZso/A7LRkmc/Z4IgKC3y6u7ujhdffBFffPEF0tPTFV6T7WthYYG4uDjs2rVLZaCizd8QorqMIyBEBnDgwAHcvHkT5eXlyM7OxrFjx3DkyBH4+vpi7969KlcQ3rlzJ+zt7SEIAv744w98/vnnePToEdasWSP/xnX8+PEoKSnBgAED0KJFC5SVleHMmTPYtm0b/Pz85HOLgYpvSe/cuYMJEybIAwwXFxekp6djx44duHnzJl577TXs3bsXjx8/Rv/+/VVey/PPPw93d3d8/fXXGDJkiNpr7tatG7p166YwNUSTf/3rX9i5cycGDRqEESNGIDw8HHl5edi7dy/WrFmDNm3aqNxvxIgRWLp0KWJjY/H2228jJycHa9asQWhoqDz5HoB89eUePXqgadOmuHfvHlasWIG2bdvKv51u27YtLCwssGjRIhQUFMDa2ho9evSAh4cHVq9ejbfeegvt27fHa6+9Bnd3d6Snp2Pfvn3o0qWL0g1tZceOHcO4ceMwaNAgBAcHo7y8HF999ZX8xqQqTZo0waJFi5CWlobg4GBs27YNycnJWLduXZXlTy0tLbFo0SIMHz4c3bp1w+uvvy4vw+vn54fJkyer3TcwMBAffvghpk+fjrS0NLzyyitwcHDA3bt38e2332L06NGYOnUqxGIxVq9ejX79+qFt27YYPnw4GjdujJs3b+L69es4dOgQAMiDpQkTJiA2NhYWFhZ47bXX0K1bN7zzzjtITExEcnIyevXqBUtLS6SmpmLHjh349NNPMXDgQLi7u2Pq1KlITEzEyy+/jD59+uDXX3/FgQMHtCpN269fP0RFReGDDz5AWloa2rRpg8OHD+O7777DpEmTFBLOtSW7pg8++ACvvfYaLC0t0a9fP7Rp0wbDhg3DunXrkJ+fj27duuH8+fPYtGkTXnnlFXmBB3XeeOMNnD9/HiNGjEBKSopCAra9vT1eeeUVrfr322+/YfPmzRAEAYWFhbh8+TJ27NiBoqIiLF26FL1799b5mn19fTFnzhyt28v+npWVlSEjIwOHDh3C6dOn0aZNG4VytiUlJejcuTOef/559O7dGz4+PsjPz8eePXvw008/4ZVXXkG7du3UnmfevHk4efIk+vbtC19fX+Tk5OCzzz5D06ZN0bVrV4W2rq6u6Nq1K4YPH47s7GwsW7YMzZs3l5dEb9GiBQIDAzF16lRkZGTA0dERu3btUjnStnz5cnTt2hXt27fH6NGj4e/vj7S0NOzbtw/JyckAgI8++gjHjx9HZGQkRo0ahZCQEOTl5eHSpUs4evSoyuCJqN4wbtEtorpNVpZS9rCyshK8vLyEmJgY4dNPP1UoASmjqgyvnZ2d0KlTJ2H79u0KbQ8cOCCMGDFCaNGihWBvby9YWVkJzZs3F8aPH69yxeDy8nLhv//9r/DCCy8ITk5OgqWlpeDr6ysMHz5cXqK3X79+go2NjVBcXKz2uuLj4wVLS0t5OUmoKfUpK3cJLVdC//PPP4Vx48YJ3t7egpWVldC0aVNh2LBh8vOoWwl98+bNQkBAgGBlZSW0bdtWOHTokFIZ3p07dwq9evUSPDw8BCsrK6FZs2bCO++8I2RmZioca/369UJAQIBgYWGhVJL3+PHjQmxsrODk5CTY2NgIgYGBQnx8vPDLL7/I2wwbNkyws7NTurbff/9dGDFihBAYGCjY2NgIrq6uQlRUlHD06NEq35du3boJoaGhwi+//CJ06tRJsLGxEXx9fYWVK1cqtJO93+pK/W7btk1o166dYG1tLbi6ugpvvPGG8ODBA4U2lcvwyuzatUvo2rWrYGdnJ9jZ2QktWrQQxo4dK9y6dUuh3alTp4SYmBjBwcFBsLOzE8LCwhRK1paXlwvjx48X3N3dBZFIpHSudevWCeHh4YKtra3g4OAgtG7dWvj3v/8t/PHHH/I2EolEmDt3rtC4cWPB1tZW6N69u3Dt2jWtV0J//PixMHnyZKFJkyaCpaWlEBQUJCxevFihZKogqP9cqzrP/PnzBW9vb0EsFiuU5H369Kkwd+5cwd/fX7C0tBR8fHyE6dOnC0+ePKmyn76+vipLcgNQ+Gxr8uw+YrFYcHZ2Ftq1aydMnDhRuH79ulbHkPWlb9++GttoKsMre9jY2AhNmzYVXn75ZeGLL75Qeh+ePn0qrF+/XnjllVcEX19fwdraWmjYsKHQrl07YfHixUJpaanGPiQlJQn/+Mc/hCZNmghWVlZCkyZNhNdff1347bff5G1kvydbtmwRpk+fLnh4eAi2trZC3759lcro3rhxQ4iOjhbs7e0FNzc3YdSoUfJSzJX/Dl27dk0YMGCA4OzsLNjY2AjPPfecMHPmTIU22dnZwtixYwUfHx/B0tJS8PLyEnr27CmsW7dO43UR1XUiQdAhs46IiAyue/fuyM3NrVaOjK5mzpyJxMREpeliRHXFiRMnEBUVhR07dmDgwIGm7g4RgTkgRET1WmZmpl5W2SYiItIWc0CIiOqh33//Hd9++y127NiBl19+2dTdISKieoQjIERE9ZBsle1u3brJqzQREREZA3NAiIiIiIjIaDgCQkRERERERsMAhIiIiIiIjIZJ6GZEKpXijz/+gIODg3zhOSIiIiIyH4Ig4PHjx2jSpAnEYn6XXx0MQMzIH3/8AR8fH1N3g4iIiIiqcP/+fTRt2tTU3aiVGICYEQcHBwAVH2hHR0cT94aIiIiIKissLISPj4/8vo10xwDEjMimXTk6OjIAISIiIjJjnC5ffZy4RkRERERERsMAhIiIiIiIjIYBCBERERERGQ1zQIiIiKhek0qlKCsrM3U3yExYWlrCwsLC1N2o0xiAEBERUb1VVlaGu3fvQiqVmrorZEacnZ3h5eXFRHMDYQBCRERE9ZIgCMjMzISFhQV8fHy4qBxBEASUlJQgJycHANC4cWMT96huYgBCRERE9VJ5eTlKSkrQpEkTNGzY0NTdITNha2sLAMjJyYGHhwenYxkAQ30iIiKqlyQSCQDAysrKxD0hcyMLSJ8+fWrintRNDECIiIioXuM8f6qMnwnDYgBCRERERERGwwCEiIiIqA4SiUTYs2ePqbtBpIQBCBEREVEtk5WVhfHjxyMgIADW1tbw8fFBv379kJSUZJDznThxAiKRCPn5+QY5PgAsWLAAnTt3RsOGDeHs7Gyw85DpsQoWERERUQ1IpALO381DzuMn8HCwQUd/V1iIDZdDkJaWhi5dusDZ2RmLFy9G69at8fTpUxw6dAhjx47FzZs3DXbumhIEARKJBA0aKN+ClpWVYdCgQejUqRM+//xzE/SOjIUjIER6IpVKcP/6FaSc/hH3r1+BVCoxdZeIiMjADl7LRNdFx/D6+p8xcWsyXl//M7ouOoaD1zINds733nsPIpEI58+fR1xcHIKDgxEaGoqEhAT8/PPPKvdRNYKRnJwMkUiEtLQ0AMC9e/fQr18/uLi4wM7ODqGhodi/fz/S0tIQFRUFAHBxcYFIJEJ8fDyAilXkExMT4e/vD1tbW7Rp0wY7d+5UOu+BAwcQHh4Oa2trnDp1SmUf586di8mTJ6N169Y1f5PIrHEEhEgPUs+dwbGN61CUlyvfZu/qhh7xoxEU2dmEPSMiIkM5eC0TYzZfglBpe1bBE4zZfAmr32yP3q30u5BdXl4eDh48iAULFsDOzk7p9ZpMXRo7dizKyspw8uRJ2NnZ4caNG7C3t4ePjw927dqFuLg43Lp1C46OjvK1MhITE7F582asWbMGQUFBOHnyJN588024u7ujW7du8mNPmzYNH3/8MQICAuDi4lLtPlLdwACEqIZSz53B3qULlbYX5eVi79KF6J8wg0EIEVEdI5EKmPv9DaXgAwAEACIAc7+/gZgQL71Ox7p9+zYEQUCLFi30dkyZ9PR0xMXFyUcgAgIC5K+5uroCADw8PORBTmlpKRYuXIijR4+iU6dO8n1OnTqFtWvXKgQg8+bNQ0xMjN77TLUTAxCiGpBKJTi2cZ3GNsc3rUNgh0iIxVxJlYiorjh/Nw+ZBU/Uvi4AyCx4gvN389ApsJHezisIqkIe/ZgwYQLGjBmDw4cPIzo6GnFxcQgLC1Pb/vbt2ygpKVEKLMrKytCuXTuFbREREQbpM9VOzAEhqoGMlOsK065UefxnLjJSrhupR0REZAw5j9UHH9Vpp62goCCIRCKdE83F4opbvmcDmMqrfI8cORK///473nrrLVy9ehURERFYsWKF2mMWFRUBAPbt24fk5GT548aNGwp5IABUThej+osBCFENFOU/0ms7IiKqHTwcbPTaTluurq6IjY3FqlWrUFxcrPS6ujK57u7uAIDMzL+T45OTk5Xa+fj44N1338Xu3bsxZcoUrF+/HgBgZWUFAJBI/i6wEhISAmtra6Snp6N58+YKDx8fn+peItUDDECIasDeWbtEOm3bERFR7dDR3xWNnWygLrtDBKCxU0VJXn1btWoVJBIJOnbsiF27diE1NRUpKSlYvny5PBejMllQMGfOHKSmpmLfvn1YsmSJQptJkybh0KFDuHv3Li5duoTjx4+jZcuWAABfX1+IRCL88MMPePjwIYqKiuDg4ICpU6di8uTJ2LRpE+7cuYNLly5hxYoV2LRpk87XlZ6ejuTkZKSnp0MikchHVGQjLVR3MAAhqgHvlqGwd3XT2MahkRu8W4YaqUdERGQMFmIRZvcLAQClIET2fHa/EIOsBxIQEIBLly4hKioKU6ZMQatWrRATE4OkpCSsXr1a5T6WlpbYsmULbt68ibCwMCxatAgffvihQhuJRIKxY8eiZcuW6N27N4KDg/HZZ58BALy9vTF37lxMmzYNnp6eGDduHABg/vz5mDlzJhITE+X77du3D/7+/jpf16xZs9CuXTvMnj0bRUVFaNeuHdq1a4dffvlF52OReRMJhsxmIp0UFhbCyckJBQUFcHR0NHV3SEvqqmDJsAoWEZF5evLkCe7evQt/f3/Y2FRvqtTBa5mY+/0NhYT0xk42mN0vRO8leMl4NH02eL9Wc6yCRVRDQZGd0T9hhtI6IA6N3BA1jOuAEBHVZb1bNUZMiJdRV0Inqu0YgBDpQVBkZwR2iKyoipX/CPbOLvBuGcrSu0RE9YCFWKTXUrtEdR0DECI9EYst4BOqvl46ERERETEJnYiIiIiIjIgBCBERERERGQ0DECIiIiIiMhoGIEREREREZDQMQIiIiIiIyGgYgBARERHVQSKRCHv27DF1N4iUMAAhIiIiqmWysrIwfvx4BAQEwNraGj4+PujXrx+SkpIMcr4TJ05AJBIhPz/fIMdPS0vD22+/DX9/f9ja2iIwMBCzZ89GWVmZQc5HpsV1QIiIiIhqkbS0NHTp0gXOzs5YvHgxWrdujadPn+LQoUMYO3Ysbt68aeouqiUIAiQSCRo0ULwFvXnzJqRSKdauXYvmzZvj2rVrGDVqFIqLi/Hxxx+bqLdkKBwBISIiIqoJqQS4+xNwdWfFv1KJQU/33nvvQSQS4fz584iLi0NwcDBCQ0ORkJCAn3/+WeU+qkYwkpOTIRKJkJaWBgC4d+8e+vXrBxcXF9jZ2SE0NBT79+9HWloaoqKiAAAuLi4QiUSIj48HAEilUiQmJspHLtq0aYOdO3cqnffAgQMIDw+HtbU1Tp06pdS/3r17Y8OGDejVqxcCAgLQv39/TJ06Fbt379bPm0ZmhSMgRERERNV1Yy9w8H2g8I+/tzk2AXovAkL66/10eXl5OHjwIBYsWAA7Ozul152dnat97LFjx6KsrAwnT56EnZ0dbty4AXt7e/j4+GDXrl2Ii4vDrVu34OjoCFtbWwBAYmIiNm/ejDVr1iAoKAgnT57Em2++CXd3d3Tr1k1+7GnTpuHjjz9GQEAAXFxctOpPQUEBXF1dq309ZL4YgBARERFVx429wPahAATF7YWZFdsHf6n3IOT27dsQBAEtWrTQ63EBID09HXFxcWjdujUAICAgQP6aLBDw8PCQBzmlpaVYuHAhjh49ik6dOsn3OXXqFNauXasQgMybNw8xMTFa9+X27dtYsWIFp1/VUQxAiIiIiHQllVSMfFQOPoD/bRMBB6cBLfoCYgu9nVYQVJ1PPyZMmIAxY8bg8OHDiI6ORlxcHMLCwtS2v337NkpKSpQCi7KyMrRr105hW0REhNb9yMjIQO/evTFo0CCMGjVKt4ugWoE5IERERES6undGcdqVEgEozKhop0dBQUEQiUQ6J5qLxRW3fM8GME+fPlVoM3LkSPz+++946623cPXqVURERGDFihVqj1lUVAQA2LdvH5KTk+WPGzduKOSBAFA5XUyVP/74A1FRUejcuTPWrVun1T5U+zAAISIiItJVUbZ+22nJ1dUVsbGxWLVqFYqLi5VeV1cm193dHQCQmZkp35acnKzUzsfHB++++y52796NKVOmYP369QAAKysrAIBE8neCfUhICKytrZGeno7mzZsrPHx8fHS+toyMDHTv3h3h4eHYsGGDPGiiuoc/WSIiIiJd2Xvqt50OVq1aBYlEgo4dO2LXrl1ITU1FSkoKli9fLs/FqEwWFMyZMwepqanYt28flixZotBm0qRJOHToEO7evYtLly7h+PHjaNmyJQDA19cXIpEIP/zwAx4+fIiioiI4ODhg6tSpmDx5MjZt2oQ7d+7g0qVLWLFiBTZt2qTTNcmCj2bNmuHjjz/Gw4cPkZWVhaysrOq9SWTWmANCREREpCvfzhXVrgozoToPRFTxum9nvZ86ICAAly5dwoIFCzBlyhRkZmbC3d0d4eHhWL16tcp9LC0tsWXLFowZMwZhYWHo0KEDPvzwQwwaNEjeRiKRYOzYsXjw4AEcHR3Ru3dvfPLJJwAAb29vzJ07F9OmTcPw4cMxdOhQbNy4EfPnz4e7uzsSExPx+++/w9nZGe3bt8eMGTN0uqYjR47g9u3buH37Npo2barwmiHzXsg0RAJ/qmajsLAQTk5OKCgogKOjo6m7Q0REVKc9efIEd+/ehb+/P2xsbHQ/gLwKFqAYhIgq/jFAFSwyDk2fDd6v1RynYBERERFVR0j/iiDDsbHidscmDD6INOAULCIiIqLqCulfUWr33pmKhHN7z4ppV3osvUtU1zAAISIiIqoJsQXg/4Kpe0FUa3AKFhERERERGQ0DECIiIiIiMhoGIEREREREZDQMQIiIiIiIyGgYgBARERERkdEwANFg1apV8PPzg42NDSIjI3H+/Hm1bTdu3AiRSKTwqNaiRkREREREdRgDEDW2bduGhIQEzJ49G5cuXUKbNm0QGxuLnJwctfs4OjoiMzNT/rh3754Re0xERET0N5FIhD179pi6G0RKGICosXTpUowaNQrDhw9HSEgI1qxZg4YNG+KLL75Qu49IJIKXl5f84enpacQeExERUX2RlZWF8ePHIyAgANbW1vDx8UG/fv2QlJRkkPOdOHECIpEI+fn5Bjk+APTv3x/NmjWDjY0NGjdujLfeegt//PGHwc5HpsMARIWysjJcvHgR0dHR8m1isRjR0dE4e/as2v2Kiorg6+sLHx8f/OMf/8D169c1nqe0tBSFhYUKDyIiIiJN0tLSEB4ejmPHjmHx4sW4evUqDh48iKioKIwdO9bU3dNIEASUl5erfC0qKgrbt2/HrVu3sGvXLty5cwcDBw40cg/JGBiAqJCbmwuJRKI0guHp6YmsrCyV+zz33HP44osv8N1332Hz5s2QSqXo3LkzHjx4oPY8iYmJcHJykj98fHz0eh1ERERkeBKpBBeyLmD/7/txIesCJFKJQc/33nvvQSQS4fz584iLi0NwcDBCQ0ORkJCAn3/+WeU+qkYwkpOTIRKJkJaWBgC4d+8e+vXrBxcXF9jZ2SE0NBT79+9HWloaoqKiAAAuLi4QiUSIj48HAEilUiQmJsLf3x+2trZo06YNdu7cqXTeAwcOIDw8HNbW1jh16pTKPk6ePBnPP/88fH190blzZ0ybNg0///wznj59WvM3jcxKA1N3oK7o1KkTOnXqJH/euXNntGzZEmvXrsX8+fNV7jN9+nQkJCTInxcWFjIIISIiqkWO3juKj85/hOySbPk2z4aemNZxGqJ9ozXsWT15eXk4ePAgFixYADs7O6XXnZ2dq33ssWPHoqysDCdPnoSdnR1u3LgBe3t7+Pj4YNeuXYiLi8OtW7fg6OgIW1tbABVfpm7evBlr1qxBUFAQTp48iTfffBPu7u7o1q2b/NjTpk3Dxx9/jICAALi4uGh1nV9//TU6d+4MS0vLal8TmScGICq4ubnBwsIC2dnZCtuzs7Ph5eWl1TEsLS3Rrl073L59W20ba2trWFtb16ivREREZBpH7x1FwokECBAUtueU5CDhRAKWdl+q9yDk9u3bEAQBLVq00OtxASA9PR1xcXFo3bo1ACAgIED+mqurKwDAw8NDHuSUlpZi4cKFOHr0qPxL2ICAAJw6dQpr165VCEDmzZuHmJiYKvvw/vvvY+XKlSgpKcHzzz+PH374QV+XR2aEU7BUsLKyQnh4uEIil1QqRVJSksIohyYSiQRXr15F48aNDdVNIiIiMhGJVIKPzn+kFHwAkG9bdH6R3qdjCYLy+fRlwoQJ+PDDD9GlSxfMnj0bV65c0dj+9u3bKCkpQUxMDOzt7eWPL7/8Enfu3FFoGxERoVUf/vWvf+HXX3/F4cOHYWFhgaFDhxr0msk0OAKiRkJCAoYNG4aIiAh07NgRy5YtQ3FxMYYPHw4AGDp0KLy9vZGYmAigIrJ//vnn0bx5c+Tn52Px4sW4d+8eRo4cacrLICIiIgO4lHNJYdpVZQIEZJVk4VLOJXTw6qC38wYFBUEkEuHmzZs67ScWV3zn/OzNfOXcipEjRyI2Nhb79u3D4cOHkZiYiCVLlmD8+PEqj1lUVAQA2LdvH7y9vRVeqzzDQ9V0MVXc3Nzg5uaG4OBgtGzZEj4+Pvj555+1/gKYagcGIGoMGTIEDx8+xKxZs5CVlYW2bdvi4MGD8sT09PR0+S8zADx69AijRo1CVlYWXFxcEB4ejjNnziAkJMRUl0BEREQG8rDkoV7bacvV1RWxsbFYtWoVJkyYoHRjn5+frzIPxN3dHQCQmZkpz8FITk5Waufj44N3330X7777LqZPn47169dj/PjxsLKyAlAxw0MmJCQE1tbWSE9PV5hupS9SqRRAxVQvqlsYgGgwbtw4jBs3TuVrJ06cUHj+ySef4JNPPjFCr4iIiMjU3Bu667WdLlatWoUuXbqgY8eOmDdvHsLCwlBeXo4jR45g9erVSElJUdqnefPm8PHxwZw5c7BgwQL89ttvWLJkiUKbSZMm4aWXXkJwcDAePXqE48ePo2XLlgAAX19fiEQi/PDDD+jTpw9sbW3h4OCAqVOnYvLkyZBKpejatSsKCgpw+vRpODo6YtiwYVpf07lz53DhwgV07doVLi4uuHPnDmbOnInAwECOftRBzAEhIiIi0lF7j/bwbOgJEUQqXxdBBK+GXmjv0V7v5w4ICMClS5cQFRWFKVOmoFWrVoiJiUFSUhJWr16tch9LS0ts2bIFN2/eRFhYGBYtWoQPP/xQoY1EIsHYsWPRsmVL9O7dG8HBwfjss88AAN7e3pg7dy6mTZsGT09P+Re08+fPx8yZM5GYmCjfb9++ffD399fpmho2bIjdu3ejZ8+eeO655/D2228jLCwMP/74Iwv21EEigZk9ZqOwsBBOTk4oKCiAo6OjqbtDRERUpz158gR3796Fv78/bGxsdN5fVgULgEIyuiwoMUQVLDIOTZ8N3q/VHEdAiIiIiKoh2jcaS7svhUdDD4Xtng09GXwQacAcECIiIqJqivaNRpRPFC7lXMLDkodwb+iO9h7tYSG2MHXXiMwWAxAiIiKiGrAQW+i11C5RXccpWEREREREZDQMQIiIiIiIyGgYgBARERERkdEwACEiIiIiIqNhAEJEREREREbDAISIiIiIiIyGAQgRERFRHSQSibBnzx5Td4NICQMQIiIiolomKysL48ePR0BAAKytreHj44N+/fohKSnJIOc7ceIERCIR8vPzDXL8Z5WWlqJt27YQiURITk42+PnI+LgQIREREVEtkpaWhi5dusDZ2RmLFy9G69at8fTpUxw6dAhjx47FzZs3Td1FtQRBgEQiQYMG6m9B//3vf6NJkya4fPmyEXtGxsQRECIiIqIaECQSFJ87j4If9qH43HkIEolBz/fee+9BJBLh/PnziIuLQ3BwMEJDQ5GQkICff/5Z5T6qRjCSk5MhEomQlpYGALh37x769esHFxcX2NnZITQ0FPv370daWhqioqIAAC4uLhCJRIiPjwcASKVSJCYmwt/fH7a2tmjTpg127typdN4DBw4gPDwc1tbWOHXqlNprO3DgAA4fPoyPP/64Zm8SmTWOgBARERFVU+Hhw8hemIjyrCz5tgZeXvCcMR2OvXrp/Xx5eXk4ePAgFixYADs7O6XXnZ2dq33ssWPHoqysDCdPnoSdnR1u3LgBe3t7+Pj4YNeuXYiLi8OtW7fg6OgIW1tbAEBiYiI2b96MNWvWICgoCCdPnsSbb74Jd3d3dOvWTX7sadOm4eOPP0ZAQABcXFxUnj87OxujRo3Cnj170LBhw2pfB5k/BiBERERE1VB4+DAyJk4CBEFhe3l2dsX2T5fpPQi5ffs2BEFAixYt9HpcAEhPT0dcXBxat24NAAgICJC/5urqCgDw8PCQBzmlpaVYuHAhjh49ik6dOsn3OXXqFNauXasQgMybNw8xMTFqzy0IAuLj4/Huu+8iIiJCPipDdRMDECIiIiIdCRIJshcmKgUfFS8KgEiE7IWJcOjZEyILC/2dV9X59GTChAkYM2YMDh8+jOjoaMTFxSEsLExt+9u3b6OkpEQpsCgrK0O7du0UtkVERGg894oVK/D48WNMnz69+hdAtQZzQIiIiIh0VPLLRYVpV0oEAeVZWSj55aJezxsUFASRSKRzorlYLP5ft/4OYJ4+farQZuTIkfj999/x1ltv4erVq4iIiMCKFSvUHrOoqAgAsG/fPiQnJ8sfN27cUMgDAaByutizjh07hrNnz8La2hoNGjRA8+bNAVQELsOGDdP+QqlWYABCREREpKPyhw/12k5brq6uiI2NxapVq1BcXKz0uroyue7u7gCAzMxM+TZVJW59fHzw7rvvYvfu3ZgyZQrWr18PALCysgIASJ5JsA8JCYG1tTXS09PRvHlzhYePj49O17V8+XJcvnxZHsTs378fALBt2zYsWLBAp2OR+eMULCIiIiIdNfjfDb2+2uli1apV6NKlCzp27Ih58+YhLCwM5eXlOHLkCFavXo2UlBSlfWRBwZw5c7BgwQL89ttvWLJkiUKbSZMm4aWXXkJwcDAePXqE48ePo2XLlgAAX19fiEQi/PDDD+jTpw9sbW3h4OCAqVOnYvLkyZBKpejatSsKCgpw+vRpODo66jRy0axZM4Xn9vb2AIDAwEA0bdpU17eIzBxHQIiIiIh01DAiHA28vACRSHUDkQgNvLzQMCJc7+cOCAjApUuXEBUVhSlTpqBVq1aIiYlBUlISVq9erXIfS0tLbNmyBTdv3kRYWBgWLVqEDz/8UKGNRCLB2LFj0bJlS/Tu3RvBwcH47LPPAADe3t6YO3cupk2bBk9PT4wbNw4AMH/+fMycOROJiYny/fbt2wd/f3+9XzfVHSLBkNlMpJPCwkI4OTmhoKAAjo6Opu4OERFRnfbkyRPcvXsX/v7+sLGx0Xl/eRUsQDEZ/X9BibcBqmCRcWj6bPB+reY4AkJERERUDY69esH702Vo4OmpsL2BpyeDDyINmANCREREVE2OvXrBoWfPiqpYDx+igbs7GkaE67X0LlFdwwCEiIiIqAZEFhawi+xo6m4Q1RqcgkVEREREREbDAISIiIiIiIyGAQgRERERERkNAxAiIiIiIjIaJqETkVFJpRJkpFxHUf4j2Du7wLtlKMRiVoshIiKqLxiAEJHRpJ47g2Mb16EoL1e+zd7VDT3iRyMosrMJe0ZERETGwilYRGQUqefOYO/ShQrBBwAU5eVi79KFSD13xkQ9IyKqm0QiEfbs2WPqbhApYQBCRAYnlUpwbOM6jW2Ob1oHqVRipB4REdVuWVlZGD9+PAICAmBtbQ0fHx/069cPSUlJBjnfiRMnIBKJkJ+fb5DjA4Cfnx9EIpHC46OPPjLY+ch0OAWLiAwuI+W60shHZY//zEVGynX4hIYZqVdERLVTWloaunTpAmdnZyxevBitW7fG06dPcejQIYwdOxY3b940dRfVEgQBEokEDRqovgWdN28eRo0aJX/u4OBgrK6REXEEhIgMrij/kV7bERGZE6lUQMatR/jtQhYybj2CVCoY9HzvvfceRCIRzp8/j7i4OAQHByM0NBQJCQn4+eefVe6jagQjOTkZIpEIaWlpAIB79+6hX79+cHFxgZ2dHUJDQ7F//36kpaUhKioKAODi4gKRSIT4+HgAgFQqRWJiIvz9/WFra4s2bdpg586dSuc9cOAAwsPDYW1tjVOnTqm9NgcHB3h5eckfdnZ2NXuzyCxxBISIDM7e2UWv7YiIzMWdX3Pw07ZUFOeXyrfZOVvjhSFBCGznoffz5eXl4eDBg1iwYIHKm3NnZ+dqH3vs2LEoKyvDyZMnYWdnhxs3bsDe3h4+Pj7YtWsX4uLicOvWLTg6OsLW1hYAkJiYiM2bN2PNmjUICgrCyZMn8eabb8Ld3R3dunWTH3vatGn4+OOPERAQABcX9X/rP/roI8yfPx/NmjXDP//5T0yePFntaAnVXvyJEpHBebcMhb2rm8ZpWA6N3ODdMtSIvSIiqpk7v+bg4NprStuL80txcO019H6nld6DkNu3b0MQBLRo0UKvxwWA9PR0xMXFoXXr1gCAgIAA+Wuurq4AAA8PD3mQU1paioULF+Lo0aPo1KmTfJ9Tp05h7dq1CgHIvHnzEBMTo/H8EyZMQPv27eHq6oozZ85g+vTpyMzMxNKlS/V5mWQGGIAQkcGJxRboET8ae5cuVNsmathorgdCRLWGVCrgp22pGtuc2p4K/zbuEItFejuvIBhueteECRMwZswYHD58GNHR0YiLi0NYmPq8vNu3b6OkpEQpsCgrK0O7du0UtkVERFR5/oSEBPl/h4WFwcrKCu+88w4SExNhbW2t49WQOWMOCBEZRVBkZ/RPmAF7VzeF7Q6N3NA/YQbXASGiWiUzNV9h2pUqRY9KkZmar9fzBgUFQSQS6ZxoLhZX3PI9G8A8ffpUoc3IkSPx+++/46233sLVq1cRERGBFStWqD1mUVERAGDfvn1ITk6WP27cuKGQBwKgWrkckZGRKC8vl+eoUN3BERAiMpqgyM4I7BDJldCJqNYrLtQcfOjaTluurq6IjY3FqlWrMGHCBKUb+/z8fJV5IO7u7gCAzMxMeQ5GcnKyUjsfHx+8++67ePfddzF9+nSsX78e48ePh5WVFQBAIvm7XHpISAisra2Rnp6uMN1KX5KTkyEWi+Hhof9cGjItBiBEZFRisQVL7RJRrWfnqN2UIG3b6WLVqlXo0qULOnbsiHnz5iEsLAzl5eU4cuQIVq9ejZSUFKV9mjdvDh8fH8yZMwcLFizAb7/9hiVLlii0mTRpEl566SUEBwfj0aNHOH78OFq2bAkA8PX1hUgkwg8//IA+ffrA1tYWDg4OmDp1KiZPngypVIquXbuioKAAp0+fhqOjI4YNG6b1NZ09exbnzp1DVFQUHBwccPbsWUyePBlvvvmmxqR1qp04BYuIiIhIR42DnGHnrDm4sHexRuMgZ72fOyAgAJcuXUJUVBSmTJmCVq1aISYmBklJSVi9erXKfSwtLbFlyxbcvHkTYWFhWLRoET788EOFNhKJBGPHjkXLli3Ru3dvBAcH47PPPgMAeHt7Y+7cuZg2bRo8PT0xbtw4AMD8+fMxc+ZMJCYmyvfbt28f/P39dboma2trbN26Fd26dUNoaCgWLFiAyZMnY906zYvYUu0kEgyZzUQ6KSwshJOTEwoKCuDo6Gjq7hAREdVpT548wd27d+Hv7w8bGxud91dXBUvGEFWwyDg0fTZ4v1ZzHAEhIiIiqobAdh7o/U4rpZEQexdrBh9EGjAHhIiIiKiaAtt5wL+Ne0VVrMJS2DlWTLvSZ+ldorqGIyAarFq1Cn5+frCxsUFkZCTOnz+v1X5bt26FSCTCK6+8YtgOEhERkcmJxSJ4P+eC4A5e8H7OhcEHURUYgKixbds2JCQkYPbs2bh06RLatGmD2NhY5OTkaNwvLS0NU6dOxQsvvGCknhIRERER1R4MQNRYunQpRo0aheHDhyMkJARr1qxBw4YN8cUXX6jdRyKR4I033sDcuXMREBBgxN4SEREREdUODEBUKCsrw8WLFxEdHS3fJhaLER0djbNnz6rdb968efDw8MDbb79tjG4SEREREdU6TEJXITc3FxKJBJ6engrbPT09cfPmTZX7nDp1Cp9//rnKVUXVKS0tRWnp3yukFhYWVqu/RERERES1BUdA9ODx48d46623sH79eri5uWm9X2JiIpycnOQPHx8fA/aSiIiIiMj0OAKigpubGywsLJCdna2wPTs7G15eXkrt79y5g7S0NPTr10++TSqVAgAaNGiAW7duITAwUGm/6dOnIyEhQf68sLCQQQgRERER1WkcAVHBysoK4eHhSEpKkm+TSqVISkpCp06dlNq3aNECV69eRXJysvzRv39/REVFITk5WW1QYW1tDUdHR4UHERERkbH4+flh2bJlpu6GRvHx8VzaoI5hAKJGQkIC1q9fj02bNiElJQVjxoxBcXExhg8fDgAYOnQopk+fDgCwsbFBq1atFB7Ozs5wcHBAq1atYGVlZcpLISIiojokPj4eIpEIH330kcL2PXv2QCTSbQ2SCxcuYPTo0frsnt59+umn2Lhxo077iEQi7NmzxyD9oZrjFCw1hgwZgocPH2LWrFnIyspC27ZtcfDgQXlienp6OsRixm9ERERkfDY2Nli0aBHeeecduLi4VPs47u7ueuyVYTg5OZm6C6RnvIPWYNy4cbh37x5KS0tx7tw5REZGyl87ceKExmh848aNjLyJiIjqAalUgvvXryDl9I+4f/0KpFKJwc8ZHR0NLy8vJCYmamy3a9cuhIaGwtraGn5+fliyZInC689OwRIEAXPmzEGzZs1gbW2NJk2aYMKECfK2paWlmDp1Kry9vWFnZ4fIyEicOHFC4/lFIhFWr16Nl156Cba2tggICMDOnTsV2ly9ehU9evSAra0tGjVqhNGjR6OoqEj+euUpWN27d8eECRPw73//G66urvDy8sKcOXMUrgkABgwYAJFIJH9++fJlREVFwcHBAY6OjggPD8cvv/yisf9kGAxAiIiIiKop9dwZrB/7NrbPm4H9yxdj+7wZWD/2baSeO2PQ81pYWGDhwoVYsWIFHjx4oLLNxYsXMXjwYLz22mu4evUq5syZg5kzZ6r9AnXXrl345JNPsHbtWqSmpmLPnj1o3bq1/PVx48bh7Nmz2Lp1K65cuYJBgwahd+/eSE1N1djXmTNnIi4uDpcvX8Ybb7yB1157DSkpKQCA4uJixMbGwsXFBRcuXMCOHTtw9OhRjBs3TuMxN23aBDs7O5w7dw7/+c9/MG/ePBw5cgRAxbQyANiwYQMyMzPlz9944w00bdoUFy5cwMWLFzFt2jRYWlpqPA8ZBgMQIiIiompIPXcGe5cuRFFersL2orxc7F260OBByIABA9C2bVvMnj1b5etLly5Fz549MXPmTAQHByM+Ph7jxo3D4sWLVbZPT0+Hl5cXoqOj0axZM3Ts2BGjRo2Sv7Zhwwbs2LEDL7zwAgIDAzF16lR07doVGzZs0NjPQYMGYeTIkQgODsb8+fMRERGBFStWAAC++eYbPHnyBF9++SVatWqFHj16YOXKlfjqq6+UqpE+KywsDLNnz0ZQUBCGDh2KiIgIefEg2bQyZ2dneHl5yZ+np6cjOjoaLVq0QFBQEAYNGoQ2bdpo7DsZBgMQIiIiIh1JpRIc27hOY5vjm9YZfDrWokWL5AVzKktJSUGXLl0UtnXp0gWpqamQSJT7NWjQIPz1118ICAjAqFGj8O2336K8vBxAxTQpiUSC4OBg2Nvbyx8//vgj7ty5o7GPlSuIdurUSd7flJQUtGnTBnZ2dgp9lEqluHXrltpjhoWFKTxv3LgxcnJyNPYjISEBI0eORHR0ND766KMq+02GwwCEiIiISEcZKdeVRj4qe/xnLjJSrhu0Hy+++CJiY2PllTlrwsfHB7du3cJnn30GW1tbvPfee3jxxRfx9OlTFBUVwcLCAhcvXlRYdiAlJQWffvqpHq5EN5WnTolEIvkabOrMmTMH169fR9++fXHs2DGEhITg22+/NWQ3SQ0GIEREREQ6Ksp/pNd2NfHRRx/h+++/x9mzZxW2t2zZEqdPn1bYdvr0aQQHB8PCwkLlsWxtbdGvXz8sX74cJ06cwNmzZ3H16lW0a9cOEokEOTk5aN68ucJD1SLNz/r555+Vnrds2VLex8uXL6O4uFihj2KxGM8995zW70FllpaWKkd5goODMXnyZBw+fBivvvpqldPHyDAYgBARERHpyN5Zu9K32raridatW+ONN97A8uXLFbZPmTIFSUlJmD9/Pn777Tds2rQJK1euxNSpU1UeZ+PGjfj8889x7do1/P7779i8eTNsbW3h6+uL4OBgvPHGGxg6dCh2796Nu3fv4vz580hMTMS+ffs09m/Hjh344osv8Ntvv2H27Nk4f/68PMn8jTfegI2NDYYNG4Zr167h+PHjGD9+PN566y350gfV4efnh6SkJGRlZeHRo0f466+/MG7cOJw4cQL37t3D6dOnceHCBXkgRMbFAISIiIhIR94tQ2Hv6qaxjUMjN3i3DDVKf+bNm6c0Bal9+/bYvn07tm7dilatWmHWrFmYN28e4uPjVR7D2dkZ69evR5cuXRAWFoajR4/i+++/R6NGjQBUVJUaOnQopkyZgueeew6vvPIKLly4gGbNmmns29y5c7F161aEhYXhyy+/xJYtWxASEgIAaNiwIQ4dOoS8vDx06NABAwcORM+ePbFy5coavR9LlizBkSNH4OPjg3bt2sHCwgJ//vknhg4diuDgYAwePBgvvfQS5s6dW6PzUPWIBEEQTN0JqlBYWAgnJycUFBTA0dHR1N0hIiKq0548eYK7d+/C398fNjY2Ou8vq4KlTv+EGQiK7FyTLtZ6IpEI3377rcI6HrWBps8G79dqjiMgRERERNUQFNkZ/RNmKI2EODRyY/BBpEEDU3eAiIiIqLYKiuyMwA6RFVWx8h/B3tkF3i1DIRarTvImIgYgRERERDUiFlvAJzSs6ob1EGf6kyqcgkVEREREREbDAISIiIiIiIyGAQgRERHVa5wmRJXxM2FYDECIiIioXpKtBl5WVmbinpC5KSkpAVCxojrpH5PQiYiIqF5q0KABGjZsiIcPH8LS0hJiMb+Xre8EQUBJSQlycnLg7OwsD1JJvxiAEBERUb0kEonQuHFj3L17F/fu3TN1d8iMODs7w8vLy9TdqLMYgBAREVG9ZWVlhaCgIE7DIjlLS0uOfBgYAxAiIiKq18RiMWxsbEzdDaJ6g5MdiYiIiIjIaBiAEBERERGR0TAAISIiIiIio2EAQkRERERERsMAhIiIiIiIjIYBCBERERERGQ0DECIiIiIiMhoGIEREREREZDQMQIiIiIiIyGgYgBARERERkdEwACEiIiIiIqNhAEJEREREREbDAISIiIiIiIyGAQgRERERERkNAxAiIiIiIjIaBiBERERERGQ0DECIiIiIiMhoGIAQEREREZHRMAAhIiIiIiKjYQBCRERERERGwwCEiIiIiIiMhgEIEREREREZDQMQIiIiIiIyGgYgRERERERkNAxAiIiIiIjIaBiAEBERERGR0TAAISIiIiIio2EAQkRERERERsMARINVq1bBz88PNjY2iIyMxPnz59W23b17NyIiIuDs7Aw7Ozu0bdsWX331lRF7S0RERERk/sw6AJFKpWq3p6enG/Tc27ZtQ0JCAmbPno1Lly6hTZs2iI2NRU5Ojsr2rq6u+OCDD3D27FlcuXIFw4cPx/Dhw3Ho0CGD9pOIiIiIqDYxywCksLAQgwcPhp2dHTw9PTFr1ixIJBL56w8fPoS/v79B+7B06VKMGjUKw4cPR0hICNasWYOGDRviiy++UNm+e/fuGDBgAFq2bInAwEBMnDgRYWFhOHXqlEH7SURERERUm5hlADJz5kxcvnwZX331FRYsWIAvv/wS//jHP1BWViZvIwiCwc5fVlaGixcvIjo6Wr5NLBYjOjoaZ8+erXJ/QRCQlJSEW7du4cUXXzRYP4mIiIiIapsGpu6AKnv27MGmTZvQvXt3AMArr7yCvn37ol+/fti7dy8AQCQSGez8ubm5kEgk8PT0VNju6emJmzdvqt2voKAA3t7eKC0thYWFBT777DPExMSobV9aWorS0lL588LCwpp3noiIiIjIjJnlCMjDhw/h6+srf+7m5oajR4/i8ePH6NOnD0pKSkzYO/UcHByQnJyMCxcuYMGCBUhISMCJEyfUtk9MTISTk5P84ePjY7zOEhERERGZgFkGIM2aNUNKSorCNgcHBxw+fBh//fUXBgwYYNDzu7m5wcLCAtnZ2Qrbs7Oz4eXlpXY/sViM5s2bo23btpgyZQoGDhyIxMREte2nT5+OgoIC+eP+/ft6uwYiIiIiInNklgFIr169sGHDBqXt9vb2OHToEGxsbAx6fisrK4SHhyMpKUm+TSqVIikpCZ06ddL6OFKpVGGKVWXW1tZwdHRUeBARERER1WVmmQMyd+5c/PHHHypfc3BwwJEjR3Dp0iWD9iEhIQHDhg1DREQEOnbsiGXLlqG4uBjDhw8HAAwdOhTe3t7yEY7ExEREREQgMDAQpaWl2L9/P7766iusXr3aoP0kIiIiIqpNzDIAcXFxgYuLi9rXHRwc0K1bN4P2YciQIXj48CFmzZqFrKwstG3bFgcPHpQnpqenp0Ms/nsAqbi4GO+99x4ePHgAW1tbtGjRAps3b8aQIUMM2k8iIiIiotpEJBiyni3ppLCwEE5OTigoKOB0LCIiIiIzxPu1mjPLHBAiIiIiIqqbGIAQEREREZHRMAAhIiIiIiKjMesAxMLCAjk5OUrb//zzT1hYWJigR0REREREVBNmWQVLRl1+fGlpKaysrIzcm7pFKpUgI+U6ivIfwd7ZBd4tQyEWM6gjIiIiIsMyywBk+fLlAACRSIT//ve/sLe3l78mkUhw8uRJtGjRwlTdq/VSz53BsY3rUJSXK99m7+qGHvGjERTZ2YQ9IyIiIqK6zizL8Pr7+wMA7t27h6ZNmypMt7KysoKfnx/mzZuHyMhIU3XRIIxR1i313BnsXbpQ7ev9E2YwCCEiIiJSg2V4a84sR0Du3r0LAIiKisLu3bs1LkpI2pNKJTi2cZ3GNsc3rUNgh0hOxyIiIiIigzDrJPTjx48z+NCjjJTrCtOuVHn8Zy4yUq4bqUdEREREVN+Y5QiIjEQiwcaNG5GUlIScnBxIpVKF148dO2aintVORfmP9NqOiIiIiEhXZh2ATJw4ERs3bkTfvn3RqlUriEQiU3epVrN31m40Sdt2RERERES6MusAZOvWrdi+fTv69Olj6q7UCd4tQ2Hv6qZxGpZDIzd4tww1Yq+IiIiIqD4x6xwQKysrNG/e3NTdqDPEYgv0iB+tsU3UsNFMQCciIiIigzHrAGTKlCn49NNP1S5ISLoLiuyM/gkzYO/qprDdoZEbS/ASERERkcGZ5TogMgMGDMDx48fh6uqK0NBQWFpaKry+e/duE/XMMIxZV5oroRMRERHpjuuA1JxZ54A4OztjwIABpu5GnSQWW8AnNMzU3SAiIiKiesasA5ANGzaYugtERERERKRHZp0DAgDl5eU4evQo1q5di8ePHwMA/vjjDxQVFZm4Z0REREREpCuzHgG5d+8eevfujfT0dJSWliImJgYODg5YtGgRSktLsWbNGlN3kYiIiIiIdGDWIyATJ05EREQEHj16BFtbW/n2AQMGICkpyYQ9IyIiIiKi6jDrEZCffvoJZ86cgZWVlcJ2Pz8/ZGRkmKhXRERERERUXWY9AiKVSiGRSJS2P3jwAA4ODiboERERERER1YRZByC9evXCsmXL5M9FIhGKioowe/Zs9OnTx3QdIyIiIiKiajHrhQgfPHiA2NhYCIKA1NRUREREIDU1FW5ubjh58iQ8PDxM3UW94sI2REREROaN92s1Z9YBCFBRhnfr1q24cuUKioqK0L59e7zxxhsKSel1BT/QREREROaN92s1Z9ZJ6ADQoEEDvPnmm6buBhERERER6YHZByCpqak4fvw4cnJyIJVKFV6bNWuWiXpFRERERETVYdYByPr16zFmzBi4ubnBy8sLIpFI/ppIJGIAQkRERERUy5h1APLhhx9iwYIFeP/9903dFSIiIiIi0gOzLsP76NEjDBo0yNTdICIiIiIiPTHrAGTQoEE4fPiwqbtBRERERER6YtZTsJo3b46ZM2fi559/RuvWrWFpaanw+oQJE0zUMyIiIiIiqg6zXgfE399f7WsikQi///67EXtjeKwrTURERGTeeL9Wc2Y9AnL37l1Td4GIiIiIiPTIrHNAniUIAsx4sIaIiIiIiLRg9gHIl19+idatW8PW1ha2trYICwvDV199ZepuERERERFRNZj1FKylS5di5syZGDduHLp06QIAOHXqFN59913k5uZi8uTJJu4hERERERHpwuyT0OfOnYuhQ4cqbN+0aRPmzJlT53JEmNREREREZN54v1ZzZj0FKzMzE507d1ba3rlzZ2RmZpqgR0REREREVBNmHYA0b94c27dvV9q+bds2BAUFmaBHRERERERUE2adAzJ37lwMGTIEJ0+elOeAnD59GklJSSoDEyIiIiIiMm9mPQISFxeHc+fOwc3NDXv27MGePXvg5uaG8+fPY8CAAabuHhERERER6cisk9DrGyY1EREREZk33q/VnFlPwQIAiUSCb7/9FikpKQCAkJAQ/OMf/0CDBmbfdSIiIiIiqsSs7+KvX7+O/v37IysrC8899xwAYNGiRXB3d8f333+PVq1ambiHRERERESkC7POARk5ciRCQ0Px4MEDXLp0CZcuXcL9+/cRFhaG0aNHm7p7RERERESkI7MeAUlOTsYvv/wCFxcX+TYXFxcsWLAAHTp0MGHPiIiIiIioOsx6BCQ4OBjZ2dlK23NyctC8eXODn3/VqlXw8/ODjY0NIiMjcf78ebVt169fjxdeeAEuLi5wcXFBdHS0xvZERERERPWRWQcgiYmJmDBhAnbu3IkHDx7gwYMH2LlzJyZNmoRFixahsLBQ/tC3bdu2ISEhAbNnz8alS5fQpk0bxMbGIicnR2X7EydO4PXXX8fx48dx9uxZ+Pj4oFevXsjIyNB734iIiIiIaiuzLsMrFv8dH4lEIgCArLvPPheJRJBIJHo9d2RkJDp06ICVK1cCAKRSKXx8fDB+/HhMmzatyv0lEglcXFywcuVKDB06VKtzsqwbERERkXnj/VrNmXUOyPHjx01y3rKyMly8eBHTp0+XbxOLxYiOjsbZs2e1OkZJSQmePn0KV1dXtW1KS0tRWloqf26IkRxjkEolyEi5jqL8R7B3doF3y1CIxRam7hYRERERmSGzDkC6detmkvPm5uZCIpHA09NTYbunpydu3ryp1THef/99NGnSBNHR0WrbJCYmYu7cuTXqq6mlnjuDYxvXoSgvV77N3tUNPeJHIyiyswl7RkRERETmyKwDEAB48uQJrly5gpycHEilUoXX+vfvb6JeafbRRx9h69atOHHiBGxsbNS2mz59OhISEuTPCwsL4ePjY4wu6kXquTPYu3Sh0vaivFzsXboQ/RNmMAghIiIiIgVmHYAcPHgQQ4cORW5urtJrhsj7kHFzc4OFhYVSBa7s7Gx4eXlp3Pfjjz/GRx99hKNHjyIsLExjW2tra1hbW9e4v6YglUpwbOM6jW2Ob1qHwA6RnI5FRERERHJmXQVr/PjxGDRoEDIzMyGVShUehgo+AMDKygrh4eFISkqSb5NKpUhKSkKnTp3U7vef//wH8+fPx8GDBxEREWGw/pmDjJTrCtOuVHn8Zy4yUq4bqUdEREREVBuY9QhIdnY2EhISlHIxjCEhIQHDhg1DREQEOnbsiGXLlqG4uBjDhw8HAAwdOhTe3t5ITEwEACxatAizZs3CN998Az8/P2RlZQEA7O3tYW9vb/T+G1pR/iO9tiMiIiKi+sGsA5CBAwfixIkTCAwMNPq5hwwZgocPH2LWrFnIyspC27ZtcfDgQXkwlJ6erlAmePXq1SgrK8PAgQMVjjN79mzMmTPHmF03Cntnl6ob6dCOiIiIiOoHs14HpKSkBIMGDYK7uztat24NS0tLhdcnTJhgop4ZRm2qKy2VSrB+7Nsap2E5NHLDyJWfMweEiIiI6ozadL9mrsx6BGTLli04fPgwbGxscOLECfnig0BFEnpdC0BqE7HYAj3iR6usgiUTNWw0gw8iIiIiUmDWIyBeXl6YMGECpk2bpjDdqa6qjRG1qnVAHBq5IWoY1wEhIiKiuqc23q+ZG7MeASkrK8OQIUPqRfBRWwVFdkZgh0iuhE5EREREWjHrO/thw4Zh27Ztpu4GVUEstoBPaBhadukGn9AwBh9EREREpJZZj4BIJBL85z//waFDhxAWFqaUhL506VIT9YyIiIiIiKrDrAOQq1evol27dgCAa9euKbz2bEI6ERERERHVDmYdgBw/ftzUXSAiIiIiIj0y6xyQZz148AAPHjwwdTeIiIiIiKgGzDoAkUqlmDdvHpycnODr6wtfX184Oztj/vz5kEqlpu4eERERERHpyKynYH3wwQf4/PPP8dFHH6FLly4AgFOnTmHOnDl48uQJFixYYOIeEhERERGRLsx6IcImTZpgzZo16N+/v8L27777Du+99x4yMjJM1DPD4MI2REREROaN92s1Z9ZTsPLy8tCiRQul7S1atEBeXp4JekRERERERDVh1gFImzZtsHLlSqXtK1euRJs2bUzQIyIiIiIiqgmzzgH5z3/+g759++Lo0aPo1KkTAODs2bO4f/8+9u/fb+LeERERERGRrsx6BKRbt264desWBgwYgPz8fOTn5+PVV1/FrVu38MILL5i6e0REREREpCOzTkKvb5jURERERGTeeL9Wc2Y9ArJhwwbs2LFDafuOHTuwadMmE/SIiIiIiIhqwqwDkMTERLi5uSlt9/DwwMKFC03QIyIiIiIiqgmzTkJPT0+Hv7+/0nZfX1+kp6eboEdERLWHVCpBRsp1FOU/gr2zC7xbhkIstjB1t4iIqJ4z6wDEw8MDV65cgZ+fn8L2y5cvo1GjRqbpFBFRLZB67gyObVyHorxc+TZ7Vzf0iB+NoMjOJuwZERHVd2Y9Bev111/HhAkTcPz4cUgkEkgkEhw7dgwTJ07Ea6+9ZuruERGZpdRzZ7B36UKF4AMAivJysXfpQqSeO2OinhEREZn5CMj8+fORlpaGnj17okGDiq5KpVIMHTqUOSBERCpIpRIc27hOY5vjm9YhsEMkp2MREZFJmHUAYmVlhW3btuHDDz9EcnIybG1t0bp1a/j6+pq6a0REZikj5brSyEdlj//MRUbKdfiEhhmpV0RERH8z6wBEJigoCEFBQabuBhGR2SvKf6TXdkRERPpm1jkgRESkG3tnF722IyIi0jcGIEREdYh3y1DYuyqvn/Qsh0Zu8G4ZaqQeERERKWIAQkRUh4jFFugRP1pjm6hho5mATkREJsMAhIiojgmK7Iz+CTOURkIcGrmhf8IMrgNCREQmZZZJ6Lm5uSguLlaodnX9+nV8/PHHKC4uxiuvvIJ//vOfJuwhEZF5C4rsjMAOkVwJnYiIzI5ZBiDjx49HkyZNsGTJEgBATk4OXnjhBTRp0gSBgYGIj4+HRCLBW2+9ZeKeEhGZL7HYgqV2iYjI7JjlFKyff/4Z/fv3lz//8ssv4erqiuTkZHz33XdYuHAhVq1aZcIeEhERERFRdZhlAJKVlQU/Pz/582PHjuHVV1+Vr4bev39/pKammqh3RERERERUXWYZgDg6OiI/P1/+/Pz584iMjJQ/F4lEKC0tNUHPiIiIiIioJswyAHn++eexfPlySKVS7Ny5E48fP0aPHj3kr//222/w8fExYQ+JiEhGKpXg/vUrSDn9I+5fvwKpVGLqLhERkRkzyyT0+fPno2fPnti8eTPKy8sxY8YMuLj8vWrv1q1b0a1bNxP2kIiIACD13Bkc27gORXm58m32rm7oET+a5X6JiEglkSAIgqk7oUpubi5Onz4NLy8vhelXALBv3z6EhITA39/fRL0zjMLCQjg5OaGgoACOjo6m7g4RkUap585g79KFal/nmiNEVBfxfq3mzDYAqY/4gSai2kIqlWD92LcVRj4qc2jkhpErP+faI0RUp/B+rebMMgcEAKRSKb744gu8/PLLaNWqFVq3bo3+/fvjyy+/BGMmIiLTyki5rjH4AIDHf+YiI+W6kXpERES1hVkGIIIgoH///hg5ciQyMjLQunVrhIaG4t69e4iPj8eAAQNM3UUionqtKP+RXtsREVH9YZZJ6Bs3bsTJkyeRlJSEqKgohdeOHTuGV155BV9++SWGDh1qoh4SEdVv9s4uVTfSoR0RUXVIpZKKEdn8R7B3doF3y1BO+6wFzDIA2bJlC2bMmKEUfABAjx49MG3aNHz99dcMQIiITMS7ZSjsXd2qzAHxbhlqxF4RUX3CKny1l1lOwbpy5Qp69+6t9vWXXnoJly9fNmKPiIjoWWKxBXrEj9bYJmrYaH4TSUQGIavCV/lLkKK8XOxduhCp586YqGekDbMMQPLy8uDp6an2dU9PTzx6xHnFRESmFBTZGf0TZsDe1U1hu0MjN5bgJSKDkUolOLZxncY2xzet46KoZswsp2BJJBI0aKC+axYWFigvLzdij4iISJWgyM4I7BDJOdhEZDS6VOHzCQ0zUq9IF2YZgAiCgPj4eFhbW6t8vbS01Mg9IiIidcRiC/5PnoiMhlX4aj+zDECGDRtWZRsmoBMRERkOqwuRuWIVvtrPLAOQDRs2mLoLRERE9RarC5E5YxW+2s8sk9DNxapVq+Dn5wcbGxtERkbi/Pnzattev34dcXFx8PPzg0gkwrJly4zXUSIiIj1hdSEyd6zCV/uZ5QjIiBEjtGr3xRdfGKwP27ZtQ0JCAtasWYPIyEgsW7YMsbGxuHXrFjw8PJTal5SUICAgAIMGDcLkyZMN1i8iIiJD0ba6UGCHSN7ckUnJqvBVHqlzaOSGqGEcqTN3IkEQBFN3ojKxWAxfX1+0a9cOmrr37bffGqwPkZGR6NChA1auXAkAkEql8PHxwfjx4zFt2jSN+/r5+WHSpEmYNGmSTucsLCyEk5MTCgoK4OjoWN2uExERVcv961ewfd6MKtsNnrWQhQfILJgiV4n3azVnliMgY8aMwZYtW3D37l0MHz4cb775JlxdXY12/rKyMly8eBHTp0+XbxOLxYiOjsbZs2f1dp7S0lKFil6FhYV6OzYREZGuWF2IahtW4audzDIHZNWqVcjMzMS///1vfP/99/Dx8cHgwYNx6NAhjSMi+pKbmwuJRKK0GKKnpyeysrL0dp7ExEQ4OTnJHz4+Pno7NhERka5YXYiIjMEsAxAAsLa2xuuvv44jR47gxo0bCA0NxXvvvQc/Pz8UFRWZunt6MX36dBQUFMgf9+/fN3WXiIioHpNVF9KE1YWIqKbMNgB5llgshkgkgiAIkEgkBj+fm5sbLCwskJ2drbA9OzsbXl5eejuPtbU1HB0dFR5ERESmwupCRGQMZhuAlJaWYsuWLYiJiUFwcDCuXr2KlStXIj09Hfb29gY9t5WVFcLDw5GUlCTfJpVKkZSUhE6dOhn03ERERKYkqy5UeSTEoZEb+ifMYHUhIqoxs0xCf++997B161b4+PhgxIgR2LJlC9zcNA8J61tCQgKGDRuGiIgIdOzYEcuWLUNxcTGGDx8OoGIldm9vbyQmJgKoSFy/ceOG/L8zMjKQnJwMe3t7NG/e3Kh9JyIiqomgyM4I7BDJldCJyCDMtgxvs2bN0K5dO4hEIrXtdu/ebdB+rFy5EosXL0ZWVhbatm2L5cuXIzIyEgDQvXt3+Pn5YePGjQCAtLQ0+Pv7Kx2jW7duOHHihFbnY1k3IiIiIvPG+7WaM8sAJD4+XmPgIbNhwwYj9MZ4+IEmIqLayBRrMRCZCu/Xas4sp2DJRhWIiIjIvKWeO6O0GrW9qxt6xHM1aiJSzWyT0ImIiMi8pZ47g71LFyoEHwBQlJeLvUsXIvXcGRP1jIxBKpXg/vUrSDn9I+5fvwKp1PCVSqluMMsRECIiIjJvUqkExzau09jm+KZ1COwQyelYdRBHvqgmOAJCREREOstIua408lHZ4z9zkZFy3Ug9ImPhyBfVFAMQIiKqMU7FqH+K8h/ptR3VDtqOfPFvAGnCKVhERFQjnIpRP9k7u2jV7s8H6bh//UqtqozFql7q6TLy5RMaZqReUW3DAISIiKpNNhWjMtlUDK6cXXd5twyFvatblTej53Zvw7nd22pNUFpbAmpTBUkc+SJ94BQsIiKqFk7FqN/EYgv0iB+tdfvakB9QW3IbUs+dwfqxb2P7vBnYv3wxts+bgfVj3zZK/7Qd+dK2HdVPDECIiKhamIRMQZGd0T9hBuxd3bTex1yD0toSUJs6SJKNfGni0MgN3i1DDdoPqt0YgBARUbVwKgYBFUHIqFWfY/CshXj+1SFVtjfXoLQ2BNTmECRpM/IVNWw0c2ZIIwYgRERULZyKQTJisQV8QsPg2rSZVu3NMSitDQG1uQRJ6ka+HBq5Me+LtMIkdCIiqhZtkpA5FaN+qc1BaW3ouzkFSUGRnRHYIZLVwqhaOAJCRETVwqkYVFltzg+oDX03tyBJNvLVsks3+ISG8XedtMYAhIhqDS52Z344FYOeVZuD0trQ99oQJBFpQyQIgmDqTlCFwsJCODk5oaCgAI6OjqbuDpFZqQ21+evz4mX1+doNrTa+t6p+Xx0auSFqmH5+Xw35nhi67zWlbu0dGQb+hsf7tZpjAGJG+IEmUq02/A+3NgRIVPvU5s+VoYIEY7wn5h70mXuQVNfxfq3mGICYEX6giZRJpRKsH/t2lYnOI1d+brIbhNoQIFHtw8+VMr4nfzP3IKku4/1azTEHhIjMWnXLThorX8Qc6vJT3cPPlTJt3pMj/12J8vIyI/XItJgATrUZy/ASkVmrTtlJY05b0SVA8gkN0+u5zRm/na0Zfq6UafOe/FVYiHVj4hEzcpzS7zo/k0TmgwEIEZk1XctOqpuiUZSXi71LF+p9ioY51eU3F6oCQBt7e7R/qT8iXx3Cmz4t1KfPlbaBgbbX+ldhodLvem3OpSGqixiAEJFZ02WxO22nrQR2iNTbTbC51eU3NXUB4JOiIpzZ8Q0uHfgevUaP501fFerL50qXwEDXa5X9rt+5cM6oX0oQUdWYA0JEZk2X2vzVzRepCdbl/5s2AeCTosfYu3QhUs+dMVKvaqf68LmSBauVf2dlgUHlz4g278mzHv+Zi/s3rjKXhsgMMQAhIrOn7WJ3ppi2UhsWLzMWbQJAGd70aVbXP1fVSbLX5j2p7MH1q0b/UoKIqsYpWERUKwRFdkZgh0iNc8VNNW1FFiDV97r8ugR29S2BujrM6nMllQD3zgBF2YC9J+DbGahB8FPdJHvZe3J4/Uo8eVxY5Xm0XWfAnHNpmDxPdREDECKqNWRlJ9XRJV9E37QJkOo6XQM7c77pMxdm8bm6sRc4+D5Q+Mff2xybAL0XASH9q3XImoxWBkV2hn94BNaNicdfheqDEIdGbvAJaY1zu7dVeR5zzaVh8jzVVZyCRUR1hqmnrdT3uvy6ztE315s+c6Ppc2Xw9W5u7AW2D1UMPgCgMLNi+4291Tqstj/7kvxHKq+pQQMrxIwcp3HfqGGj4RPautbm0miTIyORCjh75098l5yBs3f+hETKtaWpduBK6GaEK2sS6Yeqbw3r23QoU6lqpWoZU69eXxcY/NtxqQRY1ko5+JATVYyETLqq83QsqVSC9WPf1ipnSNM1afO7XhtXT9fm/Wng6IKt/kORWfj3wouNnWwwu18IerdqbIxu1lu8X6s5BiBmhB9oIv3hvGnTST13BofXrcCTosdq25jjTV9tYpSb6rs/AZterrrdsB8A/xd0Pry2waqMumvS5ne9tn0pcf/6FWyfN6PKdru9+iPD1lv+XPS/f1e/2Z5BiAHxfq3mmANCRHVSVfkiZDiyvIVzu7fj4v69KC3+OxAx55u+2sJo690UZeu3XSXqkuzVUXdN2vyuGzqXRiIVcP5uHnIeP4GHgw06+rvCQiyqekc1tM2RaSgpUXguoCIImfv9DcSEeNWoD0SGxACEiIj0Tiy2QKeBryPy1cEcidKz6laQ0pm9p37bqSALDH498D1OfPlfjW1rek2G+lLi4LVMzP3+BjILnsi31XQqlNY5MhYNlbYJADILnuD83Tx0CmxUrfMTGRoDECIiMhiOROmf1hWk8v6smEZV3dK5vp0rcjwKM6G6oO3/ckB8azaaJRZboKGWN9zmVjnt4LVMjNl8SendySp4gjGbL1V7KlRVFf0EAEUW9vjDRv2xcx4/UfsakamxChYREVEtovV6N0kJFTkcu96u+HdZK92qVoktKkrtAvg7uwCKz3t/VKP1QOR9NdEaPjUhkQqY+/0NlaGZbNvc729UqzKVNhX9fmrUBYJI/W2ch4ONzuclMhYGIEREVTB4qVMiHWhT7tihwRN4C78rbqxO6dyQ/sDgLwHHSt+0Ozap2F7NdUAq0+qazKxc7vm7eQrTrip7dipUdchyZCq/L/aN3HDW72X8bhegcj8RKqaAdfR3rdZ5iYyBU7CIiDTgQmBkbmTfjquvICUgyvN3KOcf/y9F+eA0oEVf7UcuQvpXtNfjSuiVVX1Nhl3Dpzq0neJUk6lQ6pLnfW/kYMzmSxBBcXKc7Ec+u18IE9DJrHEEhIhIDW0WAiMyBXXfjjs4OaC/dwqCHP9Us6cAFGZUBBO6EFtUlNptPbDiXwMEAmqvqZGbWZZt1naKU02nQqlaiLJ3q8ZY/WZ7eDkpHtvLyYYleKlW4AgIEZEKRit1SlRNKr8dL78J8bf7q965mqVzDU0f5XKNtQZQR39XNHayQVbBE3Up+vAy4FSo3q0aIybES6/lf4mMhQEIEZEKRit1SlQDSlXG7hZot2MNSufqSteAQNfKac8ePz8zA1eSDlVUAPsfQ02ZtBCLMLtfiEmnQlmIRRpL7ep7fRIifWEAQkSkgtalTs2sLCjVc0YqnastQ+dQqTp+ZbIpk4aYxiWbClV5HRCvGq4Dog+GWJ+ESF8YgBARqVAby4ISyUvnbh8KqPteXk+lc6siy6GqTF8Bgbrjq2OoKZPmOBXKUOuTEOkLk9CJiFSojWVBiQAYrXSuJtrmUFW3pLU2x69MNmXSEGRTof7R1hudAhuZNPgw5PokRPrCERAiIhVqY1lQGWMl4ZIZM0LpXE0MnUOlzfFVqQ9TJnVZn0RT/giRITEAISJSQ1YWtPIcc4dGbogaZp7rgHDdEpKTlc41AUPnUFV3v/owZdIY65MQ1RQDECIyOKlUQGZqPooLS2HnaI3GQc4Q15JKLPooC2oshp5zT6QtrXOoClIAdDPY8Z9VX6ZMGmt9EqKaYABCRAZ159cc/LQtFcX5pfJtds7WeGFIEALbeZiwZ9rTtSyoKXDdEjInFTlUjf43EqfqywYBDg1K4Z2yHOg9SuepYbIcLV2mYZnrlEl9M/X6JETaYBI6ERnMnV9zcHDtNYXgAwCK80txcO013Pk1x0Q9q3t0mXNPZGhisQV69JFN/6p8G1zxPMrzd4gfV2NVdvydo6UNc11J3VBk65MAyqGfsdYnIaoKR0CIyCCkUgE/bUvV2ObU9lT4t3HXeTqWbEpXUf4T/PX4KWwdrGDvXLumdukb1y0hcxPk54z+3ik4lh2IonJr+XaHBqWI8vwdQY7/WyxQw6rsmgoqqMvRsndthLCeveHcuIlZT5k0JHNen4QIYACi0apVq7B48WJkZWWhTZs2WLFiBTp27Ki2/Y4dOzBz5kykpaUhKCgIixYtQp8+fYzYYyLzkZmarzTyUVnRo1JkpubD+znt53OrmtIlU9umdukT1y0hs2PviSDHPxHo8CcySpzwuNwKf5VbwtbiKWwsyiEVALEIaldl16agQm3K0TI2c1yfhEiGAYga27ZtQ0JCAtasWYPIyEgsW7YMsbGxuHXrFjw8lG9uzpw5g9dffx2JiYl4+eWX8c033+CVV17BpUuX0KpVKxNcAZFpFRdqDj50bQf8PaVL7bH+N7Wr9zut6l0Qos2c+PqShEtm4n+rsosLM/FE0gA/5fgrjITYNyhFD/9HCFKxKrsuBRVqQ46WJhKpYLAgQbY+CZG5YQ6IGkuXLsWoUaMwfPhwhISEYM2aNWjYsCG++OILle0//fRT9O7dG//617/QsmVLzJ8/H+3bt8fKlSuN3HMi82DnaF11Ix3aaTOlS+bU9lRI69kiW9rMia8vSbhkPFKpBPevX0HK6R9x//oVxYUF/7cqe2phI+zNaImiciuFfYvKrbA31QupF84pHdNQixhq7K8JHLyWia6LjuH19T9j4tZkvL7+Z3RddAwHr2WatF9EhsYREBXKyspw8eJFTJ8+Xb5NLBYjOjoaZ8+eVbnP2bNnkZCQoLAtNjYWe/bsMWRXicxW4yBn2Dlba5yGZe9SkbehDW2mdMlUZ2pXXVAb1y2h2kubKVLSFn1x7PHXAIqgLiW6cnU2Qy1iWNHftSjK+/OZ/jZCj/h3TPK7cfBaJsZsvqSUop9V8ARjNl/C6jfbM1eD6iwGICrk5uZCIpHA01NxXqqnpydu3rypcp+srCyV7bOystSep7S0FKWlf99QFRYW1qDXROZFLBbhhSFBGqdMdR0cpFXSuFQq4MHNPJ3Or8vUrrqEc+LJGLSdIpWRch1FhcVQXYq3wrPBhFQqQfq1y1r1QZeCCur7+6dJ1siRSAXM/f6GyjK5Airerbnf30BMiBdzNqhOYgBiQomJiZg7d66pu0FkMIHtPND7nVZKSeP2LtboOli7ZHFNSeeaaDu1qy6qzXPiBYkEJb9cRPnDh2jg7o6GEeEQWTB4Mie6rDmjS3U2VSMqmmhbUEEqleDwuhUa2xxev9Koa+Scv5unUJ2qMgFAZsETnL+bxxwOqpMYgKjg5uYGCwsLZGcrlgbMzs6Gl5eXyn28vLx0ag8A06dPV5i2VVhYCB8fnxr0nMj8BLbzgH8b92qthF5V0rk6ukztIvNRePgwshcmovyZkeMGXl7wnDEdjr16mbBn9CxdpkhpGyTkZ2bgzI5vtO6DLgUV7t+4iidFjzW2efK4EPdvXIVvq7Za96Emch6rDz6q046otmESugpWVlYIDw9HUlKSfJtUKkVSUhI6deqkcp9OnToptAeAI0eOqG0PANbW1nB0dFR4ENVFYrEI3s+5ILiDF7yfc9F62pW2SeeVaTu1i8xH4eHDyJg4SSH4AIDy7GxkTJyEwsOHTdQzqkyXUQ1ZdTZN7F0b4UrSIZ36oEtBhQfXr+q1nT54ONjotR1RbcMARI2EhASsX78emzZtQkpKCsaMGYPi4mIMHz4cADB06FCFJPWJEyfi4MGDWLJkCW7evIk5c+bgl19+wbhx40x1CUS1mi5J5zL2Ltb1sgRvbSdIJMhemAgIKmbE/29b9sJECBLTViyq86QS4O5PwNWdFf+qqRCly5oz2lRnC+vZWyExXJPqrGqubT08Y9bN6+jvisZONmozY0QAGjtVlOQlqos4BUuNIUOG4OHDh5g1axaysrLQtm1bHDx4UJ5onp6eDrH47/itc+fO+Oabb/B///d/mDFjBoKCgrBnzx6uAUJUTdomkQdHeqJZSKN6vxJ6bVbyy0WlkQ8FgoDyrCyU/HIRdpHqF4OlGrixFzj4PlD4x9/bHJsAvRcBIf0Vmuq65kxV1dnKy59q1cXIV4eg86B/6pyn4RPSGud2b9OqnbFYiEWY3S8EYzZfggiKwY/sL9jsfiFMQKc6iwGIBuPGjVM7gnHixAmlbYMGDcKgQYMM3Cui+kHbJPKQzk3qXbnduqb84UO9tiMd3dgLbB8KpTGAwsyK7YO/VAhCZKMaqqpKyVSeIqWpOtv961e06qZvqzbVShL3CW0NG3sHjXkgNvYO8Ak1XgACVKxUvvrN9pj7/Q2FhHQvJxvM7hfCErxUpzEAISKzpO91REg/pFKhWgUFNGng7q7XdqQDqaRi5ENTQdiD04AWfSsWFvyf6qw5o646m64jKroSiy3Qa/R4jQFTr9HjTVKqunerxogJ8TLYSuhE5ooBCBGZJX2uI0L6oaoksp2zNV4Yol1JZXUaRoSjgZcXyrOzVeeBiERo4OmJhhHh1T4HqXHvjOK0KyUCUJhR0c7/BYVX9LXmTHVGVHQlC5iSNqxF8SPzWIhQxkIsYqldqndEgqDqrz2ZQmFhIZycnFBQUMCKWET/o+qmV5d1REg/qiqJXNPkf1kVLACKQYioIsD0/nSZXkrxChIJii6cx+07F/DIDnDoEIn2jSNgUV8Xary6E9j1dtXt4j4HWg80aFdUrQOiaUSlOqRSCRfppBrj/VrNMQAxI/xAE6lmiGk/pD2pVMCXM85UOR3urQWda/RzMfQ6IIWHD+PevNlokJsv35brAOzp64qXhs9FtG90jc9R69z9Cdj0ctXthv2gNAJiCAwQqDbg/VrNcQoWEZk92ToiZHiVbwCbBLfA3X2/VFkSuehRKTJT82v0c3Ls1QsOPXsaZCX0wsOH8WDCRFQ+kutj4O2teVhaNgl4Z1n9C0J8O1dUuyrMhOo8EFHF677GmaKkLk+EiOoWBiBERARA9RQYG4kUjQvtgYB3q9xf29LJmogsLPRealeQSJC9oCK/oPL4jBiAFMCwIxLMb/MRonyi6td0LLFFRand7UMBdQVhe3+kkIBORFRTXIiQiIiQeu4M9i5dqFSJ6IlYhLvOJZCUVb0qvbalk42t5JeLKM/OVrvomxiA22PA5VYmLuVcMmbXzENI/4pSu46Vyr46NlEqwUtEpA8cASEiquekUgmObVyn+kWRqGIhwOJjEDcIgEjNN+H6LIkskUpwKecSHpY8hHtDd7T3aF+jUQlt1w9xKQIeltTTtUZC+leU2r13BijKBuw9K6ZdceSDiAyAAQgRUT2XkXJd4xoMEIkgoBjS8gxYWPrIK1M9q8vA5nopDHD03lF8dP4jZJdky7d5NvTEtI7Tqp2foe36IY/sAfeG9XitEbGFURLNiYg4BYuIqJ4ryn+kVbum97+HdWm+ytdO7biNO7/m1KgfR+8dRcKJBIXgAwBySnKQcCIBR+8drdZxG0aEo4Gnp8oUa6AiByTXAXj0XGO092hfrXMQEZH2GIAQEdVz9s7aVa7yyPsdQbd3VqzTUamCe3F+KQ6uvVbtIEQileCj8x9BUBEmyLYtOr8IEqlE52OLLCzg+cEMABXBxrOkqEi13hRjgX8/P61+JaATEZkIAxAi0iupVIL7168g5fSPuH/9CqTVuGEk4/JuGQp7Vzf1DQQBNmVP4VJcitTm/1uMTsU0LAA4tT0VUqnuy0tdyrmkNPKh0AUIyCrJqnaSuGOvXmi6/FNI3ZwVtuc5AJ+/1giv1ccSvEREJsIcECLSG1VlXO1d3dAjXn8rGZP+icUWeL5dRxw9uq9iw7PBxf9GOkL++BMFzs1RaqN5tKS664Fom/xduZ0uCeuOvXqhVc+eSiuh/6c+r4RORGQCDECISC9kZVwrK8rLxd6lC9E/YYZZBSFcXf1vgkSCht/sQPu/HuNGEzc8sfr7fw02T8sR8sef8CooRpaHdiv+6rIeiCyAuFNwR6v2zyaJVydhXWRhAYfnO6Hd85207iMREekXAxAiqjGNZVz/5/imdQjsEAmxAb5p1jWYuPNrDn7alqqwureNnSW6/TMYzcM99d4/c1fyy0WUZ2XBC4BnQTHy7GxQatkA1k/L4Vr8RL5+hmfcy7iRUvXxtF0PRFUAoY4IIng29JQnicsS1ivnjMgS1pd2X8opVdUglUoqqqLlP4K9swu8W4Ya5HeWiOo3BiBEVGNVlnEF8PjPXGSkXIdPaJhez60qmLBztsYLQ4IQ2M5DZfuDa68pbX9S/BSH1l9HdlohusQF6bWPplbVTeWz62SIADQqfqLyOI0DHGCXaa3wXlem7Xog6gIIVUT/C4He7/g+LMQWVSasiyDCovOL6t+q5jXEKZREZCwMQIioxrQt46ptO22pCyZkFZl6v9NKIQiRSgX8tE3zit7JR+7D088JzcOVg5faSJubSm3XybDycMcLQ/xUvucyXQcHVTmVTVMAoYpnQ0+83/F9+YiGLgnrHbw6aHWO+qZyUFryuBA/fPKRUjtznUJJRLUbAxAiqjFty7hq204b2gQTp7anwr+Nu/yGODM1X+O39zInt9xCQDv3Wp8Tom1eTsOIcDTw8kJ5drZSeV0AgEiEBp6eaBgRjkALC/R+p5XSqJO9izW6DlY96lRZVQGEzOjWo/F8k+eVEsurm7BOFVQFpSKR5qKYhpxCSUT1DwMQIqoxWRlXTdOwHBq5wbtlqN7OqU0wUfSoFL8cuIuOfQMAaJ8c/VfR02pVcjInOuXlWFjAc8Z0ZEycVFEB65kgRBCJkGdng4ZDXsWDm9fh3TIUge084N/GvdpJ/NnFVQcfAODv5K9yBEPb1crr9armaqgLSgWh8gopigw1hZKI6ieuA0JENSYWW6BH/GiNbaKGjdbrt6faBhMXvk+TL46nbXK0Lsc3V7rk5QAVJWq9P12GBp5/J+FnOdnheKgfzgU2wfETh7B93gysH/s2Us+dgVgsgvdzLgju4AXv51x0Gi16VKrdVDx17dp7tIdnQ095bkhlIojg1dCrTq1qro/1dbQJSjXR9xRKIqq/OAJCRHoRFNkZ/RNmKE3tcGjkhqhh+k9i1SWYkE3FahzkDBs7SzwpfqrX45uj6uTlOPbqBYeePVHyy0WkXjyHSz8eUm6vh5wAF2vtRpbUtbMQW2Bax2lIOJEAEUQKuSSVE9brAm2Tw6sqNqBNUKqJPqdQElH9xgCEiPQmKLIzAjtEGqWMZ+MgZ9g5a67IJPPs4njd/hmMQ+uva2yvbSUnc6ZLXk7lG9fG4W1xbuNnGverTk6A7DyitBx4/WmNbNdSCBoGTjzt1JdEjvaNxtLuS1WuA/JswnpVdFnI0BS0zePRJkipyQiGvqdQElH9xgCEiPRKLLYwyjxxsViEF4YEaazI9CzZlKrm4Z7ITitE8pH7attqU8nJ3Gmbl/NXYSHWj31boZ2NgyOePC7UeHxdcwIq3yD3hheKbcpxLiQP6V5/KbUXi8Ro49ZG4zGjfaMR5RNV7QCiOgsZGpO2eTyCVIrvl1VdwaomIxj6nkJJRPUbc0CIqNYKbOeBji/7a9X22SlVXeKCEDuqFWzsLRXa2LtYK5Xura20yct5rvOL+H7ZR0pBSlXBh4y236jLvsWvfJ6GTywQdckdzbJsIRIArz+t4f9HQ3j9aQ1BKsW237ZBUkWug4XYAh28OqBPQB908OqgU/CRcCJBqRqXbCHDo/eOanUcQ9I2j+fI51WPVkmlEnlQqolIrHhb4NDIjSV4iUjvOAJCRLVaeB8/XPspAyUFZWrbqJpS1TzcAwHtql/JqTbQlJfTbehInNj03xodX5tv1DV9iy/L3+h8tREk1wXYlf79v6Rim3JszV6BTdc36X1EorYsZKhtgKfLaFWP+NEqp3TJvDzh37B1dORK6ERkUAxAiKhWE4tFePG14Gotjier5FSXqcvLqWlCsrY5AVWdRwQRbJ5aKAUDstGRE8hFQkkClnZfqrcgpLYsZKjPpG9ZMGPsYhFERKowACGiWi+wnUeNF8erraRSocpRHFV5OTUtqaptToC256lcUlc2OtLhhgvue/6l1xGJ2rKQoTZ5PLaOTvirsKDKYz0bzBizWAQRkSoMQIioTqjp4ni10Z1fc5SCLjtna7wwpOqgS9tv120dHfFX4d9TfHT5plwqlaCkBoGOCCLYP2kAjzwrZIn0NyJRWxYylOXxaJoy1fPtMTix6b86LwJqrGIRRESqMAAhojqjPkypkrnza47KaWfF+aU4uPZalcn02lbJGrF8HTJv3dT5m3JVZWGry7a04nz6GpGQLWSYU5KjMg9EBBE8G3qaxUKG2kyZEovEGoMUVrAiInPDAISIqJaRSgX8tC1VYxvZ4ovqRoC0+XY9athoNGhgpfM35erWrqiuv6wrKmHpa0Siti1kWNWUKeZ1EFFtwwCEiKiWyUzNr3IBxmcXX1THEDeu2qxdIWPfyA3lpaV4UvRY5esCBBTbSJDjWgavhl56HZHQ10KGxlLVlCnmdRBRbcIAhIjIzFVONC/SYvV34O/FFzXR942rttW1ug8diXYv9cOdC+dUjpbIRiUuhDyCIDLMiERNFzI0N8zrIKLaggEIEZEZU5VobmNnqWGPvz27+KIm+rxx1bbqVUNnF4jFFmpHYYptJDgfkoeyACcs7bjAYCMSsoUMiYjIeBiAEBFpoE2ZW0NRl2j+pPhplfuqWnzRGLStrqWuLGxh3p/4A7koa2yLPvaetXpEgoiIVGMAQkSkRk3K3NaUNonmmqhbfNGQpFIJpIIU1nYOKC1WndcBVF0WturlDYmIqDZjAEJEpEJNy9zWlDaJ5gBgY2+JJ0V/j4iYavFFXcrusiwsEVH9xgCEiKgSfZS5rSltEsgBoOug5rB3tjHp4ovalt1lWVgiIgIYgBARKdFXmVupVFLt6lLaJpDbO9uYdPFFbcru2tg74OVJ78MntDVHPoiIiAEIEVFl2o4+qGonCzpu/3ION346jiePC+Wv2bu6ofuwUbB3CalyxKJxkDPsnK01BkKmSjR/ljZld58UPYZYLGbwQUREABiAEBEp0Xb0oXK7qvIgivJy8cMnibC06wcLqyAAFTkcwZGeCAhzVwhGxGIRXhgSpDIPRabr4IpjZNx6pDGgMWQlL23L7mrbjoiI6j4GIERElVRn9EHbPAgAeFpyAmLLQIhEYjwpeoorSQ9wJemBUoWtwHYe6P1OK6VKXLJEcwD4csYZjVW6DF3Jqzpld2VqMkWNiIhqL5EgCIKpO0EVCgsL4eTkhIKCAjg6Opq6O0T1mroqWDLPVsGSSiVYP/ZtrSpAyVjaD4KFpY/K1zq+7I/wPn7yUQpVIxh3Lz+ssn8AtL6G6tLm2h0auWHkys8VggtVo0X2rm7oEc8kdSIyb7xfqzmxqTtARGSOZKMPds7WEAQpJE/vQ1J2E1Y2WYgdFaJw465NHoQSoVjtS+d/uItN00/jzq85ACqmY3k/54LgDl7yhPOqqnT9tO03rSp5SaU1+w5KLLZAj/jRGttULrsrGy2q/J4V5eVi79KFSD13pkZ9IiIi88YAhIhIjcB2Huj0CiCWfomnRTvwtHg/CjO/QdJ/pyncJFcrv0Fkp/HlkoIyHFx7TR6EPEubKl3F+WVaV/KqqaDIzuifMAP2rm4K2x0auaF/wgyFEQ1tqmYd37QOUqmkxv0iIiLzxBwQIiI1Us+dwQ+fJCptl31TL7u51jYPQk7kAHEDb62aqlpvRNsqXdrQ17GCIjsjsENklTkd2owWPf4zFxkp1+UroxMRUd3CAISI9KquJBZr+019YIdIeLcMhb2rm9bTsCwbdodIpN0AtKr1RrSt0qUNfR5LLLaoMmhg1SwiImIAQkR6U5cSi3X9pr5H/Oiqq2CJHGDZsLu8BK+2Ko9SaFOly87ZCoDI7NYRqUnVLCIiqhuYA6JCXl4e3njjDTg6OsLZ2Rlvv/02ioqKNO6zbt06dO/eHY6OjhCJRMjPzzdOZ4nMRF1LLNb1m3p1eRC2jk5o3+cfGDxrIf7xr0/g6NFK575UHqWQrRGiyQtDgjW2EQQpnouU4NbZk7h//YrRci5ko0WaODRyg3fLUKP0h4iIjI8jICq88cYbyMzMxJEjR/D06VMMHz4co0ePxjfffKN2n5KSEvTu3Ru9e/fG9OnTjdhbItPTZbpSbZmOVZ1v6rXJgwho54nM1Hz8fuUhfvs5G0+Kn2o+vppRiqrWCJFV6VLVxtIqDU9LjuP0lr+DLGONVMmqZmkaLapcNYuIiOoWrgNSSUpKCkJCQnDhwgVEREQAAA4ePIg+ffrgwYMHaNKkicb9T5w4gaioKDx69AjOzs46nZt1pam2un/9CrbPm1Flu8GzFtaaxOLqrm+h2zkE/HLgLi58n6a2TVVrdWizyvmzbfIeXMHprcvVHq9y1SpDUTVdz6GRG6KG1b7pekRUv/B+reY4AlLJ2bNn4ezsLA8+ACA6OhpisRjnzp3DgAED9Hau0tJSlJb+/a1kYWGh3o5NZEx1MbHYGN/Ui8UidOwbgEZN7KscydB0jGcT1DW1kUolWP+F+pFcwHgjVdpWzSIiorqHAUglWVlZ8PBQ/B9+gwYN4OrqiqysLL2eKzExEXPnztXrMYlMoa4mFsvyOgz9TX1gOw/4t3GvciSjpsytBK42VbOIiKjuqTcByLRp07Bo0SKNbVJSUozUmwrTp09HQkKC/HlhYSF8fHyM2gcifdCmDG1tTSzW5Zv6mpQg1mYko6bq4kgVERHVPvUmAJkyZQri4+M1tgkICICXlxdychRXHi4vL0deXh68vLz02idra2tYW+uvBj+RqdT1xGJtvqmvDSWI6+pIFRER1S71JgBxd3eHu7t7le06deqE/Px8XLx4EeHh4QCAY8eOQSqVIjIy0tDdJKq1jDVdyRzJShBXVnnFdFOryyNVRERUe9SbAERbLVu2RO/evTFq1CisWfP/7d1/cE13/sfx100iN9okIhISJFI/ivhig5Wm2qKUDN0ya/xaVDDVrV+11LCZ3dWyVdtvrI5dQ6mK3dFV3WVr1Y+xRHXTFEP4+pEShh0it4r8Its0yf18/+i468oPCcm5+fF8zNyZ3HM+55z3yUfivnLO53zWqri4WLNmzdK4ceNcT8DKysrSoEGD9Kc//Ul9+/aV9MPYEYfDoQsXLkiSTp06pYCAAEVGRio4ONhj5wNYqTEOLK5PjyBu6FeqAAD1AxMRlmPz5s3q0qWLBg0apGHDhumZZ57RunX//YBRXFysc+fOqbCw0LVs7dq1iomJ0SuvvCJJeu655xQTE6MdO3ZYXj/gSXdvV+rar78iuvVo8B9mqzOwuy6oaMLEgBYhdeZKDQCgYWMekDqE50oD9U9G6ufatep/H9hu2JwF6tqvvwUVVc2jDJgHgMaMz2uPjluwAOAR1NeB3TwCFwDgKQQQALWiKjN0NwQM7AYAoHoIIABq3MX062Vm9n48yK5nxz54Zu/6hoHdAABUD4PQAdSoi+nXtef9027hQ5Lu5BZpz/undTH9egVb1l91ZWC301mqK2f+Txmpn+vKmf+T01lqyXEBAKgOroAAqDFOp9EXH2dW2uZfWzP1RM/QBnc7lqcfQVwfJkIEAEDiCgiAGpSdmVvmysf9bucUKTsz15qCLOapRxDfnQjx/nEodydCzDz8pSV1AABQFQQQADXmTn7l4aO67fBgVZ0IkduxAAB1BQEEQI15PNBeo+3wYPVtIkQAAAggAGpMeKcgPR5Uebjwb/7DI3lRM27n5tRoOwAAahsBBECN8fKy6dmxnSpt88yYTg1uALon1deJEAEAjRcBBECVOZ1GWedydP6oQ1nncuR0mjJtOsS0VPyr/1PmSoh/c7viX/2fBjcPiKfdnQixMkyECACoS3gML4Aqqc7kgh1iWuqJnqGNYiZ0T2MiRABAfWMzxpT9EyY8Ij8/X82aNVNeXp4CAwM9XQ7gcndywYpwZcPzypsHJKBFiAZOZh4QAKhJfF57dFwBAVCpxjy5YH3i6YkQAQCoKgIIgEpVZ3LBNp0Z6OxJdydCBACgLmMQOoBKMbkgAACoSQQQAJVickEAAFCTCCAAKsXkggAAoCYRQABUiskFAQBATSKAAHggJhcEAAA1hadgAagSJhcEAAA1gQACoMq8vGw8ahcAADwSbsECAAAAYBkCCAAAAADLEEAAAAAAWIYAAgAAAMAyDEIHgAo4naXKyjij27k58g9qrjZdu8nLy9vTZQEAUK8RQACgHJmHv9SB5HW6feuGa5l/cIieT5iuTrFPe7AyAADqN27BAoD7ZB7+Ujt+v8wtfEjS7Vs3tOP3y5R5+EsPVQYAQP1HAAGAezidpTqQvK7SNimb1snpLLWoIgAAGhYCCADcIyvjTJkrH/cruHlDWRlnLKoIAICGhQACAPe4nZtTo+0AAIA7AggA3MM/qHmNtgMAAO4IIABwjzZdu8k/OKTSNgEtQtSmazeLKgIAoGEhgADAPby8vPV8wvRK2wycPJ35QAAAeEgEEAC4T6fYp/XSvMQyV0ICWoTopXmJzAMCAMAjYCJCAChHp9in1eHHscyEDgBADSOAAEAFvLy8FdGth6fLAACgQeEWLAAAAACWIYAAAAAAsAwBBAAAAIBlCCAAAAAALEMAAQAAAGAZAggAAAAAyxBAAAAAAFiGAAIAAADAMgQQAAAAAJYhgJTj1q1bmjBhggIDAxUUFKRp06bp9u3blbafPXu2OnfurKZNmyoyMlJz5sxRXl6ehVUDAAAAdR8BpBwTJkzQmTNntG/fPu3cuVOHDh3S9OnTK2x/7do1Xbt2TUlJSTp9+rSSk5O1Z88eTZs2zcKqAQAAgLrPZowxni6iLsnIyFB0dLSOHj2qPn36SJL27NmjYcOG6erVq2rdunWV9vPJJ59o4sSJunPnjnx8fKq0TX5+vpo1a6a8vDwFBgY+9DkAAACgdvB57dFxBeQ+aWlpCgoKcoUPSRo8eLC8vLx0+PDhKu/n7j/KysJHUVGR8vPz3V4AAABAQ1a1P803Ig6HQy1btnRb5uPjo+DgYDkcjirt48aNG1q6dGmlt21J0jvvvKO33nqrzHKCCAAAQN1093MaNxE9vEYTQBYtWqTf/e53lbbJyMh45OPk5+dr+PDhio6O1ptvvllp21/+8peaN2+e631WVpaio6MVERHxyHUAAACg9hQUFKhZs2aeLqNeajQBZP78+UpISKi0Tfv27RUWFqbr16+7LS8pKdGtW7cUFhZW6fYFBQWKj49XQECAtm/friZNmlTa3m63y263u977+/vrypUrCggIkM1mq/yEYJn8/HxFREToypUr3OtZj9GPDQP92DDQjw1DY+1HY4wKCgqqPC4YZTWaABIaGqrQ0NAHtouLi1Nubq6OHTum3r17S5IOHDggp9Op2NjYCrfLz8/X0KFDZbfbtWPHDvn5+VW7Ri8vL7Vt27ba28EagYGBjeoXbENFPzYM9GPDQD82DI2xH7ny8WgYhH6frl27Kj4+Xq+88oqOHDmi1NRUzZo1S+PGjXMl3aysLHXp0kVHjhyR9EP4GDJkiO7cuaMNGzYoPz9fDodDDodDpaWlnjwdAAAAoE5pNFdAqmPz5s2aNWuWBg0aJC8vL40aNUqrVq1yrS8uLta5c+dUWFgoSTp+/LjrCVkdO3Z029elS5cUFRVlWe0AAABAXUYAKUdwcLA++uijCtdHRUW5PflgwIABPAmhAbPb7Vq8eLHbeB3UP/Rjw0A/Ngz0Y8NAP+JhMREhAAAAAMswBgQAAACAZQggAAAAACxDAAEAAABgGQIIAAAAAMsQQIBy3Lp1SxMmTFBgYKCCgoI0bdo03b59u9L2s2fPVufOndW0aVNFRkZqzpw5ysvLs7Bq3K+6/ShJ69at04ABAxQYGCibzabc3FxrioXL6tWrFRUVJT8/P8XGxrrmXKrIJ598oi5dusjPz0/du3fXrl27LKoUlalOP545c0ajRo1SVFSUbDab3nvvPesKRaWq04/r16/Xs88+q+bNm6t58+YaPHjwA39+0TgRQIByTJgwQWfOnNG+ffu0c+dOHTp0SNOnT6+w/bVr13Tt2jUlJSXp9OnTSk5O1p49ezRt2jQLq8b9qtuPklRYWKj4+HglJiZaVCXu9fHHH2vevHlavHixjh8/rp49e2ro0KG6fv16ue2//PJLjR8/XtOmTVN6erpGjhypkSNH6vTp0xZXjntVtx8LCwvVvn17LV++XGFhYRZXi4pUtx8PHjyo8ePHKyUlRWlpaYqIiNCQIUOUlZVlceWo8wwAN2fPnjWSzNGjR13Ldu/ebWw2m8nKyqryfrZu3Wp8fX1NcXFxbZSJB3jUfkxJSTGSTE5OTi1Wifv17dvXzJw50/W+tLTUtG7d2rzzzjvlth8zZowZPny427LY2Fjz6quv1mqdqFx1+/Fe7dq1MytXrqzF6lBVj9KPxhhTUlJiAgICzKZNm2qrRNRTXAEB7pOWlqagoCD16dPHtWzw4MHy8vJyzXhfFXl5eQoMDJSPD/N9ekJN9SOs8/333+vYsWMaPHiwa5mXl5cGDx6stLS0crdJS0tzay9JQ4cOrbA9at/D9CPqnprox8LCQhUXFys4OLi2ykQ9RQAB7uNwONSyZUu3ZT4+PgoODpbD4ajSPm7cuKGlS5c+8HYf1J6a6EdY68aNGyotLVWrVq3clrdq1arCPnM4HNVqj9r3MP2Iuqcm+nHhwoVq3bp1mT8SAAQQNBqLFi2SzWar9PX1118/8nHy8/M1fPhwRUdH680333z0wuHGqn4EADy85cuXa8uWLdq+fbv8/Pw8XQ7qGO4NQaMxf/58JSQkVNqmffv2CgsLKzPArqSkRLdu3Xrg4MiCggLFx8crICBA27dvV5MmTR61bNzHin6EZ4SEhMjb21vffPON2/Jvvvmmwj4LCwurVnvUvofpR9Q9j9KPSUlJWr58uf75z3+qR48etVkm6ikCCBqN0NBQhYaGPrBdXFyccnNzdezYMfXu3VuSdODAATmdTsXGxla4XX5+voYOHSq73a4dO3bwF59aUtv9CM/x9fVV7969tX//fo0cOVKS5HQ6tX//fs2aNavcbeLi4rR//37NnTvXtWzfvn2Ki4uzoGKU52H6EXXPw/bju+++q7ffflt79+51G4MHuPH0KHigLoqPjzcxMTHm8OHD5l//+pfp1KmTGT9+vGv91atXTefOnc3hw4eNMcbk5eWZ2NhY0717d3PhwgWTnZ3tepWUlHjqNBq96vajMcZkZ2eb9PR0s379eiPJHDp0yKSnp5ubN2964hQanS1bthi73W6Sk5PN2bNnzfTp001QUJBxOBzGGGMmTZpkFi1a5GqfmppqfHx8TFJSksnIyDCLFy82TZo0MadOnfLUKcBUvx+LiopMenq6SU9PN+Hh4eaNN94w6enpJjMz01OnAFP9fly+fLnx9fU1f/3rX93+HywoKPDUKaCOIoAA5bh586YZP3688ff3N4GBgWbKlCluv0AvXbpkJJmUlBRjzH8f2Vre69KlS545CVS7H40xZvHixeX248aNG60/gUbqD3/4g4mMjDS+vr6mb9++5quvvnKt69+/v5k8ebJb+61bt5onn3zS+Pr6mm7dupnPPvvM4opRnur0492fxftf/fv3t75wuKlOP7Zr167cfly8eLH1haNOsxljjHXXWwAAAAA0ZjwFCwAAAIBlCCAAAAAALEMAAQAAAGAZAggAAAAAyxBAAAAAAFiGAAIAAADAMgQQAAAAAJYhgAAAAACwDAEEACyQkJAgm82mn//852XWzZw5UzabTQkJCWXa22w2NWnSRK1atdILL7ygDz/8UE6n0237kydP6qWXXlLLli3l5+enqKgojR07VtevX6/t02rQoqKi9N577z2w3bp16zRgwAAFBgbKZrMpNze31msDgPqMAAIAFomIiNCWLVv0n//8x7Xsu+++00cffaTIyMgy7ePj45Wdna3Lly9r9+7dGjhwoF5//XW9+OKLKikpkSR9++23GjRokIKDg7V3715lZGRo48aNat26te7cuWPZuTVmhYWFio+PV2JioqdLAYB6gQACABbp1auXIiIitG3bNteybdu2KTIyUjExMWXa2+12hYWFqU2bNurVq5cSExP16aefavfu3UpOTpYkpaamKi8vTx988IFiYmL0xBNPaODAgVq5cqWeeOKJCmspKirSwoULFRERIbvdro4dO2rDhg2u9Z9//rn69u0ru92u8PBwLVq0yBV6JGnAgAGaPXu25s6dq+bNm6tVq1Zav3697ty5oylTpiggIEAdO3bU7t27XdscPHhQNptNn332mXr06CE/Pz899dRTOn36tFttf/vb39StWzfZ7XZFRUVpxYoVbuujoqK0bNkyTZ06VQEBAYqMjNS6devc2ly5ckVjxoxRUFCQgoODNWLECF2+fNm1PiEhQSNHjlRSUpLCw8PVokULzZw5U8XFxa7z+/e//61f/OIXritRFZk7d64WLVqkp556qsI2AID/IoAAgIWmTp2qjRs3ut5/+OGHmjJlSpW3f/7559WzZ09XiAkLC1NJSYm2b98uY0yV9/Pyyy/rL3/5i1atWqWMjAy9//778vf3lyRlZWVp2LBh+vGPf6yTJ09qzZo12rBhg37729+67WPTpk0KCQnRkSNHNHv2bL322msaPXq0nn76aR0/flxDhgzRpEmTVFhY6LbdggULtGLFCh09elShoaH6yU9+4vrgf+zYMY0ZM0bjxo3TqVOn9Oabb+rXv/61K3DdtWLFCvXp00fp6emaMWOGXnvtNZ07d06SVFxcrKFDhyogIEBffPGFUlNT5e/vr/j4eH3//feufaSkpOjixYtKSUnRpk2blJyc7DrOtm3b1LZtWy1ZskTZ2dnKzs6u8vcWAPAABgBQ6yZPnmxGjBhhrl+/bux2u7l8+bK5fPmy8fPzM99++60ZMWKEmTx5cpn25Rk7dqzp2rWr631iYqLx8fExwcHBJj4+3rz77rvG4XBUWMu5c+eMJLNv375y1ycmJprOnTsbp9PpWrZ69Wrj7+9vSktLjTHG9O/f3zzzzDOu9SUlJebxxx83kyZNci3Lzs42kkxaWpoxxpiUlBQjyWzZssXV5ubNm6Zp06bm448/NsYY87Of/cy88MILbvUsWLDAREdHu963a9fOTJw40fXe6XSali1bmjVr1hhjjPnzn/9cpv6ioiLTtGlTs3fvXmPMD9/fdu3amZKSEleb0aNHm7Fjx7odZ+XKleV+j8pz9/xycnKqvA0ANEZcAQEAC4WGhmr48OFKTk7Wxo0bNXz4cIWEhFRrH8YYt1uC3n77bTkcDq1du1bdunXT2rVr1aVLF506darc7U+cOCFvb2/179+/3PUZGRmKi4tzO0a/fv10+/ZtXb161bWsR48erq+9vb3VokULde/e3bWsVatWklRmMHxcXJzr6+DgYHXu3FkZGRmuY/fr18+tfb9+/ZSZmanS0tJyj22z2RQWFuY6zsmTJ3XhwgUFBATI399f/v7+Cg4O1nfffaeLFy+6tuvWrZu8vb1d78PDwxm4DwAW8PF0AQDQ2EydOlWzZs2SJK1evbra22dkZJQZ39GiRQuNHj1ao0eP1rJlyxQTE6OkpCRt2rSpzPZNmzZ9uMLv06RJE7f3d5/Yde97SWWe2lVbx757nNu3b6t3797avHlzme1CQ0OrtA8AQO3hCggAWOzuWIS7YxWq48CBAzp16pRGjRpVYRtfX1916NChwqdgde/eXU6nU59//nm567t27aq0tDS3MSWpqakKCAhQ27Ztq1Vveb766ivX1zk5OTp//ry6du3qOnZqaqpb+9TUVD355JNuVysq06tXL2VmZqply5bq2LGj26tZs2ZVrtPX19ftqgsAoGYQQADAYt7e3srIyNDZs2cr/VBdVFQkh8OhrKwsHT9+XMuWLdOIESP04osv6uWXX5Yk7dy5UxMnTtTOnTt1/vx5nTt3TklJSdq1a5dGjBhR7n6joqI0efJkTZ06VX//+9916dIlHTx4UFu3bpUkzZgxQ1euXNHs2bP19ddf69NPP9XixYs1b948eXk9+n8bS5Ys0f79+3X69GklJCQoJCREI0eOlCTNnz9f+/fv19KlS3X+/Hlt2rRJf/zjH/XGG29Uef8TJkxQSEiIRowYoS+++MJ1fnPmzHG7hexBoqKidOjQIWVlZenGjRsVtnM4HDpx4oQuXLggSTp16pROnDihW7duVflYANCYcAsWAHhAYGDgA9vs2bNH4eHh8vHxUfPmzdWzZ0+tWrVKkydPdgWB6OhoPfbYY5o/f76uXLkiu92uTp066YMPPtCkSZMq3PeaNWuUmJioGTNm6ObNm4qMjHTNY9GmTRvt2rVLCxYsUM+ePRUcHKxp06bpV7/6VY2c+/Lly/X6668rMzNTP/rRj/SPf/xDvr6+kn64erF161b95je/0dKlSxUeHq4lS5a4TdL4II899pgOHTqkhQsX6qc//akKCgrUpk0bDRo0qErf97uWLFmiV199VR06dFBRUVGFTxlbu3at3nrrLdf75557TpK0cePGatUNAI2FzVT0GxUAgBp08OBBDRw4UDk5OQoKCvJ0OQAAD+EWLAAAAACWIYAAAAAAsAy3YAEAAACwDFdAAAAAAFiGAAIAAADAMgQQAAAAAJYhgAAAAACwDAEEAAAAgGUIIAAAAAAsQwABAAAAYBkCCAAAAADLEEAAAAAAWIYAAgAAAMAyBBAAAAAAliGAAAAAALAMAQQAAACAZQggAAAAACxDAAEAAABgGQIIAAAAAMsQQAAAAABYhgACAAAAwDIEEAAAAACWIYAAAAAAsAwBBAAAAIBlCCAAAAAALPP/uMlvn9ACeecAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b1609f5f54b4af0a283c3b2b2d5544a", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUVf8H8M+dYWbYN9lcEEEhEcHcIrQ0TMQk/WWo2WOpuZWh5lap5b6QmZpbbvWIZWmaZiUqKKI+7qbhioaK4oZoCIgLMDPn9wcyObIICjPAfN6/37ye5t5z7/3eYWTmwz3nXEkIIUBERERERGQAMmMXQEREREREpoMBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIgqrYsXL0KSJERFRRm7lGpr0qRJkCTJ2GU8lXr16qFv377GLoOIiMqIAYSoHEVFRUGSJN3D3NwctWrVQmhoKObPn487d+4U2qbgC2DBQyaToWbNmnj99ddx4MCBQu1PnDiBbt26wcPDA+bm5qhduzZCQkKwYMGCQm01Gg1WrFiBV155BY6OjlCpVKhXrx7ee+89/Pnnn0WewzfffANJkhAYGFjseRbUOnv27GJfg+L2X5mcPn0akyZNwsWLF41dSrW1efNmTJo0ydhllKt9+/Zh0qRJyMjIKNf9xsXFoV+/fvDx8YGlpSW8vLwwYMAAXL9+vdT7ePR3iZmZGRwdHdG8eXN89NFHOH36dKn3U69ePUiShPbt2xe5fvny5brjPPpv/fHfZ5aWlqhbty46d+6MFStWICcnp8j9/fHHH2jbti1cXFx0596jRw9s3bq11DUTUdXBAEJUAaZMmYIffvgBixcvxtChQwEAw4cPh7+/P44fP17kNosXL8YPP/yAqKgoDBkyBCdPnkSbNm2QkJCga7Nv3z60aNECx44dw8CBA7Fw4UIMGDAAMpkM8+bN09vf/fv38frrr6Nfv34QQmDcuHFYvHgxevfujf379+OFF17AlStXCtXx448/ol69ejh06BDOnTtX4nnOmjUL9+7dK+OrU3mcPn0akydPNukA8vnnn+P+/fsVtv/Nmzdj8uTJFbZ/Y9i3bx8mT55c7gHk008/xc6dO9G1a1fMnz8fPXv2xNq1a9G0aVOkpqaWej8hISH44YcfsGLFCkyZMgXNmjXDypUr0aRJE8yZM6fU+zE3N0d8fHyRx/7xxx9hbm5e7LYFv88WLFiAAQMGID09Hf369cMLL7yAy5cv67X96quv0KVLF0iShLFjx2Lu3LkIDw9HUlIS1qxZU+p6iagKEURUblasWCEAiMOHDxdaFxcXJywsLISHh4e4d++ebvnEiRMFAHHz5k299idPnhQAxLhx43TLOnXqJJydncXt27cL7f/GjRt6zyMiIgQAMXfu3EJt1Wq1mDVrlrh8+bLe8gsXLggAYsOGDcLZ2VlMmjSpyPMEIJ5//nkBQMyePbvUr0FZJScnCwBixYoVz7yvoqxbt04AEPHx8eW63+zs7HLdX1ncv39faDQaox3/cQXvw4rg4eEh+vTpUyH7LsmsWbMEAJGcnFyu+921a1ehn92uXbsEAPHZZ5+Vah8ARERERKHlt27dEkFBQQKAiI6OfuJ+PDw8xKuvvipsbW3F119/rbfu8uXLQiaTifDw8EL/1ov7fSaEEKtWrRIymUwEBgbqluXl5QlbW1sREhJSZB2P/14jouqBV0CIDKRdu3YYP348Ll26hFWrVj2xvZubGwDAzMxMt+z8+fPw8/ODvb19ofYuLi66/75y5QqWLl2KkJAQDB8+vFBbuVyO0aNHo06dOnrLf/zxRzg4OCAsLAzdunXDjz/+WGx9rVu3Rrt27fDll18+9V/QMzIyMGLECNSrVw8qlQp16tRB7969cevWrWK3eeWVV/DKK68UWt63b1/Uq1dPb9maNWvQvHlz2NjYwNbWFv7+/rorRVFRUejevTsAIDg4WNdlZOfOnbrtt2zZgpdffhlWVlawsbFBWFgYTp06Vei41tbWOH/+PDp16gQbGxv06tULAJCUlITw8HC4ubnB3NwcderUQc+ePZGZmVni6/LKK6+gcePGOHLkCFq1agULCwt4enpiyZIleu127twJSZKwZs0afP7556hduzYsLS2RlZUFAFi3bh2aN28OCwsLODk54Z133sHVq1f19lHcGJBVq1bptnV0dETPnj0L/eUaAA4ePIhOnTrBwcEBVlZWCAgI0L3Gffv2xaJFiwDodw0qoNVq8fXXX8PPzw/m5uZwdXXF+++/j9u3b+sdQwiBadOmoU6dOrC0tERwcHChn0NJ7t69i1GjRsHd3R0qlQrPPfccvvrqKwgh9NpJkoQhQ4Zg48aNaNy4MVQqFfz8/PS6AU2aNAkff/wxAMDT01N3TgVX0dRqNaZOnYr69evrujyOGzeu2K5Hj2rTpg1kMlmhZY6OjkhMTCz1+RalRo0aWLNmDczMzDB9+vRSbWNubo4333wTP/30k97y1atXw8HBAaGhoWWqoVevXhgwYAAOHjyIbdu2AQBu3bqFrKwstG7dushtHv29Vpxt27bhpZdegr29PaytrfHcc89h3LhxuvUF/05+/vlnjBs3Dm5ubrCyskKXLl0Kvaf/97//oXv37qhbty5UKhXc3d0xYsSIIn/HnTlzBj169ICzszMsLCzw3HPP4bPPPtNrc/XqVfTr1w+urq6699N///vfJ54TUXVn9uQmRFRe3n33XYwbNw6xsbEYOHCg3rr09HQA+V/Krl69iqlTp8Lc3Bw9evTQtfHw8MD+/ftx8uRJNG7cuNjjbNmyBWq1Gu+++26Z6vvxxx/x5ptvQqlU4u2338bixYtx+PBhtGzZssj2kyZNQps2bbB48WKMHDmyTMfKzs7Gyy+/jMTERPTr1w/NmjXDrVu38Pvvv+PKlStwcnIq0/4et23bNrz99tt49dVXMXPmTABAYmIi9u7di48++ght2rTBsGHDMH/+fIwbNw6+vr4AoPvfH374AX369EFoaChmzpyJe/fuYfHixXjppZfw119/6YUdtVqN0NBQvPTSS/jqq69gaWmJ3NxchIaGIicnB0OHDoWbmxuuXr2KTZs2ISMjA3Z2diXWf/v2bXTq1Ak9evTA22+/jbVr12Lw4MFQKpXo16+fXtupU6dCqVRi9OjRyMnJgVKpRFRUFN577z20bNkSkZGRuHHjBubNm4e9e/fir7/+KjLEFpg+fTrGjx+PHj16YMCAAbh58yYWLFiANm3a6G27bds2vP7666hZsyY++ugjuLm5ITExEZs2bcJHH32E999/H9euXcO2bdvwww8/FDrO+++/r6tz2LBhSE5OxsKFC/HXX39h7969UCgUAIAJEyZg2rRp6NSpEzp16oSjR4+iQ4cOyM3NLfE1BPLDS5cuXRAfH4/+/fvj+eefR0xMDD7++GNcvXoVc+fO1Wu/Z88ebNiwAR9++CFsbGwwf/58hIeHIyUlBTVq1MCbb76Jv//+G6tXr8bcuXN171NnZ2cAwIABA7By5Up069YNo0aNwsGDBxEZGYnExET8+uuvT6z3cdnZ2cjOzn7mfw8AULduXbRt2xbx8fHIysqCra3tE7f5z3/+gw4dOuD8+fOoX78+AOCnn35Ct27ddD+fsnj33XexbNkyxMbGIiQkBC4uLrCwsMAff/yBoUOHwtHRsUz7O3XqFF5//XUEBARgypQpUKlUOHfuHPbu3Vuo7fTp0yFJEj799FOkpaXh66+/Rvv27ZGQkAALCwsA+aH93r17GDx4MGrUqIFDhw5hwYIFuHLlCtatW6fb1/Hjx/Hyyy9DoVBg0KBBqFevHs6fP48//vhDF/Bu3LiBF198URdsnZ2dsWXLFvTv3x9ZWVlF/nGIyGQY+QoMUbVSmu5HdnZ2omnTprrnBV0WHn/Y29uLrVu36m0bGxsr5HK5kMvlIigoSHzyySciJiZG5Obm6rUbMWKEACD++uuvUtf+559/CgBi27ZtQgghtFqtqFOnjvjoo48KtcUj3TyCg4OFm5ubrltZabtgTZgwQdfd63FarVYIUXQXrLZt24q2bdsW2qZPnz7Cw8ND9/yjjz4Stra2Qq1WF1tDcV2w7ty5I+zt7cXAgQP1lqempgo7Ozu95X369BEAxJgxY/Ta/vXXXwKAWLduXbHHL07btm0LdW/LyckRzz//vHBxcdH9vOPj4wUA4eXlpdetLzc3V7i4uIjGjRuL+/fv65Zv2rRJABATJkzQLSt4/xW4ePGikMvlYvr06Xo1nThxQpiZmemWq9Vq4enpKTw8PAp1CSz4+QlRfBes//3vfwKA+PHHH/WWb926VW95WlqaUCqVIiwsTG+/48aNEwCe2AVr48aNAoCYNm2a3vJu3boJSZLEuXPndMsACKVSqbfs2LFjAoBYsGCBbllxXbASEhIEADFgwAC95aNHjxYAxI4dO0qstShTp04VAERcXFyp2j/6b7MoH330kQAgjh07VuJ+PDw8RFhYmFCr1cLNzU1MnTpVCCHE6dOnBQCxa9euIv+tl9QFSwghbt++LQCIrl276pYV/C6wsrISr732mpg+fbo4cuRIqc537ty5JR5PiH//ndSuXVtkZWXplq9du1YAEPPmzdMte/TfUYHIyEghSZK4dOmSblmbNm2EjY2N3jIh9N/7/fv3FzVr1hS3bt3Sa9OzZ09hZ2dX5LGITAW7YBEZmLW1dZGzYa1fvx7btm1DbGwsVqxYAR8fH4SHh2Pfvn26NiEhIdi/fz+6dOmCY8eO4csvv0RoaChq166N33//XdeuoAuOjY1Nqev68ccf4erqiuDgYAD53VHeeustrFmzBhqNptjtJk2ahNTU1ELdg55k/fr1aNKkCbp27VpoXXlMC2tvb4+7d+/qunqUxbZt25CRkYG3334bt27d0j3kcjkCAwMRHx9faJvBgwfrPS+4whETE/NUA/XNzMzw/vvv654rlUq8//77SEtLw5EjR/Ta9unTR/cXXAD4888/kZaWhg8//FBvoHBYWBgaNmyI6OjoYo+7YcMGaLVa9OjRQ+/c3dzc4O3trTv3v/76C8nJyRg+fHihqyml+fmtW7cOdnZ2CAkJ0TtO8+bNYW1trTvO9u3bkZubi6FDh+rtt7R/Pd68eTPkcjmGDRumt3zUqFEQQmDLli16y9u3b6/7Sz8ABAQEwNbWFhcuXCjVsQAUuho4atQoACjxdS/K7t27MXnyZPTo0QPt2rUr07bFsba2BoAifwcVRS6Xo0ePHli9ejWA/N8T7u7uePnll8vt+JMnT8ZPP/2Epk2bIiYmBp999hmaN2+OZs2aPbHrWcF777fffoNWqy2xbe/evfV+J3br1g01a9bU/dwA6P07unv3Lm7duoVWrVpBCIG//voLAHDz5k3s3r0b/fr1Q926dfWOUfAeFUJg/fr16Ny5M4QQeu/x0NBQZGZm4ujRoyXWS1SdMYAQGVh2dnaRwaBNmzZo3749QkJC0LdvX8TFxcHGxkY3i1aBli1bYsOGDbh9+zYOHTqEsWPH4s6dO+jWrZtums2CrhWl/ZKh0WiwZs0aBAcHIzk5GefOncO5c+cQGBiIGzduIC4urtht27Rpg+Dg4DKPBTl//nyJ3cie1YcffggfHx+89tprqFOnDvr161fqKT2TkpIA5I/bcXZ21nvExsYiLS1Nr72ZmVmh8TSenp4YOXIkvv32Wzg5OSE0NBSLFi164viPArVq1YKVlZXeMh8fHwAoNGuXp6en3vNLly4BAJ577rlC+23YsKFufVGSkpIghIC3t3ehc09MTNSd+/nz5wHgqX+GSUlJyMzMhIuLS6HjZGdn645TUKu3t7fe9s7OznBwcHjicS5duoRatWoV+jdX0NXu8dfi8S+UAODg4FBoXEpxx5LJZGjQoIHecjc3N9jb25f4uj/uzJkz6Nq1Kxo3boxvv/1Wb116ejpSU1N1j9K+p4D83z9A2f448Z///AenT5/GsWPH8NNPP6Fnz55P/UeC4o7/9ttv43//+x9u376N2NhY/Oc//8Fff/2Fzp0748GDB8Xu76233kLr1q0xYMAAuLq66mYOKyqMPP4ekiQJDRo00Pv3lJKSgr59+8LR0RHW1tZwdnZG27ZtAUD3OheE0ZLe+zdv3kRGRgaWLVtW6P393nvvAUCh3yNEpoRjQIgM6MqVK8jMzCz0BaUo1tbWCAwMxG+//Ya7d+8W+jKqVCrRsmVLtGzZEj4+Pnjvvfewbt06TJw4EQ0bNgSQf8+Q559//onH2rFjB65fv441a9YUOe3ljz/+iA4dOhS7/cSJE/HKK69g6dKlJY4tKA+SJBUaPAyg0FUaFxcXJCQkICYmBlu2bMGWLVuwYsUK9O7dGytXrizxGAVfXn744QfdZACPenRiAABQqVSFBg8DwOzZs9G3b1/89ttviI2NxbBhwxAZGYkDBw4UCizP4tG/2j4rrVYLSZKwZcsWyOXyQusL/oJdHsdxcXEpdqKDgjEVhlbUOQMo8j1XnGe9gnf58mV06NABdnZ22Lx5c6Ev62+++SZ27dqle96nT59S36zz5MmTkMvlhUJrSQIDA1G/fn0MHz4cycnJ+M9//lPqbYs6PoBifwfa2toiJCQEISEhUCgUWLlyJQ4ePKgLAY+zsLDA7t27ER8fj+joaGzduhU///wz2rVrh9jY2GJ/nkXRaDQICQlBeno6Pv30UzRs2BBWVla4evUq+vbt+8QrLI8qaPvOO++gT58+RbYJCAgo9f6IqhsGECIDKhiIW9rZY9RqNYD8vxo+HkAe1aJFCwDQ3bDstddeg1wux6pVq0o1EP3HH3+Ei4uLbsaiR23YsAG//vorlixZUuwX3bZt2+KVV17BzJkzMWHChCceDwDq16+v+zJSFg4ODkV2hynqr8tKpRKdO3dG586dodVq8eGHH2Lp0qUYP348GjRoUOwXxYIuOC4uLsXeiK20/P394e/vj88//xz79u1D69atsWTJEkybNq3E7a5du1YoeP79998AUGi2r8d5eHgAAM6ePVuo687Zs2d164tSv359CCHg6empu+JSXDsg/wtlSa9RSa/x9u3b0bp16xIDVEGtSUlJ8PLy0i2/efNmqa5KeHh4YPv27bhz547eF/kzZ87o7b8sijsnDw8PaLVaJCUl6a6wAPmDkTMyMkp1rH/++QcdOnRATk4O4uLiULNmzUJtZs+erXfutWrVKlXdKSkp2LVrF4KCgsp0BQTIv0Ixbdo0+Pr6luqPGsUpy+/AFi1aYOXKlU+8EaNMJsOrr76KV199FXPmzMGMGTPw2WefIT4+Xu+9WXBls4AQAufOndMFgRMnTuDvv//GypUr0bt3b127x7txFrwPS/r95ezsDBsbG2g0mmf+HUJUHbELFpGB7NixA1OnToWnp6dumtaSpKenY9++fXBzc9NNRRkfH1/kX2IL+jAXdLlxd3fHwIEDERsbW+Qd0rVaLWbPno0rV67g/v372LBhA15//XV069at0GPIkCG4c+eO3hiTohSMBVm2bNkTzw0AwsPDcezYsSJnBirpr83169fHmTNncPPmTd2yY8eOFZr15p9//tF7LpPJdF80CqZELfhy//gN5UJDQ2Fra4sZM2YgLy+vUA2PHrs4WVlZugBZwN/fHzKZrFRTsqrVaixdulT3PDc3F0uXLoWzszOaN29e4rYtWrSAi4sLlixZonesLVu2IDExEWFhYcVu++abb0Iul2Py5MmFfg5CCN3r2qxZM3h6euLrr78u9Po9ul1xr3GPHj2g0WgwderUIs+9oH379u2hUCiwYMECvf1+/fXXxZ7Dozp16gSNRoOFCxfqLZ87dy4kScJrr71Wqv08qrhz6tSpU5G1Fdz8r6TXHcgfc9CpUydcvXoVmzdvLtRlqEDz5s3Rvn173aNRo0ZPrDk9PR1vv/02NBpNoaliS2PAgAGYOHEiZs+eXeZtC/z000/49ttvERQUhFdffRUAcO/ePezfv7/I9gXjc4rqSligYPbARxUEpMf/nX3//fd63VJ/+eUXXL9+XfceKLha8uj7TAhR6Cavzs7OaNOmDf773/8iJSVFb13BtnK5HOHh4Vi/fn2RQaU0v0OIqjNeASGqAFu2bMGZM2egVqtx48YN7NixA9u2bYOHhwd+//33Iu8g/Msvv8Da2hpCCFy7dg3fffcdbt++jSVLluj+4jp06FDcu3cPXbt2RcOGDZGbm4t9+/bh559/Rr169XR9i4H8v5KeP38ew4YN0wUMBwcHpKSkYN26dThz5gx69uyJ33//HXfu3EGXLl2KPJcXX3wRzs7O+PHHH/HWW28Ve85t27ZF27Zt9bqGlOTjjz/GL7/8gu7du6Nfv35o3rw50tPT8fvvv2PJkiVo0qRJkdv169cPc+bMQWhoKPr374+0tDQsWbIEfn5+usH3AHR3X27Xrh3q1KmDS5cuYcGCBXj++ed1f51+/vnnIZfLMXPmTGRmZkKlUqFdu3ZwcXHB4sWL8e6776JZs2bo2bMnnJ2dkZKSgujoaLRu3brQF9rH7dixA0OGDEH37t3h4+MDtVqNH374QffF5Elq1aqFmTNn4uLFi/Dx8cHPP/+MhIQELFu27InTnyoUCsycORPvvfce2rZti7fffls3DW+9evUwYsSIYretX78+pk2bhrFjx+LixYt44403YGNjg+TkZPz6668YNGgQRo8eDZlMhsWLF6Nz5854/vnn8d5776FmzZo4c+YMTp06hZiYGADQhaVhw4YhNDQUcrkcPXv2RNu2bfH+++8jMjISCQkJ6NChAxQKBZKSkrBu3TrMmzcP3bp1g7OzM0aPHo3IyEi8/vrr6NSpE/766y9s2bKlVFPTdu7cGcHBwfjss89w8eJFNGnSBLGxsfjtt98wfPhwvQHnpVVwTp999hl69uwJhUKBzp07o0mTJujTpw+WLVuGjIwMtG3bFocOHcLKlSvxxhtv6CZ4KE6vXr1w6NAh9OvXD4mJiXoDsK2trfHGG2+Uqr6///4bq1atghACWVlZOHbsGNatW4fs7GzMmTMHHTt2LPM5e3h4YNKkSaVuX/D7LDc3F1evXkVMTAz27t2LJk2a6E1ne+/ePbRq1QovvvgiOnbsCHd3d2RkZGDjxo343//+hzfeeANNmzYt9jhTpkzB7t27ERYWBg8PD6SlpeGbb75BnTp18NJLL+m1dXR0xEsvvYT33nsPN27cwNdff40GDRropkRv2LAh6tevj9GjR+Pq1auwtbXF+vXri7zSNn/+fLz00kto1qwZBg0aBE9PT1y8eBHR0dFISEgAAHzxxReIj49HYGAgBg4ciEaNGiE9PR1Hjx7F9u3biwxPRCbDsJNuEVVvBdNSFjyUSqVwc3MTISEhYt68eXpTQBYoahpeKysrERQUJNauXavXdsuWLaJfv36iYcOGwtraWiiVStGgQQMxdOjQIu8YrFarxbfffitefvllYWdnJxQKhfDw8BDvvfeeborezp07C3Nzc3H37t1iz6tv375CoVDoppNEMVN9Fkx3iVLeCf2ff/4RQ4YMEbVr1xZKpVLUqVNH9OnTR3ec4u6EvmrVKuHl5SWUSqV4/vnnRUxMTKFpeH/55RfRoUMH4eLiIpRKpahbt654//33xfXr1/X2tXz5cuHl5SXkcnmhKXnj4+NFaGiosLOzE+bm5qJ+/fqib9++4s8//9S16dOnj7Cysip0bhcuXBD9+vUT9evXF+bm5sLR0VEEBweL7du3P/F1adu2rfDz8xN//vmnCAoKEubm5sLDw0MsXLhQr13B613cVL8///yzaNq0qVCpVMLR0VH06tVLXLlyRa/N49PwFli/fr146aWXhJWVlbCyshINGzYUERER4uzZs3rt9uzZI0JCQoSNjY2wsrISAQEBelPWqtVqMXToUOHs7CwkSSp0rGXLlonmzZsLCwsLYWNjI/z9/cUnn3wirl27pmuj0WjE5MmTRc2aNYWFhYV45ZVXxMmTJ0t9J/Q7d+6IESNGiFq1agmFQiG8vb3FrFmz9KZMFaL493VRx5k6daqoXbu2kMlkelPy5uXlicmTJwtPT0+hUCiEu7u7GDt2rHjw4MET6/Tw8ChySm4Aeu/tkjy6jUwmE/b29qJp06bio48+EqdOnSrVPgpqCQsLK7FNSdPwFjzMzc1FnTp1xOuvvy7++9//Fnod8vLyxPLly8Ubb7whPDw8hEqlEpaWlqJp06Zi1qxZIicnp8Qa4uLixP/93/+JWrVqCaVSKWrVqiXefvtt8ffff+vaFPw7Wb16tRg7dqxwcXERFhYWIiwsrNA0uqdPnxbt27cX1tbWwsnJSQwcOFA3FfPjv4dOnjwpunbtKuzt7YW5ubl47rnnxPjx4/Xa3LhxQ0RERAh3d3ehUCiEm5ubePXVV8WyZctKPC+i6k4Sogwj64iIqMK98soruHXr1lONkSmr8ePHIzIyslB3MaLqYufOnQgODsa6devQrVs3Y5dDROAYECIik3b9+vVyucs2ERFRaXEMCBGRCbpw4QJ+/fVXrFu3Dq+//rqxyyEiIhPCKyBERCao4C7bbdu21c3SREREZAgcA0JERERERAbDKyBERERERGQwDCBERERERGQwHIROVAKtVotr167BxsZGdzNAIiIiQxFC4M6dO6hVqxZkMv7dmKoHBhCiEly7dg3u7u7GLoOIiEzc5cuXUadOHWOXQVQuGECISmBjYwMg/xe/ra2tkaupWFcST+LXmZOf2K7rpxNRx7exASoiIqKsrCy4u7vrPo+IqgMGEKISFHS7srW1rfYBpGHLQDi51kR2+q1i29jUcELDloGQyeQGrIyIiNgNmKoTdiYkIgCATCZHu76DSmwT3GcQwwcRERE9EwYQItLxDmyFLiPHwdrRSW+5TQ0ndBk5Dt6BrYxUGREREVUX7IJFRHq8A1uhfstAXE08heyM27C2d0BtXz9e+SAiIqJywQBCRIXIZHK4+wUYuwyiakuj0SAvL8/YZVAloFAoIJfzDzxkWhhAiIiIDEQIgdTUVGRkZBi7FKpE7O3t4ebmxoHmZDIYQIiIiAykIHy4uLjA0tKSXzhNnBAC9+7dQ1paGgCgZs2aRq6IyDAYQIiIiAxAo9HowkeNGjWMXQ5VEhYWFgCAtLQ0uLi4sDsWmQTOgkVERGQABWM+LC0tjVwJVTYF7wmOCyJTwQBCRERkQOx2RY/je4JMDQMIEREREREZDAMIERERPTNJkrBx40Zjl0FEVQADCBEREZUoNTUVQ4cOhZeXF1QqFdzd3dG5c2fExcVVyPF27twJSZIqdLri6dOno1WrVrC0tIS9vX2FHYeICuMsWERERFWIRitwKDkdaXcewMXGHC94OkIuq7gxBBcvXkTr1q1hb2+PWbNmwd/fH3l5eYiJiUFERATOnDlTYcd+VkIIaDQamJkV/rqTm5uL7t27IygoCN99950RqiMyXbwCQkREVEVsPXkdL83cgbeXH8BHaxLw9vIDeGnmDmw9eb3Cjvnhhx9CkiQcOnQI4eHh8PHxgZ+fH0aOHIkDBw4UuU1RVzASEhIgSRIuXrwIALh06RI6d+4MBwcHWFlZwc/PD5s3b8bFixcRHBwMAHBwcIAkSejbty8AQKvVIjIyEp6enrCwsECTJk3wyy+/FDruli1b0Lx5c6hUKuzZs6fIGidPnowRI0bA39//2V8kIioTXgEhIiKqAraevI7Bq45CPLY8NfMBBq86isXvNEPHxuV7I7v09HRs3boV06dPh5WVVaH1z9J1KSIiArm5udi9ezesrKxw+vRpWFtbw93dHevXr0d4eDjOnj0LW1tb3b0yIiMjsWrVKixZsgTe3t7YvXs33nnnHTg7O6Nt27a6fY8ZMwZfffUVvLy84ODg8NQ1ElHFYAAhIiKq5DRagcl/nC4UPgBAAJAATP7jNEIauZVrd6xz585BCIGGDRuW2z4LpKSkIDw8XHcFwsvLS7fO0dERAODi4qILOTk5OZgxYwa2b9+OoKAg3TZ79uzB0qVL9QLIlClTEBISUu41E1H5YAAhIiKq5A4lp+N65oNi1wsA1zMf4FByOoLql99d1oUoKvKUj2HDhmHw4MGIjY1F+/btER4ejoCAgGLbnzt3Dvfu3SsULHJzc9G0aVO9ZS1atKiQmomofDCAEBERVXJpd4oPH0/TrrS8vb0hSVKZB5rLZPlDTB8NMI/f5XvAgAEIDQ1FdHQ0YmNjERkZidmzZ2Po0KFF7jM7OxsAEB0djdq1a+utU6lUes+L6i5GRJUHB6ETERFVci425uXarrQcHR0RGhqKRYsW4e7du4XWFzdNrrOzMwDg+vV/B8cnJCQUaufu7o4PPvgAGzZswKhRo7B8+XIAgFKpBABoNBpd20aNGkGlUiElJQUNGjTQe7i7uz/tKRKRETCAEBERVXIveDqipp05ihvdIQGoaZc/JW95W7RoETQaDV544QWsX78eSUlJSExMxPz583VjMR5XEAomTZqEpKQkREdHY/bs2Xpthg8fjpiYGCQnJ+Po0aOIj4+Hr68vAMDDwwOSJGHTpk24efMmsrOzYWNjg9GjR2PEiBFYuXIlzp8/j6NHj2LBggVYuXJlmc8rJSUFCQkJSElJgUajQUJCAhISEnRXWoio4jCAEBERVXJymYSJnRsBQKEQUvB8YudGFXI/EC8vLxw9ehTBwcEYNWoUGjdujJCQEMTFxWHx4sVFbqNQKLB69WqcOXMGAQEBmDlzJqZNm6bXRqPRICIiAr6+vujYsSN8fHzwzTffAABq166NyZMnY8yYMXB1dcWQIUMAAFOnTsX48eMRGRmp2y46Ohqenp5lPq8JEyagadOmmDhxIrKzs9G0aVM0bdoUf/75Z5n3RURlI4mKHGFGVMVlZWXBzs4OmZmZsLW1NXY5RFSFPXjwAMnJyfD09IS5+dN1ldp68jom/3Fab0B6TTtzTOzcqNyn4CXDKem9wc8hqo44CJ2IiKiK6Ni4JkIauRn0TuhEROWNAYSIiKgKkcukcp1ql4jI0DgGhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiJ6ZJEnYuHGjscsgoiqAAYSIiIhKlJqaiqFDh8LLywsqlQru7u7o3Lkz4uLiKuR4O3fuhCRJyMjIqJD9X7x4Ef3794enpycsLCxQv359TJw4Ebm5uRVyPCLSxxsREhERUbEuXryI1q1bw97eHrNmzYK/vz/y8vIQExODiIgInDlzxtglFksIAY1GAzMz/a87Z86cgVarxdKlS9GgQQOcPHkSAwcOxN27d/HVV18ZqVoi08ErIERERFWJVgMk/w848Uv+/2o1FXq4Dz/8EJIk4dChQwgPD4ePjw/8/PwwcuRIHDhwoMhtirqCkZCQAEmScPHiRQDApUuX0LlzZzg4OMDKygp+fn7YvHkzLl68iODgYACAg4MDJElC3759AQBarRaRkZG6KxdNmjTBL7/8Uui4W7ZsQfPmzaFSqbBnz55C9XXs2BErVqxAhw4d4OXlhS5dumD06NHYsGFD+bxoRFQiXgEhIiKqKk7/Dmz9FMi69u8y21pAx5lAoy7lfrj09HRs3boV06dPh5WVVaH19vb2T73viIgI5ObmYvfu3bCyssLp06dhbW0Nd3d3rF+/HuHh4Th79ixsbW1hYWEBAIiMjMSqVauwZMkSeHt7Y/fu3XjnnXfg7OyMtm3b6vY9ZswYfPXVV/Dy8oKDg0Op6snMzISjo+NTnw8RlR4DCBERUVVw+ndgbW8AQn951vX85T2+L/cQcu7cOQgh0LBhw3LdLwCkpKQgPDwc/v7+AAAvLy/duoIg4OLiogs5OTk5mDFjBrZv346goCDdNnv27MHSpUv1AsiUKVMQEhJS6lrOnTuHBQsWsPsVkYEwgBAREVV2Wk3+lY/HwwfwcJkEbB0DNAwDZPJyO6wQRR2vfAwbNgyDBw9GbGws2rdvj/DwcAQEBBTb/ty5c7h3716hYJGbm4umTZvqLWvRokWp67h69So6duyI7t27Y+DAgWU7CSJ6KhwDQkREVNld2qff7aoQAWRdzW9Xjry9vSFJUpkHmstk+V8vHg0weXl5em0GDBiACxcu4N1338WJEyfQokULLFiwoNh9ZmdnAwCio6ORkJCge5w+fVpvHAiAIruLFeXatWsIDg5Gq1atsGzZslJtQ0TPjgGEiIiossu+Ub7tSsnR0RGhoaFYtGgR7t69W2h9cdPkOjs7AwCuX7+uW5aQkFConbu7Oz744ANs2LABo0aNwvLlywEASqUSAKDR/DvAvlGjRlCpVEhJSUGDBg30Hu7u7mU+t6tXr+KVV15B8+bNsWLFCl1oIqKKx39tRERElZ21a/m2K4NFixZBo9HghRdewPr165GUlITExETMnz9fNxbjcQWhYNKkSUhKSkJ0dDRmz56t12b48OGIiYlBcnIyjh49ivj4ePj6+gIAPDw8IEkSNm3ahJs3byI7Oxs2NjYYPXo0RowYgZUrV+L8+fM4evQoFixYgJUrV5bpnArCR926dfHVV1/h5s2bSE1NRWpq6tO9SERUJhwDQkREVNl5tMqf7SrrOooeByLlr/doVe6H9vLywtGjRzF9+nSMGjUK169fh7OzM5o3b47FixcXuY1CocDq1asxePBgBAQEoGXLlpg2bRq6d++ua6PRaBAREYErV67A1tYWHTt2xNy5cwEAtWvXxuTJkzFmzBi899576N27N6KiojB16lQ4OzsjMjISFy5cgL29PZo1a4Zx48aV6Zy2bduGc+fO4dy5c6hTp47euooc90JE+STBf2lExcrKyoKdnR0yMzNha2tr7HKIqAp78OABkpOT4enpCXNz87LvQDcLFqAfQqT8/6mAWbDIMEp6b/BziKojdsEiIiKqChp1yQ8ZtjX1l9vWYvggoiqFXbCIiIiqikZd8qfavbQvf8C5tWt+t6tynHqXiKiiMYAQERFVJTI54PmysasgInpq7IJFREREREQGwwBCBjdp0iRIkqT3aNiwoW79gwcPEBERgRo1asDa2hrh4eG4cUN/bvuUlBSEhYXB0tISLi4u+Pjjj6FWq/Xa7Ny5E82aNYNKpUKDBg0QFRVliNMjIiIiohIwgJBR+Pn54fr167rHnj17dOtGjBiBP/74A+vWrcOuXbtw7do1vPnmm7r1Go0GYWFhyM3Nxb59+7By5UpERUVhwoQJujbJyckICwtDcHAwEhISMHz4cAwYMAAxMTEGPU8iIiIi0scxIGQUZmZmcHNzK7Q8MzMT3333HX766Se0a9cOALBixQr4+vriwIEDePHFFxEbG4vTp09j+/btcHV1xfPPP4+pU6fi008/xaRJk6BUKrFkyRJ4enrqbnzl6+uLPXv2YO7cuQgNDTXouRIRERHRv3gFhIwiKSkJtWrVgpeXF3r16oWUlBQAwJEjR5CXl4f27dvr2jZs2BB169bF/v37AQD79++Hv78/XF3/veNvaGgosrKycOrUKV2bR/dR0KZgH8XJyclBVlaW3oOIiIiIyg8DCBlcYGAgoqKisHXrVixevBjJycl4+eWXcefOHaSmpkKpVMLe3l5vG1dXV6SmpgIAUlNT9cJHwfqCdSW1ycrKwv3794utLTIyEnZ2drqHu7v7s54uERERET2CAYQM7rXXXkP37t0REBCA0NBQbN68GRkZGVi7dq2xS8PYsWORmZmpe1y+fNnYJRERVQmSJGHjxo3GLoOIqgAGEDI6e3t7+Pj44Ny5c3Bzc0Nubi4yMjL02ty4cUM3ZsTNza3QrFgFz5/UxtbWFhYWFsXWolKpYGtrq/cgIjJ1qampGDp0KLy8vKBSqeDu7o7OnTsjLi6uQo63c+dOSJJU6LOgPHXp0gV169aFubk5atasiXfffRfXrl2rsOMR0b8YQMjosrOzcf78edSsWRPNmzeHQqHQ+1A7e/YsUlJSEBQUBAAICgrCiRMnkJaWpmuzbds22NraolGjRro2j38wbtu2TbcPIiIqnYsXL6J58+bYsWMHZs2ahRMnTmDr1q0IDg5GRESEscsrkRCi0BTtBYKDg7F27VqcPXsW69evx/nz59GtWzcDV0hkogSRgY0aNUrs3LlTJCcni71794r27dsLJycnkZaWJoQQ4oMPPhB169YVO3bsEH/++acICgoSQUFBuu3VarVo3Lix6NChg0hISBBbt24Vzs7OYuzYsbo2Fy5cEJaWluLjjz8WiYmJYtGiRUIul4utW7eWqdbMzEwBQGRmZpbPyRORybp//744ffq0uH///jPtR61Ri0PXD4no89Hi0PVDQq1Rl1OFRXvttddE7dq1RXZ2dqF1t2/f1v03APHrr78KIYSIj48XAPTW//XXXwKASE5OFkIIcfHiRfH6668Le3t7YWlpKRo1aiSio6NFcnKyAKD36NOnjxBCCI1GI2bMmCHq1asnzM3NRUBAgFi3bp3uGAXH3bx5s2jWrJlQKBQiPj6+VOf522+/CUmSRG5ubllennJR0nuDn0NUHXEaXjK4K1eu4O2338Y///wDZ2dnvPTSSzhw4ACcnZ0BAHPnzoVMJkN4eDhycnIQGhqKb775Rre9XC7Hpk2bMHjwYAQFBcHKygp9+vTBlClTdG08PT0RHR2NESNGYN68eahTpw6+/fZbTsFLRFXa9kvb8cWhL3Dj3r9dTF0tXTHmhTFo79G+hC2fTnp6OrZu3Yrp06fDysqq0PrHJwwpi4iICOTm5mL37t2wsrLC6dOnYW1tDXd3d6xfvx7h4eE4e/asXtfZyMhIrFq1CkuWLIG3tzd2796Nd955B87Ozmjbtq1u32PGjMFXX30FLy8vODg4lOo8f/zxR7Rq1QoKheKpz4mISocBhAxuzZo1Ja43NzfHokWLsGjRomLbeHh4YPPmzSXu55VXXsFff/31VDUSEVU22y9tx8idIyEg9Jan3UvDyJ0jMeeVOeUeQs6dOwchBBo2bFiu+wWAlJQUhIeHw9/fHwDg5eWlW+fo6AgAcHFx0YWcnJwczJgxA9u3b9d1p/Xy8sKePXuwdOlSvQAyZcoUhISEPLGGTz/9FAsXLsS9e/fw4osvYtOmTeV1ekRUAo4BISIiquQ0Wg2+OPRFofABQLds5qGZ0Gg15XpcIQofr7wMGzYM06ZNQ+vWrTFx4kQcP368xPbnzp3DvXv3EBISAmtra93j+++/x/nz5/XatmjRolQ1fPzxx/jrr78QGxsLuVyO3r17V+g5E1E+XgEhIiKq5I6mHdXrdvU4AYHUe6k4mnYULd1alttxvb29IUkSzpw5U6btZLL8v28++mU+Ly9Pr82AAQMQGhqK6OhoxMbGIjIyErNnz8bQoUOL3Gd2djYAIDo6GrVr19Zbp1Kp9J4X1V2sKE5OTnBycoKPjw98fX3h7u6OAwcOcMISogrGKyBERESV3M17N8u1XWk5OjoiNDQUixYtwt27dwutL26a3IIxfdevX9ctS0hIKNTO3d0dH3zwATZs2IBRo0Zh+fLlAAClUgkA0Gj+vaLTqFEjqFQqpKSkoEGDBnqP8rhprFarBZDf1YuIKhYDCBERUSXnbOlcru3KYtGiRdBoNHjhhRewfv16JCUlITExEfPnzy/2SkFBKJg0aRKSkpIQHR2N2bNn67UZPnw4YmJikJycjKNHjyI+Ph6+vr4A8sf5SZKETZs24ebNm8jOzoaNjQ1Gjx6NESNGYOXKlTh//jyOHj2KBQsWYOXKlWU6p4MHD2LhwoVISEjApUuXsGPHDrz99tuoX78+r34QGQADCBERUSXXzKUZXC1dIUEqcr0ECW6Wbmjm0qzcj+3l5YWjR48iODgYo0aNQuPGjRESEoK4uDgsXry4yG0UCgVWr16NM2fOICAgADNnzsS0adP02mg0GkRERMDX1xcdO3aEj4+PbsbD2rVrY/LkyRgzZgxcXV0xZMgQAMDUqVMxfvx4REZG6raLjo6Gp6dnmc7J0tISGzZswKuvvornnnsO/fv3R0BAAHbt2lWoOxcRlT9JcLQVUbGysrJgZ2eHzMxM3hWdiJ7JgwcPkJycDE9PT5ibm5d5+4JZsADoDUYvCCUVMQsWGUZJ7w1+DlF1xCsgREREVUB7j/aY88ocuFi66C13tXRl+CCiKoWzYBEREVUR7T3aI9g9GEfTjuLmvZtwtnRGM5dmkMvkxi6NiKjUGECIiIiqELlMXq5T7RIRGRq7YBERERERkcEwgBARERERkcEwgBARERERkcEwgBARERERkcEwgBARERERkcEwgBARERERkcEwgBAREdEzkyQJGzduNHYZRFQFMIAQERFRiVJTUzF06FB4eXlBpVLB3d0dnTt3RlxcXIUcb+fOnZAkCRkZGRWy/0fl5OTg+eefhyRJSEhIqPDjERFvREhEREQluHjxIlq3bg17e3vMmjUL/v7+yMvLQ0xMDCIiInDmzBljl1gsIQQ0Gg3MzIr/uvPJJ5+gVq1aOHbsmAErIzJtvAJCRERUhQiNBncPHkLmpmjcPXgIQqOp0ON9+OGHkCQJhw4dQnh4OHx8fODn54eRI0fiwIEDRW5T1BWMhIQESJKEixcvAgAuXbqEzp07w8HBAVZWVvDz88PmzZtx8eJFBAcHAwAcHBwgSRL69u0LANBqtYiMjISnpycsLCzQpEkT/PLLL4WOu2XLFjRv3hwqlQp79uwp9ty2bNmC2NhYfPXVV8/2IhFRmfAKCBERURWRFRuLGzMioU5N1S0zc3OD67ixsO3QodyPl56ejq1bt2L69OmwsrIqtN7e3v6p9x0REYHc3Fzs3r0bVlZWOH36NKytreHu7o7169cjPDwcZ8+eha2tLSwsLAAAkZGRWLVqFZYsWQJvb2/s3r0b77zzDpydndG2bVvdvseMGYOvvvoKXl5ecHBwKPL4N27cwMCBA7Fx40ZYWlo+9XkQUdkxgBAREVUBWbGxuPrRcEAIveXqGzfyl8/7utxDyLlz5yCEQMOGDct1vwCQkpKC8PBw+Pv7AwC8vLx06xwdHQEALi4uupCTk5ODGTNmYPv27QgKCtJts2fPHixdulQvgEyZMgUhISHFHlsIgb59++KDDz5AixYtdFdliMgwGECIiIgqOaHR4MaMyELhI3+lACQJN2ZEwubVVyHJ5eV33KKOV06GDRuGwYMHIzY2Fu3bt0d4eDgCAgKKbX/u3Dncu3evULDIzc1F06ZN9Za1aNGixGMvWLAAd+7cwdixY5/+BIjoqXEMCBERUSV3788jet2uChEC6tRU3PvzSLke19vbG5IklXmguUwme1jWvwEmLy9Pr82AAQNw4cIFvPvuuzhx4gRatGiBBQsWFLvP7OxsAEB0dDQSEhJ0j9OnT+uNAwFQZHexR+3YsQP79++HSqWCmZkZGjRoACA/uPTp06f0J0pET4UBhIiIqJJT37xZru1Ky9HREaGhoVi0aBHu3r1baH1x0+Q6OzsDAK5fv65bVtQUt+7u7vjggw+wYcMGjBo1CsuXLwcAKJVKAIDmkQH2jRo1gkqlQkpKCho0aKD3cHd3L9N5zZ8/H8eOHdOFmM2bNwMAfv75Z0yfPr1M+yKismMXLCIiokrO7OEX+vJqVxaLFi1C69at8cILL2DKlCkICAiAWq3Gtm3bsHjxYiQmJhbapiAUTJo0CdOnT8fff/+N2bNn67UZPnw4XnvtNfj4+OD27duIj4+Hr68vAMDDwwOSJGHTpk3o1KkTLCwsYGNjg9GjR2PEiBHQarV46aWXkJmZib1798LW1rZMVy7q1q2r99za2hoAUL9+fdSpU6esLxERlRGvgBAREVVyli2aw8zNDZCkohtIEszc3GDZonm5H9vLywtHjx5FcHAwRo0ahcaNGyMkJARxcXFYvHhxkdsoFAqsXr0aZ86cQUBAAGbOnIlp06bptdFoNIiIiICvry86duwIHx8ffPPNNwCA2rVrY/LkyRgzZgxcXV0xZMgQAMDUqVMxfvx4REZG6raLjo6Gp6dnuZ83EVUcSVTkCDOiKi4rKwt2dnbIzMyEra2tscshoirswYMHSE5OhqenJ8zNzcu8vW4WLEB/MPrDUFK7AmbBIsMo6b3BzyGqjngFhIiIqAqw7dABted9DTNXV73lZq6uDB9EVKVwDAgREVEVYduhA2xefTV/VqybN2Hm7AzLFs3LdepdIqKKxgBCRERUhUhyOawCXzB2GURET41dsIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiOiZSZKEjRs3GrsMIqoCGECIiIioRKmpqRg6dCi8vLygUqng7u6Ozp07Iy4urkKOt3PnTkiShIyMjArZPwDUq1cPkiTpPb744osKOx4R/Ys3IiQiIqJiXbx4Ea1bt4a9vT1mzZoFf39/5OXlISYmBhEREThz5oyxSyyWEAIajQZmZkV/3ZkyZQoGDhyoe25jY2Oo0ohMGq+AEBERVSFarcDVs7fx9+FUXD17G1qtqNDjffjhh5AkCYcOHUJ4eDh8fHzg5+eHkSNH4sCBA0VuU9QVjISEBEiShIsXLwIALl26hM6dO8PBwQFWVlbw8/PD5s2bcfHiRQQHBwMAHBwcIEkS+vbtCwDQarWIjIyEp6cnLCws0KRJE/zyyy+FjrtlyxY0b94cKpUKe/bsKfbcbGxs4ObmpntYWVk924tFRKXCKyBERERVxPm/0vC/n5NwNyNHt8zKXoWX3/JG/aYu5X689PR0bN26FdOnTy/yy7m9vf1T7zsiIgK5ubnYvXs3rKyscPr0aVhbW8Pd3R3r169HeHg4zp49C1tbW1hYWAAAIiMjsWrVKixZsgTe3t7YvXs33nnnHTg7O6Nt27a6fY8ZMwZfffUVvLy84ODgUGwNX3zxBaZOnYq6deviP//5D0aMGFHs1RIiKj/8V0ZERFQFnP8rDVuXniy0/G5GDrYuPYmO7zcu9xBy7tw5CCHQsGHDct0vAKSkpCA8PBz+/v4AAC8vL906R0dHAICLi4su5OTk5GDGjBnYvn07goKCdNvs2bMHS5cu1QsgU6ZMQUhISInHHzZsGJo1awZHR0fs27cPY8eOxfXr1zFnzpzyPE0iKgIDCBERUSWn1Qr87+ekEtvsWZsEzybOkMmkcjuuEBXXvWvYsGEYPHgwYmNj0b59e4SHhyMgIKDY9ufOncO9e/cKBYvc3Fw0bdpUb1mLFi2eePyRI0fq/jsgIABKpRLvv/8+IiMjoVKpyng2RFQWHANCRERUyV1PytDrdlWU7Ns5uJ6UUa7H9fb2hiRJZR5oLpPlf714NMDk5eXptRkwYAAuXLiAd999FydOnECLFi2wYMGCYveZnZ0NAIiOjkZCQoLucfr0ab1xIACeaixHYGAg1Gq1bowKEVUcBhAiIqJK7m5WyeGjrO1Ky9HREaGhoVi0aBHu3r1baH1x0+Q6OzsDAK5fv65blpCQUKidu7s7PvjgA2zYsAGjRo3C8uXLAQBKpRIAoNFodG0bNWoElUqFlJQUNGjQQO/h7u7+tKeoV59MJoOLS/mPpSEifeyCRUREVMlZ2ZauS1Bp25XFokWL0Lp1a7zwwguYMmUKAgICoFarsW3bNixevBiJiYmFtikIBZMmTcL06dPx999/Y/bs2Xpthg8fjtdeew0+Pj64ffs24uPj4evrCwDw8PCAJEnYtGkTOnXqBAsLC9jY2GD06NEYMWIEtFotXnrpJWRmZmLv3r2wtbVFnz59Sn1O+/fvx8GDBxEcHAwbGxvs378fI0aMwDvvvFPioHUiKh+8AkJERFTJ1fS2h5V9yeHC2kGFmt725X5sLy8vHD16FMHBwRg1ahQaN26MkJAQxMXFYfHixUVuo1AosHr1apw5cwYBAQGYOXMmpk2bptdGo9EgIiICvr6+6NixI3x8fPDNN98AAGrXro3JkydjzJgxcHV1xZAhQwAAU6dOxfjx4xEZGanbLjo6Gp6enmU6J5VKhTVr1qBt27bw8/PD9OnTMWLECCxbtuwpXiEiKitJVOQIM6IqLisrC3Z2dsjMzIStra2xyyGiKuzBgwdITk6Gp6cnzM3Ny7x9cbNgFaiIWbDIMEp6b/BziKojXgEhIiKqAuo3dUHH9xsXuhJi7aBi+CCiKoVjQIjIpGi1GlxNPIXsjNuwtndAbV8/yGRyY5dFVCr1m7rAs4lz/qxYWTmwss3vdlWeU+8SEVU0BhAiMhlJB/dhR9QyZKff0i2zdnRCu76D4B3YyoiVEZWeTCah9nMcKE1EVRe7YBGRSUg6uA+/z5mhFz4AIDv9Fn6fMwNJB/cZqTIiIiLTwgBCRNWeVqvBjqiSZ7eJX7kMWq2mxDZERET07BhAiKjau5p4qtCVj8fd+ecWriaeMlBFREREposBhIiqveyM2+XajoiIiJ4eAwgRVXvW9qUbsFvadkRERPT0GECIqNqr7esHa0enEtvY1HBCbV8/A1VERERkuhhAiKjak8nkaNd3UIltgvsM4v1AiCpYvXr18PXXXxu7jBL17dsXb7zxhrHLIKrWGECIyCR4B7ZCl5HjCl0JsanhhC4jx/E+IETF6Nu3LyRJwhdffKG3fOPGjZCkst0A8fDhwxg0qOQ/BhjbvHnzEBUVVaZtJEnCxo0bK6QeouqINyIkIpPhHdgK9VsG8k7oRGVkbm6OmTNn4v3334eDw9OPlXJ2di7HqiqGnZ2dsUsgqvZ4BYSITIpMJoe7XwB8W7eFu18AwwdVOVqtBpdPHUfi3l24fOq4Qe5f0759e7i5uSEyMrLEduvXr4efnx9UKhXq1auH2bNn661/tAuWEAKTJk1C3bp1oVKpUKtWLQwbNkzXNicnB6NHj0bt2rVhZWWFwMBA7Ny5s8TjS5KExYsX47XXXoOFhQW8vLzwyy+/6LU5ceIE2rVrBwsLC9SoUQODBg1Cdna2bv3jXbBeeeUVDBs2DJ988gkcHR3h5uaGSZMm6Z0TAHTt2hWSJOmeHzt2DMHBwbCxsYGtrS2aN2+OP//8s8T6iUwFAwgREVEVkXRwH5ZH9MfaKeOwef4srJ0yDssj+iPp4L4KPa5cLseMGTOwYMECXLlypcg2R44cQY8ePdCzZ0+cOHECkyZNwvjx44vtzrR+/XrMnTsXS5cuRVJSEjZu3Ah/f3/d+iFDhmD//v1Ys2YNjh8/ju7du6Njx45ISkoqsdbx48cjPDwcx44dQ69evdCzZ08kJiYCAO7evYvQ0FA4ODjg8OHDWLduHbZv344hQ4aUuM+VK1fCysoKBw8exJdffokpU6Zg27ZtAPK7lQHAihUrcP36dd3zXr16oU6dOjh8+DCOHDmCMWPGQKFQlHgcIlPBAEJERFQFJB3ch9/nzCh0U83s9Fv4fc6MCg8hXbt2xfPPP4+JEycWuX7OnDl49dVXMX78ePj4+KBv374YMmQIZs2aVWT7lJQUuLm5oX379qhbty5eeOEFDBw4ULduxYoVWLduHV5++WXUr18fo0ePxksvvYQVK1aUWGf37t0xYMAA+Pj4YOrUqWjRogUWLFgAAPjpp5/w4MEDfP/992jcuDHatWuHhQsX4ocffsCNGzeK3WdAQAAmTpwIb29v9O7dGy1atEBcXByAf7uV2dvbw83NTfc8JSUF7du3R8OGDeHt7Y3u3bujSZMmJdZOZCoYQIiIiCo5rVaDHVHLSmwTv3JZhXfHmjlzJlauXKm7ovCoxMREtG7dWm9Z69atkZSUBI2mcF3du3fH/fv34eXlhYEDB+LXX3+FWq0GkN9NSqPRwMfHB9bW1rrHrl27cP78+RJrDAoKKvS8oN7ExEQ0adIEVlZWejVqtVqcPXu22H0GBAToPa9ZsybS0tJKrGPkyJEYMGAA2rdvjy+++OKJdROZEgYQIiKiSu5q4qlCVz4ed+efW7iaeKpC62jTpg1CQ0MxduzYZ96Xu7s7zp49i2+++QYWFhb48MMP0aZNG+Tl5SE7OxtyuRxHjhxBQkKC7pGYmIh58+aVw5mUzeNdpyRJglarLXGbSZMm4dSpUwgLC8OOHTvQqFEj/PrrrxVZJlGVwQBCRERUyWVn3C7Xds/iiy++wB9//IH9+/frLff19cXevXv1lu3duxc+Pj6Qy4ue7MHCwgKdO3fG/PnzsXPnTuzfvx8nTpxA06ZNodFokJaWhgYNGug93NzcSqzvwIEDhZ77+vrqajx27Bju3r2rV6NMJsNzzz1X6tfgcQqFosirPD4+PhgxYgRiY2Px5ptvPrH7GJGpYAAhIiKq5KztSzf1bWnbPQt/f3/06tUL8+fP11s+atQoxMXFYerUqfj777+xcuVKLFy4EKNHjy5yP1FRUfjuu+9w8uRJXLhwAatWrYKFhQU8PDzg4+ODXr16oXfv3tiwYQOSk5Nx6NAhREZGIjo6usT61q1bh//+97/4+++/MXHiRBw6dEg3yLxXr14wNzdHnz59cPLkScTHx2Po0KF499134erq+tSvSb169RAXF4fU1FTcvn0b9+/fx5AhQ7Bz505cunQJe/fuxeHDh3VBiMjUMYAQERFVcrV9/QrdRPNxNjWcUNvXzyD1TJkypVAXpGbNmmHt2rVYs2YNGjdujAkTJmDKlCno27dvkfuwt7fH8uXL0bp1awQEBGD79u34448/UKNGDQD5s0r17t0bo0aNwnPPPYc33ngDhw8fRt26dUusbfLkyVizZg0CAgLw/fffY/Xq1WjUqBEAwNLSEjExMUhPT0fLli3RrVs3vPrqq1i4cOEzvR6zZ8/Gtm3b4O7ujqZNm0Iul+Off/5B79694ePjgx49euC1117D5MmTn+k4RNWFJIQQxi6CqLLKysqCnZ0dMjMzYWtra+xyiKgKe/DgAZKTk+Hp6Qlzc/Myb18wC1ZxuowcB+/AVs9SYpUnSRJ+/fVXvft4VAUlvTf4OUTVEa+AEBERVQHega3QZeS4QldCbGo4MXwQUZViZuwCiIiIqHS8A1uhfsvA/FmxMm7D2t4BtX39IJMVPcibiKgyYgAhIiKqQmQyOdz9Ap7c0ASxVzlR1cAuWEREREREZDAMIGR0X3zxBSRJwvDhw3XLHjx4gIiICNSoUQPW1tYIDw/HjRs39LZLSUlBWFgYLC0t4eLigo8//lh3F90CO3fuRLNmzaBSqdCgQQNERUUZ4IyIiIiIqDgMIGRUhw8fxtKlSxEQoN+dYMSIEfjjjz+wbt067Nq1C9euXcObb76pW6/RaBAWFobc3Fzs27cPK1euRFRUFCZMmKBrk5ycjLCwMAQHByMhIQHDhw/HgAEDEBMTY7DzIyJ6HLsJ0eP4niBTwwBCRpOdnY1evXph+fLlcHD49+ZZmZmZ+O677zBnzhy0a9cOzZs3x4oVK7Bv3z7dHW5jY2Nx+vRprFq1Cs8//zxee+01TJ06FYsWLUJubi4AYMmSJfD09MTs2bPh6+uLIUOGoFu3bpg7d65RzpeITJtCoQAA3Lt3z8iVUGVT8J4oeI8QVXcchE5GExERgbCwMLRv3x7Tpk3TLT9y5Ajy8vLQvn173bKGDRuibt262L9/P1588UXs378f/v7+eneuDQ0NxeDBg3Hq1Ck0bdoU+/fv19tHQZtHu3oRERmKXC6Hvb090tLSAOTfFE+SJCNXRcYkhMC9e/eQlpYGe3t7yOWczYxMAwMIGcWaNWtw9OhRHD58uNC61NRUKJVK2Nvb6y13dXVFamqqrs2j4aNgfcG6ktpkZWXh/v37sLCwKHTsnJwc5OTk6J5nZWWV/eSIiIrh5uYGALoQQgTk3xW+4L1BZAoYQMjgLl++jI8++gjbtm17qrsBV6TIyEhMnjzZ2GUQUTUlSRJq1qwJFxcX5OXlGbscqgQUCgWvfJDJYQAhgzty5AjS0tLQrFkz3TKNRoPdu3dj4cKFiImJQW5uLjIyMvSugty4cUP3FyI3NzccOnRIb78Fs2Q92ubxmbNu3LgBW1vbIq9+AMDYsWMxcuRI3fOsrCy4u7s//ckSERVBLpfzSycRmSwOQieDe/XVV3HixAkkJCToHi1atECvXr10/61QKBAXF6fb5uzZs0hJSUFQUBAAICgoCCdOnNDrxrBt2zbY2tqiUaNGujaP7qOgTcE+iqJSqWBra6v3ICIiIqLywysgZHA2NjZo3Lix3jIrKyvUqFFDt7x///4YOXIkHB0dYWtri6FDhyIoKAgvvvgiAKBDhw5o1KgR3n33XXz55ZdITU3F559/joiICKhUKgDABx98gIULF+KTTz5Bv379sGPHDqxduxbR0dGGPWEiIiIi0mEAoUpp7ty5kMlkCA8PR05ODkJDQ/HNN9/o1svlcmzatAmDBw9GUFAQrKys0KdPH0yZMkXXxtPTE9HR0RgxYgTmzZuHOnXq4Ntvv0VoaKgxTomIiIiIAEiCd78hKlZWVhbs7OyQmZnJ7lhERGRw/Byi6ohjQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQMjgFi9ejICAANja2sLW1hZBQUHYsmWLbv2DBw8QERGBGjVqwNraGuHh4bhx44bePlJSUhAWFgZLS0u4uLjg448/hlqt1muzc+dONGvWDCqVCg0aNEBUVJQhTo+IiIiISsAAQgZXp04dfPHFFzhy5Aj+/PNPtGvXDv/3f/+HU6dOAQBGjBiBP/74A+vWrcOuXbtw7do1vPnmm7rtNRoNwsLCkJubi3379mHlypWIiorChAkTdG2Sk5MRFhaG4OBgJCQkYPjw4RgwYABiYmIMfr5ERERE9C9JCCGMXQSRo6MjZs2ahW7dusHZ2Rk//fQTunXrBgA4c+YMfH19sX//frz44ovYsmULXn/9dVy7dg2urq4AgCVLluDTTz/FzZs3oVQq8emnnyI6OhonT57UHaNnz57IyMjA1q1bS11XVlYW7OzskJmZCVtb2/I9aSIioifg5xBVR7wCQkal0WiwZs0a3L17F0FBQThy5Ajy8vLQvn17XZuGDRuibt262L9/PwBg//798Pf314UPAAgNDUVWVpbuKsr+/fv19lHQpmAfxcnJyUFWVpbeg4iIiIjKDwMIGcWJEydgbW0NlUqFDz74AL/++isaNWqE1NRUKJVK2Nvb67V3dXVFamoqACA1NVUvfBSsL1hXUpusrCzcv3+/2LoiIyNhZ2ene7i7uz/rqRIRERHRIxhAyCiee+45JCQk4ODBgxg8eDD69OmD06dPG7ssjB07FpmZmbrH5cuXjV0SERERUbViZuwCyDQplUo0aNAAANC8eXMcPnwY8+bNw1tvvYXc3FxkZGToXQW5ceMG3NzcAABubm44dOiQ3v4KZsl6tM3jM2fduHEDtra2sLCwKLYulUoFlUr1zOdHREREREXjFRCqFLRaLXJyctC8eXMoFArExcXp1p09exYpKSkICgoCAAQFBeHEiRNIS0vTtdm2bRtsbW3RqFEjXZtH91HQpmAfRERERGQcvAJCBjd27Fi89tprqFu3Lu7cuYOffvoJO3fuRExMDOzs7NC/f3+MHDkSjo6OsLW1xdChQxEUFIQXX3wRANChQwc0atQI7777Lr788kukpqbi888/R0REhO7qxQcffICFCxfik08+Qb9+/bBjxw6sXbsW0dHRxjx1IiIiIpPHAEIGl5aWht69e+P69euws7NDQEAAYmJiEBISAgCYO3cuZDIZwsPDkZOTg9DQUHzzzTe67eVyOTZt2oTBgwcjKCgIVlZW6NOnD6ZMmaJr4+npiejoaIwYMQLz5s1DnTp18O233yI0NNTg50tERERE/+J9QIhKwPnXiYjImPg5RNURx4AQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQEREREZHBMIAQlcKVxJPQajXGLoOIiIioymMAISqFX2dOxvKI/kg6uM/YpRARERFVaQwgRKWUnX4Lv8+ZwRBCRERE9AwYQIjKKH7lMnbHIiIiInpKDCBEZXTnn1u4mnjK2GUQERERVUkMIERPITvjtrFLICIiIqqSGEBMmFarLXZ5SkqKgaupWqztHYxdAhEREVGVxABigrKystCjRw9YWVnB1dUVEyZMgEbz75iGmzdvwtPT04gVVm42NZxQ29fP2GUQERERVUlmxi6ADG/8+PE4duwYfvjhB2RkZGDatGk4evQoNmzYAKVSCQAQQhi5ysoruM8gyGRyY5dBREREVCXxCogJ2rhxI5YuXYpu3bphwIAB+PPPP3Hz5k107twZOTk5AABJkoxcZeVjU8MJXUaOg3dgK2OXQkRERFRlMYCYoJs3b8LDw0P33MnJCdu3b8edO3fQqVMn3Lt3z4jVVU5dP52IAQu/Y/ggIiIiekYMICaobt26SExM1FtmY2OD2NhY3L9/H127djVSZZVXHd/G7HZFREREVA4YQExQhw4dsGLFikLLra2tERMTA3NzcyNURURERESmgIPQTdDkyZNx7dq1ItfZ2Nhg27ZtOHr0qIGrIiIiIiJTwABighwcHODgUPx9LGxsbNC2bVsDVkREREREpoJdsIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQIiIiIiIyGAYQEyYXC5HWlpaoeX//PMP5HLe84KIiIiIyh8DiAkTQhS5PCcnB0ql0sDVEBEREZEp4DS8Jmj+/PkAAEmS8O2338La2lq3TqPRYPfu3WjYsKGxyiMiIiKiaowBxATNnTsXQP4VkCVLluh1t1IqlahXrx6WLFlirPKIiIiIqBpjADFBycnJAIDg4GBs2LChxJsSEhERERGVJwYQExYfH2/sEoiIiIjIxDCAmDCNRoOoqCjExcUhLS0NWq1Wb/2OHTuMVBkRERERVVcMICbso48+QlRUFMLCwtC4cWNIkmTskoiIiIiommMAMWFr1qzB2rVr0alTJ2OXQkREREQmgvcBMWFKpRINGjQwdhlEREREZEIYQEzYqFGjMG/evGJvSEhEREREVN7YBcuE7dmzB/Hx8diyZQv8/PygUCj01m/YsMFIlRERERFRdcUAYsLs7e3RtWtXY5dBRERERCaEAcSErVixwtglEBEREZGJ4RgQE6dWq7F9+3YsXboUd+7cAQBcu3YN2dnZRq6MiIiIiKojXgExYZcuXULHjh2RkpKCnJwchISEwMbGBjNnzkROTg6WLFli7BKJiIiIqJrhFRAT9tFHH6FFixa4ffs2LCwsdMu7du2KuLg4I1ZGRERERNUVr4CYsP/973/Yt28flEql3vJ69erh6tWrRqqKiIiIiKozXgExYVqtFhqNptDyK1euwMbGxggVEREREVF1xwBiwjp06ICvv/5a91ySJGRnZ2PixIno1KmT8QojIiIiompLErwNtsm6cuUKQkNDIYRAUlISWrRogaSkJDg5OWH37t1wcXExdolGl5WVBTs7O2RmZsLW1tbY5RARkYnh5xBVRwwgJk6tVmPNmjU4fvw4srOz0axZM/Tq1UtvULop4y9+IiIyJn4OUXXEQegmzszMDO+8846xyyAiIiIiE8EAYuKSkpIQHx+PtLQ0aLVavXUTJkwwUlVEREREVF0xgJiw5cuXY/DgwXBycoKbmxskSdKtkySJAYSIiIiIyh0DiAmbNm0apk+fjk8//dTYpRARERGRieA0vCbs9u3b6N69u7HLICIiIiITwgBiwrp3747Y2Fhjl0FEREREJoRdsExYgwYNMH78eBw4cAD+/v5QKBR664cNG2akyoiIiIiouuJ9QEyYp6dnseskScKFCxcMWE3lxPnXiYjImPg5RNURr4CYsOTkZGOXQEREREQmhmNACAAghAAvhhERERFRRWMAMXHff/89/P39YWFhAQsLCwQEBOCHH34wdllEREREVE2xC5YJmzNnDsaPH48hQ4agdevWAIA9e/bggw8+wK1btzBixAgjV0hERERE1Q0HoZswT09PTJ48Gb1799ZbvnLlSkyaNIljRMDBf0REZFz8HKLqiF2wTNj169fRqlWrQstbtWqF69evG6EiIiIiIqruGEBMWIMGDbB27dpCy3/++Wd4e3sboSIiIiIiqu44BsSETZ48GW+99RZ2796tGwOyd+9exMXFFRlMiIiIiIieFa+AmLDw8HAcPHgQTk5O2LhxIzZu3AgnJyccOnQIXbt2NXZ5RERERFQNcRA6UQk4+I+IiIyJn0NUHbELlonTaDT49ddfkZiYCABo1KgR/u///g9mZnxrEBEREVH547dME3bq1Cl06dIFqampeO655wAAM2fOhLOzM/744w80btzYyBUSERERUXXDMSAmbMCAAfDz88OVK1dw9OhRHD16FJcvX0ZAQAAGDRpk7PKIiIiIqBriFRATlpCQgD///BMODg66ZQ4ODpg+fTpatmxpxMqIiIiIqLriFRAT5uPjgxs3bhRanpaWhgYNGlTYcSMjI9GyZUvY2NjAxcUFb7zxBs6ePavX5sGDB4iIiECNGjVgbW2N8PDwQrWmpKQgLCwMlpaWcHFxwccffwy1Wq3XZufOnWjWrBlUKhUaNGiAqKioCjsvIiIiInoyBhATFhkZiWHDhuGXX37BlStXcOXKFfzyyy8YPnw4Zs6ciaysLN2jPO3atQsRERE4cOAAtm3bhry8PHTo0AF3797VtRkxYgT++OMPrFu3Drt27cK1a9fw5ptv6tZrNBqEhYUhNzcX+/btw8qVKxEVFYUJEybo2iQnJyMsLAzBwcFISEjA8OHDMWDAAMTExJTr+RARERFR6XEaXhMmk/2bPyVJAgAUvB0efS5JEjQaTYXVcfPmTbi4uGDXrl1o06YNMjMz4ezsjJ9++gndunUDAJw5cwa+vr7Yv38/XnzxRWzZsgWvv/46rl27BldXVwDAkiVL8Omnn+LmzZtQKpX49NNPER0djZMnT+qO1bNnT2RkZGDr1q2lqo3THxIRkTHxc4iqI44BMWHx8fHGLgEAkJmZCQBwdHQEABw5cgR5eXlo3769rk3Dhg1Rt25dXQDZv38//P39deEDAEJDQzF48GCcOnUKTZs2xf79+/X2UdBm+PDhxdaSk5ODnJwc3fPyvvpDREREZOoYQExY27ZtjV0CtFothg8fjtatW+um/U1NTYVSqYS9vb1eW1dXV6SmpuraPBo+CtYXrCupTVZWFu7fvw8LC4tC9URGRmLy5MnPeE4aXE08heyM27C2d0BtXz/IZPJn2icRERFRdcEAYuIePHiA48ePIy0tDVqtVm9dly5dKvz4EREROHnyJPbs2VPhxyqNsWPHYuTIkbrnWVlZcHd3L/X2SQf3YUfUMmSn39Its3Z0Qru+g+Ad2KpcayUiIiKqihhATNjWrVvRu3dv3Lp1q9C6ih73AQBDhgzBpk2bsHv3btSpU0e33M3NDbm5ucjIyNC7CnLjxg24ubnp2hw6dEhvfwWzZD3a5vGZs27cuAFbW9sir34AgEqlgkqleqrzSTq4D7/PmVFoeXb6Lfw+Zwa6jBzHEEJEREQmj7NgmbChQ4eie/fuuH79OrRard6jIsOHEAJDhgzBr7/+ih07dsDT01NvffPmzaFQKBAXF6dbdvbsWaSkpCAoKAgAEBQUhBMnTiAtLU3XZtu2bbC1tUWjRo10bR7dR0Gbgn2UJ61Wgx1Ry0psE79yGbTaig11RERERJUdA4gJu3HjBkaOHFlonERFi4iIwKpVq/DTTz/BxsYGqampSE1Nxf379wEAdnZ26N+/P0aOHIn4+HgcOXIE7733HoKCgvDiiy8CADp06IBGjRrh3XffxbFjxxATE4PPP/8cERERuisYH3zwAS5cuIBPPvkEZ86cwTfffIO1a9dixIgR5X5OVxNP6XW7Ksqdf27hauKpcj82ERERUVXCAGLCunXrhp07dxr8uIsXL0ZmZiZeeeUV1KxZU/f4+eefdW3mzp2L119/HeHh4WjTpg3c3NywYcMG3Xq5XI5NmzZBLpcjKCgI77zzDnr37o0pU6bo2nh6eiI6Ohrbtm1DkyZNMHv2bHz77bcIDQ0t93PKzrhdru2IiIiIqiveB8SE3bt3D927d4ezszP8/f2hUCj01g8bNsxIlVUepZ1//fKp41g7ZdwT99djwgy4+wWUZ4lERFSN8T4gVB1xELoJW716NWJjY2Fubo6dO3fqbj4I5A9CZwApvdq+frB2dCqxG5ZNDSfU9vUzYFVERERElQ+7YJmwzz77DJMnT0ZmZiYuXryI5ORk3ePChQvGLq9KkcnkaNd3UIltgvsM4v1AiIiIyOQxgJiw3NxcvPXWW5DJ+DYoD96BrdBl5DhYOzrpLbep4cQpeImIiIge4hgQEzZixAg4Oztj3Lgnj10wVU/T95Z3QiciovLCMSBUHXEMiAnTaDT48ssvERMTg4CAgEKD0OfMmWOkyqo2mUzOgeZERERExWAAMWEnTpxA06ZNAQAnT57UW/fogHQiIiIiovLCAGLC4uPjjV0CEREREZkYjj4mAMCVK1dw5coVY5dBRERERNUcA4gJ02q1mDJlCuzs7ODh4QEPDw/Y29tj6tSp0Gq1xi6PiIiIiKohdsEyYZ999hm+++47fPHFF2jdujUAYM+ePZg0aRIePHiA6dOnG7lCIiIiIqpuOA2vCatVqxaWLFmCLl266C3/7bff8OGHH+Lq1atGqqzy4PSHRERkTPwcouqIXbBMWHp6Oho2bFhoecOGDZGenm6EioiIiIioumMAMWFNmjTBwoULCy1fuHAhmjRpYoSKiIiIiKi64xgQE/bll18iLCwM27dvR1BQEABg//79uHz5MjZv3mzk6oiIiIioOuIVEBPWtm1bnD17Fl27dkVGRgYyMjLw5ptv4uzZs3j55ZeNXR4RERERVUMchE5UAg7+IyIiY+LnEFVHvAJiwlasWIF169YVWr5u3TqsXLnSCBURERERUXXHAGLCIiMj4eTkVGi5i4sLZsyYYYSKiIiIiKi6YwAxYSkpKfD09Cy03MPDAykpKUaoiIiIiIiqOwYQE+bi4oLjx48XWn7s2DHUqFHDCBURERERUXXHAGLC3n77bQwbNgzx8fHQaDTQaDTYsWMHPvroI/Ts2dPY5RERERFRNcT7gJiwqVOn4uLFi3j11VdhZpb/VtBqtejduzfHgBARERFRheA0vISkpCQkJCTAwsIC/v7+8PDwMHZJlQanPyQiImPi5xBVR7wCQvD29oa3t7exyyAiIiIiE8AxIEREREREZDAMIEREREREZDAMIEREREREZDAMIEREREREZDAMICbo1q1buHTpkt6yU6dO4b333kOPHj3w008/GakyIiIiIqruGEBM0NChQzF//nzd87S0NLz88ss4fPgwcnJy0LdvX/zwww9GrJCIiIiIqisGEBN04MABdOnSRff8+++/h6OjIxISEvDbb79hxowZWLRokRErJCIiIqLqigHEBKWmpqJevXq65zt27MCbb76puxt6ly5dkJSUZKTqiIiIiKg6YwAxQba2tsjIyNA9P3ToEAIDA3XPJUlCTk6OESojIkPSajW4fOo4EvfuwuVTx6HVaoxdEhERmQDeCd0Evfjii5g/fz6WL1+ODRs24M6dO2jXrp1u/d9//w13d3cjVkhEFS3p4D7siFqG7PRbumXWjk5o13cQvANbGbEyIiKq7ngFxARNnToVv//+OywsLPDWW2/hk08+gYODg279mjVr0LZtWyNWSEQVKengPvw+Z4Ze+ACA7PRb+H3ODCQd3GekyoiIyBTwCogJCggIQGJiIvbu3Qs3Nze97lcA0LNnTzRq1MhI1RFRRdJqNdgRtazENvErl6F+y0DIZHIDVUVERKaEAcREOTk54f/+7/+KXBcWFmbgaojIUK4mnip05eNxd/65hauJp+DuF2CgqoiIyJQwgJgorVaLqKgobNiwARcvXoQkSfD09ES3bt3w7rvvQpIkY5dIRBUgO+N2ubYjIiIqK44BMUFCCHTp0gUDBgzA1atX4e/vDz8/P1y6dAl9+/ZF165djV0iEVUQa3uHJzcqQzsiIqKy4hUQExQVFYXdu3cjLi4OwcHBeut27NiBN954A99//z169+5tpAqJqKLU9vWDtaNTid2wbGo4obavnwGrIiIiU8IrICZo9erVGDduXKHwAQDt2rXDmDFj8OOPPxqhMiKqaDKZHO36DiqxTXCfQRyATkREFYYBxAQdP34cHTt2LHb9a6+9hmPHjhmwIiIyJO/AVugychysHZ30ltvUcEKXkeN4HxAiIqpQ7IJlgtLT0+Hq6lrseldXV9y+zQGoRNWZd2Ar1G8ZmD8rVsZtWNs7oLavH698EBFRhWMAMUEajQZmZsX/6OVyOdRqtQErIiJjkMnknGqXiIgMjgHEBAkh0LdvX6hUqiLX5+TkGLgiIiIiIjIVDCAmqE+fPk9swxmwiIiIiKgiMICYoBUrVhi7BCIiIiIyUZwFi4iIiIiIDIZXQExQv379StXuv//9bwVXQkRERESmhgHEBEVFRcHDwwNNmzaFEMLY5RARERGRCWEAMUGDBw/G6tWrkZycjPfeew/vvPMOHB0djV0WEREREZkAjgExQYsWLcL169fxySef4I8//oC7uzt69OiBmJgYXhEhIiIiogolCX7jNHmXLl1CVFQUvv/+e6jVapw6dQrW1tbGLqtSyMrKgp2dHTIzM2Fra2vscoiIyMTwc4iqI14BIchkMkiSBCEENBqNscshIiIiomqMAcRE5eTkYPXq1QgJCYGPjw9OnDiBhQsXIiUlhVc/iOipaLUaXD51HIl7d+HyqePQavkHDSIiKoyD0E3Qhx9+iDVr1sDd3R39+vXD6tWr4eTkZOyyiKgKSzq4DzuiliE7/ZZumbWjE9r1HQTvwFZGrIyIiCobjgExQTKZDHXr1kXTpk0hSVKx7TZs2GDAqion9r0lerKkg/vw+5wZxa7vMnIcQwjRU+LnEFVHvAJignr37l1i8CAiKi2tVoMdUctKbBO/chnqtwyETCY3UFVERFSZMYCYoKioKGOXQETVxNXEU3rdropy559buJp4Cu5+AQaqioiIKjMOQicioqeWnXG7XNsREVH1xwBCRERPzdreoVzbERFR9ccAQkRET622rx+sHUueRc+mhhNq+/oZqCIiIqrsGECIiOipyWRytOs7qMQ2wX0GcQA6ERHpMIAQEdEz8Q5shS4jxxW6EmJTw4lT8BI9A61WgyuJJ41dBlG54yxYRET0zLwDW6F+y8D8WbEybsPa3gG1ff145YPoKRXc3PPWjevGLoWo3DGAEBFRuZDJ5Jxql6gcPOnmnkRVHbtgEREREVUSpbm5J1FVxwBCREREVEmU5uaeRFUdAwgRERFRJcGbdpIpYAAhIiIiqiR4004yBQwgRERERJVEaW7uSVTVMYAQERERVRKlubknUVXHAEJERFTJabUaXD51HIl7d+HyqePQajXGLokqUHE39ySqLhhAyCh2796Nzp07o1atWpAkCRs3btRbL4TAhAkTULNmTVhYWKB9+/ZISkrSa5Oeno5evXrB1tYW9vb26N+/P7Kzs/XaHD9+HC+//DLMzc3h7u6OL7/8sqJPjYioXCUd3IflEf2xdso4bJ4/C2unjMPyiP5IOrjP2KVRBfIObIWBi75D108nGrsUonLHAEJGcffuXTRp0gSLFi0qcv2XX36J+fPnY8mSJTh48CCsrKwQGhqKBw8e6Nr06tULp06dwrZt27Bp0ybs3r0bgwb9e9k6KysLHTp0gIeHB44cOYJZs2Zh0qRJWLaM86sTUdVQcEO6x6dlzU6/hd/nzGAIqeZkMjnq+DY2dhlE5U4SQghjF0GmTZIk/Prrr3jjjTcA5F/9qFWrFkaNGoXRo0cDADIzM+Hq6oqoqCj07NkTiYmJaNSoEQ4fPowWLVoAALZu3YpOnTrhypUrqFWrFhYvXozPPvsMqampUCqVAIAxY8Zg48aNOHPmTKlqy8rKgp2dHTIzM2Fra1v+J09EVAytVoPlEf1LvCeETQ0nDFj4HWQyuQErI0Pi5xBVR7wCQpVOcnIyUlNT0b59e90yOzs7BAYGYv/+/QCA/fv3w97eXhc+AKB9+/aQyWQ4ePCgrk2bNm104QMAQkNDcfbsWdy+zXnWiahyK80N6e78cwtXE08ZqCIiovJhZuwCiB6XmpoKAHB1ddVb7urqqluXmpoKFxcXvfVmZmZwdHTUa+Pp6VloHwXrHBwKz7Wek5ODnJwc3fOsrKxnPBsioqdT2hvS8cZ1RFTV8AoI0SMiIyNhZ2ene7i7uxu7JCIyUaW9IR1vXEdEVQ0DCFU6bm5uAIAbN27oLb9x44ZunZubG9LS0vTWq9VqpKen67Upah+PHuNxY8eORWZmpu5x+fLlZz8hIqKnUJob0tnUcEJtXz8DVUREVD4YQKjS8fT0hJubG+Li4nTLsrKycPDgQQQFBQEAgoKCkJGRgSNHjuja7NixA1qtFoGBgbo2u3fvRl5enq7Ntm3b8NxzzxXZ/QoAVCoVbG1t9R5ERMZQmhvSBfcZxAHoRFTlMICQUWRnZyMhIQEJCQkA8geeJyQkICUlBZIkYfjw4Zg2bRp+//13nDhxAr1790atWrV0M2X5+vqiY8eOGDhwIA4dOoS9e/diyJAh6NmzJ2rVqgUA+M9//gOlUon+/fvj1KlT+PnnnzFv3jyMHDnSSGdNRFQ2xd2QzqaGE7qMHAfvwFZGqoyI6OlxGl4yip07dyI4OLjQ8j59+iAqKgpCCEycOBHLli1DRkYGXnrpJXzzzTfw8fHRtU1PT8eQIUPwxx9/QCaTITw8HPPnz4e1tbWuzfHjxxEREYHDhw/DyckJQ4cOxaefflrqOjn9IRFVBlqtJn9WrIzbsLZ3QG1fP175MBH8HKLqiAGEqAT8xU9ERMbEzyGqjtgFi4iIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDIYBhIiIiIiIDMbM2AUQERHRs+E0vURUlTCAEBERVWFJB/dhR9QyZKff0i2zdnRCu76DeKNCIqqU2AWLiIioiko6uA+/z5mhFz4AIDv9Fn6fMwNJB/cZqTIiouIxgBAREVVBWq0GO6KWldgmfuUyaLUaA1VkerRaDS6fOo7Evbtw+dRxvtZEpcQuWERERFXQ1cRTha58PO7OP7dwNfEU3P0CDFSV6WDXN6KnxysgREREVVB2xu1ybUelx65vRM+GAYSIiKgKsrZ3KNd2VDrs+kb07BhAiIiIqqDavn6wdnQqsY1NDSfU9vUzUEWmoSxd34ioaAwgRERUbjgo13BkMjna9R1UYpvgPoN4P5Byxq5vRM+Og9CJiKhccFCu4XkHtkKXkeMKv+41nBDQrgPU6jxcPnXcqDcmrG43SWTXN6JnJwkhhLGLIKqssrKyYGdnh8zMTNja2hq7HKJKq2BQbnG6jBzHEFKBHv2Sn3H9Go5t34q7t//RrTdWEDRmKK2o4KPVarA8on+J3bBsajhhwMLvyuV4/Byi6ogBhKgE/MVP9GSG/kJGxatMQdCYtVR08DHkufFziKojjgEhIqJnwkG5lUNlmp3JmLUYYorcgq5vj08CYFPDiVf7iEqBY0CIiOiZcFBu5VCZbkxorFpKG3zqtwx85qtx3oGtUL9lYLUa30JkKAwgRET0TDgot3KoTEHQWLUYOvjIZHLeZZ7oKbALFhERPRPej6JyqExB0Fi1VKYQRkTFYwAhIqJnwvtRVA6VKQgaq5bKFMKIqHgMIERE9Mw4KNf4KlMQNFYtlSmEEVHxOA0vUQk4/SFR2VS3m85VRUVNQWtTwwnBfSrHfUAqupbKNBVxeeDnEFVHDCBEJeAvfiKqiipTEDRGLZUphD0rfg5RdcQAQlQC/uInIqqaKlMIexb8HKLqiNPwEhEVo7p8galszu7fg31rVyH3wX1jl/JESnMLtH7rHfi8+JKxS6Ey4hS5RJUXAwgRURGK6sJh7eiEdn0rtguHKYSefWtXIf3aFWOXUWp7f15V6gBSnX5+1elciKhyYQAhInpMcYNYs9Nv4fc5MypsEKuxQo+h6a58SBLMzC0BSA//X3q4WPq3sVSwtCiPrynco1i35LHexuKRZQJC17Dgv3PzciGpcyGTpFJfqalOP7/qdC5EVPkwgBARPUKr1WBH1LIS28SvXIb6LQPL9a/Bxgo9xiTMlPAI7Q+5ZAYhAQqFHJIEKBW2kMlkkCQJMrmAXC4B0ECS5JBJMkgAhEwCtGaAyN8G+DdjaLVaSHIthMgDAEgSoNZoAEhQq/OgVquh1Wih0Wqg1WohZIBWK5CblwO1Jg9aTR7MlFqc+mkxbC3MS3Uu1ennV9HnEn38OuZsO4u7OZpnKdMgrFRyjOrwHDr51zR2KUTVCgMIEdEjriae0vurb1Hu/HMLVxNPlVv/cmOFHqMTAoAMAnLIZTLIJDNIMgmSlB86JEmCTCaDXCaHJCkgk8kh0+ouVUAA0Mi0ugBScBVDggYySYKAGSBJUOflQZLlf9xJkoCZTIIQWsiEDBpokAcgLy8HEhSARgMhJGTfuVfE9ZSiVaefnyHOZc62szh/8+5TbWsMs2PPMoAQlTMGECKiR2Rn3C51u/LqI2+M0FMZyOX5r5VckmAmk0EGQC7JIEMuJKHODxxQAFoJkCQIoQFEQdqQALkaMmhQMJljwRq5DBBCBhnMILRamEkyaKT8KyP5DfODTYE8oYGZmRnUajUkmQxQm0GpKN2VD6B6/fxKey6XT52Ah//zT3UM3ZUPoYW5uI/85JgfOPW6xUGCEAKSJOl+xvlLH27+sNOeJAn9FUUoWC0EHgZWCYW77Em6lkJo8ECygiSTV4krNURVDQMIEdEjrO0dStUu4/pVLI/oXy595MsSeqqSJwW0grEeBVcwJCn/y6QkE5DJ878ECkkGCBkALQAZtAVfEKFBfmcsDaSivngKQIiH62Qif4yJJCCTa6GV8r/gCkkLLTSQNNLDYwOy/A0gyeQlfZ/VU51+fqWtcdPXX6DDoGHP1BXLXNzF/+VGQaYUkNQS5JIMSjMF1EKLB3m5MFMpcPfefUArh1KlhFajRq46B2ZmMmi1ZsjMyIOFlQRHOwWQlwvIlJAkCRqNBhqNFpIkQaFQQAgBtVYNmVyGnNxcyAAolUpotVrk5eUBZmZ48OABVCoV1HlqmElKQNzDOgyCZF3yXdWJ6OkwgBARPaK2rx+sHZ1K/CuwubUN9q37qdDyp+0jX9rQU9p2lUFJg5j/ld/dSiZpIJPw8CEBGrP8bllyOSQISJLmYXes/NAAABAi/6/jkOsPWn9ISAKi4OqIEJBkEiATkLQCkGnz1z/sziUJDSShhUwuoBUSZBo5IJX+47HUP7/Y4cCBB6Xer8GorIHgzwC/N0p9Lg+ys3Xv9fotA5/ySqCATORCJjTQqrWQFGaQy7S6YCkkLeTIhUajhcpMDjNzM6jz1A/Doxy5D7SwNjeDlVJAppQBkCCTSVCrgdw8DRRyM8hk+e+XBxoBQAulpQz37z/If59JGijMNBByGXJz7kClFBDaPEgyLRQqM8jyZCUVT0TPgAGEiOgRMpkc7foOKnIQbmmVtY98aUKPTQ0n1Pb1e+qaDOlJg5jNra0B5F9xkOPx10gLudwccrn84UB0LaSH4zxkMkCDf2fFkkkyCI0MgBmEpIGUP7XVw6442oeBReQPSn/YjUeSAZL24T5keNgLRwtAm3/1RcrvGqYVUqnHgDz55ydgY5aD2rgA3CnlTiuQVgBX79khW62EtVkualtegyx+OuD3Rqnei4+KXb4Q8hVLcff2P7plpb0SKEkSJCFBIZkj80EWFHJzCK0EuUwBmVYgV6OGpM2/KgKNgEarhUKmhEwpx527Apo8ASuVBYTmLhRmSkgwgxBaaDWAldIScskMak0eZJIMGpkcGrUGWgGYSUpockR+F0AtkKMVyMsVuH8vD0JoIZcLaLVqCHmJvbqI6Bkw3hMRPcY7sBW6jBwHa0f97hc2NZzQqnsvPMgu+VtkQX//0ioIPSUJ7jOo0g9gBko3iPnB3fwByEIIWCisoTBTwVxlAwnK/NAh0zzyQP7sVzIzADLIhQIyoYAcSkDSQCaXIJPMAZkZ5GYCcjNA9rALl1Ymh0bIICQzyCCHmUwBmTCDHHLIhAxmwgxmwgwy2aMPGWRyDSRZXtFdu4pQ8s8vP8a84HoZWVoV/slTIF2tQIZQIVOYI0uYI0OjQpbWHNlac9yVLJENS9yTLHAPFrgvt0I2LJANC9yTLPPXSxa4AxWyhQp3YY57khWytOa4I8xxW61ApkaJDLUCmWol7mjNdY9sYYHjmW5Ydu4FrE0JwOZrDbE2JQDLz72ApOuiFOdSxM/yTpZe+AD+DZpJB/c9YWsJGiFBrZVgpjCHEBIg8n/OMpkZZJICcskMFuYWUCiUkMvk0KgFtEIGSW4OtUYChAx5OYBWLYdWA6hzBSQooJCbQ5LMoFFLAMyg1QBaLaDOE8jN00ArSRAyM+SoBdQaCXIzc2g0MmghR44ayMlTl/o1IKKy4xUQIqIieAe2KrJrydn9e0q1fVn7+xeEnse7LdnUcEJwn6pz74XSDGIuGGicl5cDociCTBLIzVNDYWaRHwAePgpmwZIkSdfNSsg0gJBBAwFJkkNIWshENmSSNv8L7GMe756Vvy8ZpIKB6w+PIcS/V0oA6A1SL41if35mOWjhfAkrZHUhv1MXamigFRrkavJgo5VDoQG0ShXcFDZwUShxx0KN1Iyb8HSwBtQaKGQKZGq0uJ9xH/Xd6+L2/WzclG5Dq1XD19IRmhwN8oQS59JSYetgiwu3bsEN5tDIAchksFVaIjdXA7laC4WkxP2Mwq9RtlqJ38+5osvBffAObKU7l5ilC5Bz9+kv2Tz5SqBAjjoHQq6FTCFBrc2DWitBkishMwPMtBKETA6ZQgtJBpjJ5bifrYVGnYvsnFxopTzIzPIDhZDJIUH9cNpmGSSZFlq1eHj17GGQFQAkDSADzJRmkMtlkKkBrUZAaZ4ffu/n3YfQ5kKS56Go+8oQUflgACEiKoZMJi80a1FFjtcoLvRUhSsfBcoSvCQJ2BK/Fh513NHMry1kkvSw65VcN0NWQfiQHhmprpVkEEIDrVYJSLmAPAcyrfLf2bAeCR1FBhDkBwyNRlPoGP8+yt5BoNDPL3Y4auMC/smT4V66PXLuPoCNvS3c6rgiPfM2pPS7kDQymCvNcTs9FS61a0OrUKOGqxVw1wYqMzPcunELCkcF7GuYQ6PJhhwPkHVHgpOtI1SSPVRWeUhJvQyFSgO1LBsqczmscwTUSjMobMxx79Y/eHBfDUtYQpOnKngVHv9JABB6gcE7sBWUVpb4ZernZX4dCjxp5i8hCrpZSTCTy6EWasiEHELzAJDlTzggJC0gCeSpNZCbmUOukiEPwL1796CGGjCToJXyp7aSSQJyudnDQKmF3AywMFMCAFRmEjQaQJLMIGQCSmV+6JQp5FDKJKiUKggAuXl3IclkMJML9r8iqkAMIEREZVDR4zWKCj1VSVmCl0ajRsqNs3B0UOHs3yfg7xf4cJpUrS4AFMxO9e9NPhSAVkCTq4ZKZgmY5d/LA0IBIO/fnT8cB6KbsrVgc0kLSUh6Vz7MNPkTugoh5U/t+u9By0zv53fgAXAn/w7vdzNyYGfnAAky5D0Q0Kol2FvZwt7SBlcyM2FjbY1clTky1PeQnX0bDjXckKfWQKuQ4fbduzBTAFbWtrh/TwO5jQVy5cA/2XfgaKOE3NwScrkCuZIGkElQmFtCLWlw914u1EIGjcwMWq0Ckrakc5IKBQb3Rv5lGg9SlJICqRAAtCpotAAgg1aYIUcrg8xMgtBqIZNJ0AoBtVYCJDk0QsJdkYuc+xKy7zyAXC4hVyvHnXsa2NppoJIrdYFTo9U+fO/kP1cJGbSSHDItoIQEaCWoIcFMUsDCLH8ig5ycHNiqLCEXEoRc8XBMERFVBI4BISIqg+o0XqMi1Pb10w0yfxIhBO5k3cGxhGNwrGEPAQGFQgFJkvK70eiFj/xH7oMHMJcJuNpYQqm5C0mthtAqIbSFP84kCfk3NpRJ+f1vpIezYekupjy82vHw//JvhvjYFZdyIEGCpDVHbt7/s/ffcXJc14H3/buVO3dPT86DnAgCzFFMCpRsUpZkSbYlryTb0q7XejbI++yupff1Yz/7rsPa65WzLVvJcpLkpGBJpJgDGEGQIPIMBgMMJs907q5c9/2jASYQgSRASlR9P58BMD3VVbdqhpw6de85R8H3BAf2H8FzJT39A0SaTr6vmxW7xZ6jR1hxfPKFPqTVoC6WUNMew2MDOAhsKXC9CDMTUQ9WsEUJO3IIlARaIkM624kRaISKjlQMQk8ghQ6KjplIndNYXxgwvNJ8kJdztoBUUQVRGOJ53nPL4Fw/oOV4tByfZsslCAVhJHC9EMeVVGp1Wm4LSYjdbLZL6BoGiqoRRJJAtj8iIfClxAtDgihECtAMHTQVRVOfK9GLqiA0FaFrmAmLRDqNaRjEUyCx2IUTByCxWCz2Cp0pSf2VluB9s1EUlUveefs5b79+9WZWjW1kYGDoRF8Gl0hGBIH/XADywiAkk4bQmWXm4P2Y/hRp3UNI7cRa/5cGDs8HLi/cl6LwotwS5cTHiQ4gwKlLt14LKSPq9TphEBGEAaNjI1QqVSaOj9Pw6yw1l1DSGolcgjAMaazU0YRJablG0sigCxXLMnHsFsVcDr8RslGN2GKFDOoeMgzwGjaB7dKhmaiaQlrV0bwQXTVQCEglzy0gfmnAcLqf9XSxEyudOeO+zjYTKITANE0s0yBhGRi6CjLE9QKCCCIUwhA8P0Ci4AcRjZpHq+lg6CrJhI7vu6RTKRRUnDDADXxsz8P2PbwoxPE9/CgkCEJczyMIQ9p9ZABFAylo+R4NxyZAEkpJEIT4Ydx8MBa7kOIlWLFYLPYqvBnyNS6UK9/7QZ767rfOWi1MCIW3XPMOpiaO4tghlqHRslssLi6wcePGdlK4ciL5/ETPjt/53f/Gu66/FGdhgs6Lt+JFAWpuPVKxUcJ2jkM7F+Tkx8ljveC4UiAj+XzCebvbSDv4OM+zHyfHY3surVaTjkSaZr1GMZ+l3Fomnc/jtQIMJaTQ0UESyEQGtSpksr0YIkOz4ZJImvRlCuQXDvKu6BAF9cRyMxc2qQZ3M8Szi0kGE0VCoaCG7cRzzTAxdR3dCBCqQIanaxkuyRS7XjZgON3P+uEnHjtjueqzzQQKAUlDR2pKu1RuGOJ5bjsJXVHQdB3DMAmjAE0z8H2fhJFEzbRntJJJnUwiiY4kCkPCSIKtgBeBIggyEX4YYZomiqIQBQGRBBQFPwJNkShCEATtaylku2dIFL74ZycWi51/cQASi8Vir9IPe77GhaIoKm//xP919l4qQlCtL7Lt0s3U6ktMlY7i+T66SCBoL4dCcqL3eXvCvm9gkIMTT7GmmKdZOoyqdSDEejSpIk90OI9CBV2NiGRAhMSVCSQKaRkQCkEgAoKohSpMBCqcaFYXnbgBVaSCPI/Lb6QU5MwcuVCjNLnA0MYxDFOjozdLvREgPRUzlQShokc+zcjDFi2EFeEEJitenUJnkY7SJNez95S1CynhcXvqMEq0kRKgqjoGKsl0GhlBxurAMk2yxSbVxXbC+YuDkPbN9pkChpf7WT8fldt0wyCUNrqmEikCVYBEI5LtwCHwPNAULN1AlUBSECV0pPTRDYFhKJjoRBUPZgNEACqgoiA1kN0KitVuUqhqWrsXiBB4gYeU7Z4jqhISRSFRFKEo7W7pUgRI9Xz+FMRisReKA5BYLBaLnXdnujn1XQen0UBRVJ559gkOHTzAkclpxkY28J73fJC0XsD3/ecqYbWzldu3gh/44Mf4uy9/moWyyiWre+noG2A6as9fKBICVZJMZPCdOfTIJpU2aQFlTyADSeC7LFbniCKPzsIAqqriixDJifyQEzMj52sma7xW5K751VydOVGBqqMLbyFkJdGgpUQ06iHpdJpKpUoqYbKyvEwysOgezoImsVIZLM+nXq1yWXgAODU//mRIcVN6kn9sFFG1JCKSBJ6Hbpok0ynCyEczQEkHRC2t3XvxhLTqsrWnRRD4TO/d/Ypm8l7zTKAMicJ2GV2kxDJNAi9ACoGpKui62u5eHwUYIkI1tXa+jzAxEhquG6C0BPL4qX07RADGrEJF7WAhVSQpWnQxg+s5tFyXhN5uSpjQDLzARyIxTBM70nCcE5FMLBa7IOIAJBaLxWIXxOluTv/il34OaBCGIYZWQFVM3vG22+nvH4FIxXEcNE17rqzuC2nCpF63KQUKdz34DD+17t2oAiLpoEZJkIJ6o4wWlqivjDNTXmDrRVcRyk7Q01TqZaaO7kdVVBJWClW1EKhomn6i/wgo8vwswBkvpfjmzKpTXtdR6G0lWWq4LLbqLC4usmbVMJVWAz1hUT1ap2skSdNzySghgSIY0RokXee0edECSAuXfrPBnJ8kmUmyUllGRJJ6q4lmamhaCrQaWke77K3vwnZ1igPVbnbMdsAf/A5w7p3MT3otM4GqouJ4IZF6siQy6KqCUEB6LqaugQiRRPgyQlUChNqeJVHUdj8XMe+ddv8SUGebfH/oJ5BCIUWDS3mAXvUgQqicnFuzdB3HdggVH1XV0C0Dwnj+Ixa7UOIk9FgsFotdMCdvTjdeewNDm7e+6Mm4aVpsWncZ11x1E5s3bSedzKOqFgBRFCGlPCUICTxBJBWm5xZYtfliDk8dRcVBPvfrTJBIGNx97zf4wuf/N/1FwfTuuxDNGWYXj3Jwah9z8xPUWiVmF48yeWw/S8sLRFHwso0PX60oCrnn2MnE7Zf0IqFdiatYNpGhSiKRAEBXQfE9brn+ZmTUPveG5zC7uEBraeacjps3IjRNRTNUkBGGqRO0b8NRVZNcOouhaSi6guN7PLkySCMwXrSPc+9k/toIIVCFQNe0E5XP2v1fVA0MUyeMfKIoxDJMdEUhaegkTY2EqWMZKloosWyBOEPTcgFkwgb9zhwATVI8wDtZ0NZjahq6aOeP6LqGZqoIIVGJEEH0aisxx2KxcxAHILFYLBZ7QyhCob93DEvP4bkSVbUIguebA550MhCRUqIInUQiw0Xbt6FYKvl0gBk0SCe7T2wboahQbZSYKy+wa88uRke6Ec1ZFpeOMjs/hRQent9gcekY4xN7qdVKIEDTtHaX9BM3w6/FzP69NDyN001ZCARqIEiFGp7nUS6V6DYNjEaLp5/cycp8BaflMXVsmt7+PpK9Q+d2YCOLlCGaptHX2wtIUukUQlFptWxUFdJpEwWB2no+aHs59375c0TRha0GFUURQRAQhiFhGOL7PkEYEgQBQlEII0kkQdN0NFUFIUhaCQxDQQ0lhjy371MybJ34V/tcn+R6DF3D0hUsQ0VV2j9nChINASI6/c5isdhrFgcgsVgsFnuDCHRhoqkW7YxhgXIiAHi55VfAiZkOwdzR49SbS0xOPsbM+OMENQcpJWEYYTsNjs1OsW7rZUwtltl75BiPPHQnh57dQRg1UE2Nar3M+OH9RMJBN1Q8zyGSUXt24jw4147wCdUAJNlskmIIl3f3c2Riko1jF2PXA3LZHOl0mocXmrSUBKe5LEgJTWniWn14nocXuOSzaZARtufSaDaJooh8LolrN5BOgCIFZ+p1cbIx4QUjwbZtXM9nXgxywBvliFMkCNvBpqZpKKqKVABVEEQhfhAQhAEpw0QhAu3cAqSWmnzBZ4ImGWbDHoQAQ9UJvQCF9oydoijtYCcWi10wcQ5ILBaLxd4Q7Z4cCqoiEIryfLNAlNMugXJdB9duUEharBkeZsO6QeaOVMjmQubrKqoEQwcNSUdHDyKo88z4YXoL3ay2ssxJOLa4TOQHhDIklbbwfY8oigiDkPP1a/FcO8L7RPT19ZEwBD9x7fVM7niS97//3dz38JPIomBudgGrS2epVOZOa4h3i0OnqWEF+7SL8PyAhGWeuIluL2+qOB7Cj0AIbKdBPpumtOjxokz00zjXQOrVkEiOilU8mbyeFhnQ268nozrXR48wJibRdQ3H9zBVlShsd3onkohQoisKUSok0kH6pzsGNNQ0s1bfKV9rRiaBEkAgUQFD0UCA7XntimoyroIVi10o8QxILBaLxd4YknYTQOX57uNCtG+nTxeACFVh4/r1fPq//xe2br+Cp+67l3zCobS4+0TeCEgCDA0O7N7NwlKFg5NH2Hd4nC2r+7HrNaq1JisrK7iui+/7lMvLlMul58Z0Pgxs3EzaCE67QyklrojwsyqqFrJ4+AB3fvNfMUKDrZddyqEDE+g1jTBysQMbGXiMJwb4ijtGnRfnbLSUJF9Y6WfCKdJyXZKpBJapoWkKnutjGSaRjEgnVIJAEPoh2aTxsuN6qXMNpF6NUGo8oL+Tlki/6PUWae7w38bhcBQ/DLFtGwAVgdNotW9cQokqBJlUEmvw5YPGk1f+weK1SHHq7U5asdu9ZmjPvKmKgkBg2zaKEt8exWIXUvxfWCwWi8XeGCcCDiEUNAS6UFFR2+vvT3xIQqQAFIUI8D1JpeqimgZTe59l67bLKVVb2JV9dBoh9YpLs+Hje0m2bL2OEEFT6HhhSHV2hs6UjvAd6o6Lgk6j3qDpLdKwG6hagCIkOgqqCF5TMKIoKjcPnyw//OIdSSQIqMpjXGEssTXl8L9+7X9y7Y03M11t8Ue/9bsMD/RhuTpJS6dWr/CWt9xIOpdnUu/nfzhb+Ip2OX9Z6uVLciN/rd3AkjWGZmg0fJdGo4Ea+AQth0wqTcJMYpoG6YROy4VGtUEupbTHcYaTPFsn89fKEydKE790nuFE8PlwcC2O4xL6ASqCyPNJqBqEEj8MUDUNu9VCzylYI8opk1cNNcV3u9/B4dRLK5FJMqJBPzMIRaLqWjvnR4AXBiSTSTzPvSDnHIvF2uIlWLFYLBZ7Qwja95rPtfmQQARCUZ9rPIgIieSJ5HJFoVgs0qi3+NIXvoDh1Ll481o2vuUt/OHv/hbFnhoXXf1B3Ejyyf/0qxw4tJMj03tA0egdHGRqapKDM3ME0iKVyZJIprGsFGgSP2pRb1WwyIIw2jMxr3H9zdqOJrcP7Oeu+dW0QvO514UIuKl3kkvyi8+95v7jZziWvYL91RW2jm5kfGmRxkqF0Q3DTAcL7D04gSE1dFQ8L+C++ToEJkPZLO7sMVavWkcyFDScAMWJKOhppHSxEyrNegPFUFBUEz9sEITgeh5KUiBbJ4OQU0/2bJ3MX7OXmZV4wRdpiQxLYoCce5DQdiktLFHsKGLXG5jpJL7j0dvbQ6VSRU0rZDYbCFughgrf29viifUfQp4yk9EOuG7RH0GGPigCN/BpOTaJTJqVxQUyifyFOuNYLHZCPAMSi8VisTeEpN3072Rm9fNld8XzH1JFFe1wRIYRy8vzaJrCEzufZHB4hFQmg5JP093bw9vftZnJPd+lujzD5MwCE1OHccMQz/VRVJVKucRPvft2egtZ8oU02UwKVKi2yiyX5pmdP0KlUQaidk7KebA2u8J7hp9gX1TluNXAyC3wn9Y9yvbc4ou2M8Ima8r3MmTVmFtaoauQY9XICIobkdQzGFYKoZmEgaCru5e1o2sY6h5gfn6RsdWrWK6s4Icuuh/QVSiSTCQIAh8litp5FK6L0DQiVCwr0V6SlU/w1r5DpLUX99HIFDu5/VOfPuc+IBdSI7RwWza+43LF9ks4Nn6YyPNptVr4UcSePfvwPB8pIZFI0PTrmDmVG9f73Op+k1RYe9H+MjS5TbmDteokURQSBD5+ELCwvIQfBLi+h6IoGPq5LVGLxWKvTjwDEovFYrE3hIzkiaVWKiCRMkIIhSh6PjlaSonveyACTCNJGNlk8mmmDjaZXy7R9GvInRbJVIqUFdDfHXLg2C5qeoJIh0q9znBXF0dnjtGnKfRmM2Q1aBHiBa32Miy7QWBP47k1EqMFCtluxDkkaJ8rBaiELunOIj+b2ocQp+9m/mPdS/x+uAq70SSfyDJxYJzey9ax9+gUmVQWe6lGIpfAqThMTRzG6DQQlkWpcoSu4VHs6Xn8ls2siEhoKqoSIqOISmmZoe4BoijC813ShQI1GbHKqHBR7nFmWEXj7Z995Z3ML7DupMbm9VtYOT4LWpLt27fx5M6dbL3scuYWl9i2YRONeoMdj+zg+lveSm+hi91PPsX73vNerlYlV+/9e56qZlihg5xoskpfQNcV6rZDeCIA9sOIRsvG80Ky6RyRUAiVOP08FruQ4hmQWCwWe51FUcj03t3sf/h+pvfuvuC9Fn5QnSy1q6oKigqIiCD0aDbreJ6N4zQIw4BWs8LS4nFqtRU0DZIJi6uuvpqt26+gs9hJJAO0VIqVpRpXXH0xulgk8hapVVdoeR6tpk1vbx9mKs2BfXvpzqVp1Us0ahUa9SqV5RJ2o4rbqqIb7S7ciibOW0K6EIJKo040uZO84nK6e1sBJGlxzaY8a9euQTdUtmy8CLUp6Sl00rJtIgHFQjfpZIr+4WEGR1exa/deCl296IrKhrHVuIHLfKuOlsvg+h7Vapm+YjeNWgVDkWgaZJMWuUwCkCgChrLOyzaLvKBkxJnqCidlHTn7NI4dsDC/zNHpabr6ern22quoVirkUlmefXoPSSvFVZdfzTNPPUM2W+Azn/lV7r//ASqVCiKCj7x1E8n5HQTHHmHThtVUqhUSqQxRCIEfITSVbCZHrdlC0xOEoSQ83bhisdh5Ec+AxGKx2Oto/LEd3POlz9EoLT/3Wrqjk5s/+okfiCUvr7+oXX6XdvO/Wq1GtbaAorZ7MRQLvdSrKywuHyHwbPwowA99mtU6373rHm697QaSus873v4upncf4oFvfouf+clb+cQv/zo10hSLXaRTSY4cneHKzRtxbIfBrg7UmVmisIXt2Gy/6DLKKwsU8ynUqN1WO/CD15wDcpKUkkarxaqxHLB41u1rRw7w6NGQi9Zv4uDEEayOBKXGPL5h0GzUefC+B4hqIT0jfSSsJMOjqzl0aD/Xd/axknCoS59W02VhUUExNfLpNIM9XUzPHCdlJEkYKromMC0D3sBca126+MJqByHi1MLCF3n3MTU7S0ehmzWbNtDbXaRUrXLbj93G/EoVXTf4yhc/z/79+6lUKgyvWsuBg4f466/8Le+89a383d9/javfcj0PP/40my/eyFBvF7v3P0vf0BCHj85gJUy8wENTdXL5PC0vxPV8iAShEjcijMUupDgAicVisdfJ+GM7+Obv/cYprzdKy3zz937jB2bd/etFOTkVIKN2/nkU4bo284uTBEFAKpXCNDRQHJp2mda0A0Kh0ajS3dfHyvHFdiO5RIL99z3Emg2bmTiaZOdTe/jQj9/Kn/7jXZRtD81xGe7uYmaxRHPhKDfeeAMXb1zP0oJNqGt0pLKooUfa0hCRpNVq4ISl8zoDUqqUmGsWz2n7fLKb9RtyZLJZTNPEQCGtW6hJg9GBQaYmptBSAgyd+XKFyrEFkpaGgsLeyhykLQqOidNqkUjlSCXTBC0HTUh0yyCXUInC9o32KWvBXkeqCNjuf4/d+nU4ZJ57PSEbrLXvpE8cZ/j6m3l659NsHu4lZyd5+LGd2C2bO+65hxuuv4ltWy9jpbzM+g1JunsHQBFopsmjO5+if3iEnoEx/uE7d7PmonXseGIXPR0FuvtH2Ht4GlMx8CKPwPNQNIPAdgn8AENPnrYMdCwWOz/iJVixWCz2OoiikHu+9LkzbnPvlz/3o7Uc68RNnpQRUkqiKMK2W9TrFcrVJRYWpzl8eA+uU6eYN9G1CNdtEsiIBx54gHxHke/9yzdwl8v0FLvZ+fDdpDMFMkaW/lyRj3/koxi6SSQglApS1ckXimzcuJbq0iJrR0cxhcLowAjFTJbS0jILC7OUSstUyuXzFX8AMDIwxCE/zaIjiE6z40hCydexNryF7mIPz+zfz8joGgh1DBuGrAzPPPUoZsHC6kkilAjV9skmLEwf7nzsKQgSGKkUuiZJqiq5dBrHcWiFAoFGVhcQOLQCj0hTiOQb96RfIOiPpnib8wXeEv4zV3M313r/yI+Jv6ZXTqEZFkEkmTg+Td2PmJpdYuPF27jkyisZGBwmlJIb3vF2pKJxaOIItuez/9AEI2vWctnVV9N0XQ4eOUy6s5O773uE5YrLXNlmamYJK5UmEgqpTIFIEXihJJQCzbIQuk5wIiiOxWIXRhyAxGKx2OtgZv/eFy27ejn1lWVm9u99nUb0g6Bd6SqUPkHgncgJUTGFTtO3qTUW2LqxyEC6xjU9KkprGjVcYqnR4pJtl2FYKts2XkzfwCB7DuzDDUNyMsJZWaTQmWXXI49w8fqtLJarOIGNaVlMTR2l3lxhbX8Rp14ibengl9AUn66+Dqqtw1QWD+E1y+dtckBTVSYnJ8h1dPAXxzsQcEoQEp2o+vsdZzUjF29isLefesvlm9/+Fr29/ZjCQG16/Oz7PoCOoLerk7RlEZSbHN83yaVrNtPbNcDxyTITh+bwIwtNTyGDkEqlSRgZuJ6C79iEvkvdblKrVF7xuZzP/KVISoKonSRfDI/T6+1j0FiGCBJmglajyV133UM6lyfQVJ7as4fd+w+xsFLix2+/nWJ3N3fedRf5ri4WSmX+5utfI5XP43gBvQODbNx6MUOrV1H3bXLFLppeCGYSLZEgUiK8yEfoAiuRQiLxwoCa3aLUqBJE520FXiwWexnxEqxYLBZ7HTQq5fO63ZtDO/cjiiJ8x8M0I3QdEgmLRGSQUDWmj4zTWl5k0VlizarN7J1t0lEo4nsuDz78MHLLGtavGWRi6gibN64jSiToSGS59/4HmF+c5eJr3sazh56i1mhQqpbZuGULqUQK4fl05Aq0lpaZn5nCDjx8RRL4LVpBlcgLz9sT8CiK6O3tJpk02Vnu4D8/UuIzlyp0mc/fvJd8lT89nOCgYjNy9BBjXV1kE0n+66/8dx66/0E0xcBr+EwfOEL52ALdeg5TaOSVBL/xh3/JA/fcQ6imeGrnowytG+XQ4TIXjw6wZ+c0gS+ol2cBWFkJ6OqGRFIiRYRQz/055PnOX5JSEgYSRYMgCnEch+50Cr9hIyOJDNuzJL6MeHbiMH7L5fb33cxn//AP+akPfJB9Bya47PLLOTQxzqbt28l2Fjnw7F6G+geYOz7H5Vdu55mJfaS703T1dRFKiaZpTB6fpOW0aFirCf0CadVFuAdA1fFcD90wCQIfqcVBSCx2ocQBSCwWi70O0vnCed3uTUG2n6j7kU/LbVJrLeP4DbzQI4pCMrkM4+MTtCrLvGfbEKtX9/Hdx++lIkJ2Pr2LzRdtYuLYMeZnZ7n5XbeS0U2+8527KJWW0JMmhw4dYOPl1+E5dRxV0nA9DsxPM/xMAV0oKJHLpRetorLskNWTHF+YI5HQ8VselVYV6zxFIIZhsH7DOhaX5whClV1+D5/Yl2MsmGZ9fw/zzYBpUWCltUix12K2vsiw0cH4+ATbFxYIZEQykSZlakwenOKWy65FV008x8VI9/Brn/k1RkeHqVRrDAwMs3fvBGv6hziw7+gpuQxBCHNzksEhg41bNxAduvusayGiKOSxf/oqO77+t6d87bXlL0lc10WPIsIoQNMNbLuF67gIRWP308+ybv0Gyq6PrqusXrOep555mnQ6T3dvL3vGJ1iqlpCaSst36UplWFpZwWs5/MxPf5h7Hvw+yZ4spqXheXUiKWk0I2rJTTyduh6bDIRACIn0W7hI7KAnM0EQgufXzjr6WCz26sVLsGKxWOx1MLBxM+mOzjNukyl2MrBx8+s0oh8EEolPo1mlVl9kceko8wuTlBpLuE4LGfjMLy+R6ugkjCIO7N2JHwkSqRxr1m2k3mxghxF9a9ZyaPwwf/33X+dtt72bvpHVvOsn3svI2DDf/tdvMDkxg2roNJpNtmzdzvzsIoPdPbiNFabH96KJgNrKLDohaVPHc2vkctZ5O0vXdUlYFnbLIVfsIJlMkkml6Lv8x/jetMq9Rxx8H0zdRNFVbN/mu9/5Dl/+4hd59KEdbN68GddxOfDsfrJWhqBms3RshoXpOWrVOplcBw/vfIpHd+/Gj1pcddUldGjqGR7fCxYWQnp6+s6aaD/+2A4+9+9/7mWDjxd6NflLAoGqKCBDUmYKJTRwWk1cXaLIiM6OThKpBIWOHpaWyzz6wH1YuuB3/p//H4ODYxxZLrF7/CiJfA8+JsePztDTXURYkif37eLQ8QXqtoaqaBiqShTAorKeR6J3Ysv0i8ZiizSP83aWjNUoikoUxbdHsdiFFP8XFovFYq8DRVG5+aOfOOM2N33kEz8wDeBeD5GMWCnNsFKdZ7E0y9zyNNPzh1murCAin6mpIySSSaZnZ5laXEJoOo7jU286pDM5qvU6PgqHpqa56V23ki508alPf4Zibz/f+ta/0tfXj203uGjTajShUG/UmJ6Zw0pmWJifpV5eJmnpDPUWKKaT9BSyaNJDUx3AP3/rbwSUyhXWrd7A/Mw8nmfTlU2z88nH0Eyd0bFR5InGh6tGV/HsrmexZcA/fe3r9Pb0oAKB57Jt+3Y6u3rIJzKUl8qMDI6i6Qb7JyfYfvkVfOzjv8DhyXEsIZFBiDjDCfhexD33PoCqnv7n7WTVtmZ55ayn+Gryl4SioGoaPT0DrJTK+JGHYWYwVI1kIsm7fvytqKaOZqgouorUBO+49e38xV9+gZ/52U9SqpbZN36If/72v/Dgow9x4NABurq78PyAnc88TTafZ2rqKJ7toAiFMIrYr9944uAvvTbtvi9Ph9dQb7RO254kFoudH3EAEovFYq+TtVdew+2f+vQpMyGZYuePXAlegDAMOHLsWRYWJ5idm6BUnsXzbELpYhga1VKZIPDxhcKhmRWufu+HELpOy3NZrlRZt2496XSOe+59CL3YDZrJ0LqNPDM+wdy8QzJdYO3qMWzbYdtFF2HoCTo7u+ju6mXd2vWMjAyDDxP7n8FQQvxGlbDVoJA0EaF3/srwIvD9gEMHJrEbLiKK2PnYQ2SLGRRDYW52jsXZBfKFDhSpooSCX/yf/5PekWF0FJ7ZtRPHaXDo8CH6hvu488676Onr51vfvpcjR4/R1dmB9D327HyK3r5hpsaPnNO4FhaWn2sG+VLnUrXtpV5p/pKgnQfy5K79JDIZIjUEkaZVbdFoNPj6P/8TZsLi0MRBXN8h15HjM/+fX+WmW27koZ13ksll0XQVzTLo6C7SsJv09PWwceNGWi2Hmbk5gsBDFxoBERVtGEdkOG1kKQSOyFLVBtA07bx9/2Ox2KniHJBYLBZ7Ha298hpWX35luypWpUw6X2Bg4+YfqZmPk6IoZOb4fqSu4nk2vh+iqiqqbiCDAENXqdWrWPki0wsrPPTEs/h+iBN6FHSDp3buYuuGdYyODnDsyae45robmfv+nQhFp3+wm6kjR5lbXkBFY2lhgf/7P3+Kf/3a11gpVzD0kL6+HnY9tZ9CTsVr1bF0ExH4KLjk0qnz2KNPoAqThBFhdWQoLczxvnf/OOXI4env3E8+lcN1bDzPp1GuMXVokr/53J/ykze9g4xq8vATD7PxumtQhMrE7DEuvexyyvUGA8OdDA4NYKgadrNJf18fCzWflJBElbPnMGQLmdN+7Vyqtr3UK81fkgCqwszcEpsv3ki5MgPSoJDJ8q53vpOLjk6y5+AEo6MjTB0/QrEjw0/e/uPkuov8/u/8Ltu2XcRSqYqUEaXlFbKpBI88soNyqcZcucI1N9xAs17FbjZQ0jqRljuncflqlmajiUzGEUgsdqHEMyCxWCz2OlMUlaHNW9l47Q0Mbd76hgQf57Oc6qslkbi+jW1XQERARBQFhDJC0RQiGdBsNlmZXWD9+o08vXeCRCJFPp1DN1J84L3v4+c/+jFcP2LVVVfx9X/+Bq4fcHTmOMfm5ujq6cXzJK4bogiVleVlZmfm6BkYZGh4gLmZOTo7O9FRURXB9PRRkBEaEZpy/q6HRHJ4aopW4FLMJ1g9UMSJGjyy80muuHgjfZ1pLr16C0HLYd9T40g9xc//l/+H3NgQX/raF7ESJvffex9PPP4oXakM+a4cY6ODXH/1FUyOT7GwuMSqVaMcmZ3jiSd3cHRxGtf3OP0jfImmQ8tropym1vArnc14tflL2UyWMAy5487vIyPwHZdcKsd/+/SvMXFkArdeR4kCBnp7GBkd5LHHH+O//38/w+DoMGEQkLB08vkcA0P9jK4eZWm5xG//9m/TkeugZTdJJEw6ih2oqoEZtc5pTHpYI4qieAYkFruA4hmQWCwW+xFzvsupvmpSEkZJIhoIQhARiq6jqxau6xL6Hslkkpw06E9qVMMIzbBIBz5pK0khmaR/1Qh/8zf/gN9cRk120HSrLFXKuPUKU0vzhFIFobFUarJ3914cx+GZveNEFR0/8OkZHEZ1MsxWVtiweQPPPLOfQiEBWnDe7j+FEPT29qBqElU1WLthA4cn93H55ZeQFiZyZJjv3fV9iukuWi0fYQbIyGNhcoJVw6PMTU8zNjZGb28v1WqVueVFenp6+da3vs3b33U7vb09FDJpOoudvPs9G3jikR309ERUWnlOljp+wUUHYHOfzWSUbt9ov8yjyFc6m/Fq8peiKKLm1Fm/YRW1WpnjkzOsHsxxx52Pce11l+PUG/z0T76Pv/ibr1NpVVEHi3R2dvJT/+P/Zf/kBE6rBVISCInnuyyWPfqGevnqV7/Opg2bkKbECVoIoeF5Ad3MkZB1bJHmZZdhSYkha2S8aTwp4xq8sdgFFAcgsVgs9iPkZGLxS720nGrte99j6Q/+kKjZPO9jCLqSoCogBBEhXhRi6hamZaIoAryQar2BbduMDQ+wvn8VeMscm5rBynUhvRDFgLvvu5darcz73/8ePvnpT/L7//uvaS63SKZSKGFEsa+XJ5/ZT6PcZGS4j3vuvZv3v/vdPPTAfWwY3swV2y7j0aeeInA9mq7Ncr1JodjJxMQUyb4C5+sOVCgCp2VTSGRZXqngVFbIpJKMH9hPJpml6Thsuvhipg/MEEYqdrOFXV/hy1/5MrdceQVHDh/BCwK+//3vc/vtt5MtZLj/vgd57+3vRk+lWVyY4x//7h6cUHDRZZcy0N/PB/ofZa6R4t6F1TQC87mxZDSXG3smGUm3WHDegiJefiHEyaptZ1uGlS52cvNHXl3gGskIz/PI5hNctHkz//S3XydqPEO54ZPIptFDg1/55V/h1ve9j7rXABmSz+f5/Je+yNj6tZiqipQRQhFIUycKIZ3IIITCXXfcz1t//HqadgMUA1XV8B2bq1KPcG/4Nk4JzE7kwqxx7kbXVBTl/FVBi8Vip4oDkFgs9qYXRZK58QrNmksqa9K3Nt++0f0Rcy6Jxfd++XOsvvxKlv7gD/EmJy/MQDpG2gEIEtNUCQMNNwhJaDq6bmDoCsvlEqZp4nkOW7dexPq1/Uz/yddp6QqeVJBKgJXO8uFP/TK/+vGf5/d/5b8RFjZSLHayuDBH/8Agh2dmSWfzmGqCaq3CUmmZb3/nO3zop36KGzb18sW/+Tt6R0bZvW8CO3DYdvmlJBJJ9OlFIik4X2twojDCbTVZDByKuU60VJrl0jKDa/qYmVui0nTIFTUaTZ/KUgk9Y5BMJfjZD/8093ztn5mdW2LXs7vZvn07Tz31FOlcirGxVXzz299i27ZLuPzy7Qz99AdYrjnsPniITO0gmUGHTNZhTWaFmVaORmCQ1jwGklWUE6fWLUun7fZ+smrbywWrJ13z/g9x5Xs/8KqXECpCQdMUJo9MIEKVnt4+po9O8RM//V5sp059eYE7v/MNNl/xNj7wsz+GauqM9vaTvj7NYnWZMBT4fgS+RFMVWp6Dr6gcO36Uz/zKp/j6t75KIp9ASybxPI+kZaE3d3Nbd5K7qhdji+dzYExZZ6x+B8PGcXwEbhCA/qpOKxaLnYM4AInFYm9qh3ct8uBXx2lWnk8pTuVNrv/gWlZv734DR/b6O5fE4pPlVE/OfERA3TjxpFkIpJQIIVAVFYkkCkM0TW//O2qXfj25XXRiWwCkPPFehejkS5FEUcHUDOo1u90NXaikLJOFIKDVaNHXnefIkSPceec36O7ayHIUoSomlmkihQKNBkKB//hrv87/+J9/SStoUS2XmTo0QbrYie20CCOJEJLRVauIXJ+/+9rXGP25n6DlBswtVuhbtZYndz7O3Nw8tUaDwdF1TC3Oo523NTiSTDKBG0UcPnyYzNYNZHNZFCGo1pr09Y9yYO8hfDdkaHCIQPNBRvQNDrJl80ZWrV6LmUqyf/9+3vnOdxJJj6mpY9z4luvo7OrG0lS+f+99NKVKoaePTZ19QLt0riJgKFV9+VG5VRTr9MHDyaptL12ulyl2ctOrnPV4EQFe4DM2OoqmK2y5/GJy3b1IRaDrkks3b2XP3n28+z3XY+ghiiZoHT3OM4uTZLs6UBSBB2gR5BIpcCNCy0QL4fobr+KBHXeQzKRp+i6mBpFUEOis0adJsZtZv5sGKVK6R9I+QtNp0LAjmjUXI6lC4rWdXiwWO704AInFYm9ah3ct8r0/33PK682Ky/f+fA+3/tstP1JByLkmFjcq5ed+OVR1yW9elyQKPYgEQkoC16Mjn0RPWji1Bt0dRRo0KVXLCE+QEWBkMtTrNTq7OnHDgGbDptV0MJNFtq8IzAgURdAorxDpEgMV4TsomoKHgt1s4nkhzXqL/ZOTeIFkNJchaLjIIKCQSiN0yZ/+wWfp7elicf9Bpib3s1grcfXlV2FqOk/u3cdStULCNNE0lUQyyebLNvPEw4/z3TvvYbZUI4nF4/fcx/ZtWyjXbUrlEk8+868Mb1hHN+kzXqdzFkn6e3pIF/M88fhOfBnQmc2QtDJksx0c2HOQoBVQna9y2UUXM7tyFLeywl/9wWc58NgT1FsWl1yxhbe97W1MT0/T1Z0nmUwSBhG7d+1ky099gOuvuxpPS/GP3/5XBlad253zUs1DZs+c63Ahq7ZJKUllMzz+8AOMja6mkFcJA4+erm6efWaCOSfk8htuwnZdepJdJAyNVDrB5Z2bGZ+fQWomqiJxWi10VcO0LHTLorJc5i//7E/JFwo0Pad9LES7GWW9iqKqzM4eR9EWsYKQoYEh/EQS3/NAhiS7srjB+V96GIvFnhdXwYrFYm9KUSR58KvjZ9zmoa+NE0U/OqVuzjWx+IXbSRnR9Gr4kUM6l0K3NBIZEx8fI62T6UpAIsSNbALFIbJC7LAFRkAyZ5IwFVQtxMroaAnJ0rFpxIlLLoQgn07QmbfoylnktIgOU1BeWUJRBAP9/SRSafRkhsVmHdtr0pVUKCYEPTmd4b5OPvJzHyUgZMfjO5mePER1aZEH772LZ3c9RaNaZd3aUUwt4tjxo1TrNXY89jhOEPCO299N1fWpeiH9Y2uot3xy+Q6GR1bRNzBCudLgfOWAKKrK/n37eOC++/BDn2qjgmaqHJ48ioJOxswx0NHPmrExGpUyy/Oz7H7yKTasX8u//aVf5EMfur2dfD43R19fH7PHp9n37G7Wrh7l/e97L5Pj+zm4/wBLS4sgoWaN0CR52mZ6Eqj6GlH35nYS+tnGf4GqtoVhyOTkJL29fSSTSSCku7uDB+67H1UIfuGX/wtf+Ju/wkgnkVIwO7vAkfmjaC2HjJnA8V2ajQaKoiCRqIZGs1anp6eHyy67jEq9Rr3VRNV19ESSQAo0QyeQEY7rIBSFer1OOmHh2k0MQ0fXdRqNBvVG47ycYywWe3lxABKLxd6U5sYrL1p29XIaZZe58cpZ9xVFkuP7Szz6zcM89o3DTB8o/VAGLicTi8/kpeVUhVCo1RxcN0SiYiUyqHoSXU9ipdIoVhLbCzHMJFoiiTAMrHQO3xcEgaDVdLCbPq4TkNIy6PUAeeLahWGIb9vkkwbdOYvB7jzDXXlqlQr5bI7p6RkMw8KLYKVe476H7uGyzQMMdurMH30GXTp89UtfxLAMFpfKfPiDP8m1V17KdVdczpqxMRQZoEQ+a1aNUigUkMD0zHE0y+L7991HpOm0Akm56YCqU6nU0UwT2/dwveC8Xfcg8OnvH6Cru5OR4SEcp0kYhoyOriJlJulMFTh6ZIru7k6efXY3IyPDjB88yEWXbGdxYZ5dzzxN4PuUmw1M02J4eJjbbv8xyuUSX/riX+A5LvPz88wcn8WyTCYOT/Kb97SXXb00CJESkHAwcRnyBQFWJHndyzKrqsradevo6u4iCAMqtRL1ZoXBkSH8ps2ue+8lUCRSV2m2bHKFIrXQYXl+jnwyQ6vRZPrYMRLpNLph4HkejWqN48dnmJycJAwC3MBHKrBcqtB0WuwbP0QYRQwMDaEbOms3bmBlZRld15BRhOe7aJp2IiCKxWIXSrwEKxaLvSk1a+fWRu5s2x3etci9XzmA23rBDel3j2KmNG768IYfqiVc55JYfEo5VQmGsAi9iGbdQUhJNp3Gbtq4jiSUCkgFXTdJihzNhosThDQbdZKageGpCKGAlLilBh99909y5ME9oIGpaWwf66fs1Aiqi6xev4F0votMNku1VmNw1Sj1SLA4NYGlQV/fEOXZIyhhi7rXYt/B/ZRsB7vVQHFdipkEHZZKqTzLqvWbuCgYw/FcbM/GMgS5lIW1aoxa3eaxp/dTrdcoDpn0dnZRr1VJCMnunc+QynTSN9AHc+enFaEQCoHtUiim2bRlHQ8/cAxd1dizfw9re9ew48kH2Xrxdp55dg+dXV0IzeTLX/l7+kxJMV9o5z40mjQNi/vuvR9T9/A8jxtuuIH3vvc9ZNNZqk7Ioak5jh2f5rJNG1h1yce4T06x1d1B0Xx+lqMWGtxfGSA9sob58f0wDOO1IvccHqHxxKef2+71KstcqVRo1qvkMjmS6RShDKk26hiWSaZYoBm6DI+upjwzz3K9QULVueXt7+Qf7vguK/PzdBaLCMANAjRFIZNOs2HVGr74559j2zWXE2mCeqPBwkoFI5lET5i4gYfvB+QKeVZKZbrzGeotm2Q6hVey0TSNarMGqQt66rHYj7R4BiT2pvfHf/zHjI6OYlkWV155JY8//vgbPaTY6yCVNc++0Vm2O5lD8qLg4wS3GfC9P9/D4V2Lr3qMb4STicUvnQnJFDufK8H7QlEUogmBrqmEgYupK4SBg6FqlJaX8H0Px2kRBh4oEoRE0QSaqRFFAZoiSGoaOB7diRQpI3qu+Z0q4KKhHi4dW8PVGzYylMuQszJMTE4iVYWVaoXZpSUiu4pdmsdpVqk3q5QrddI9vewdn6BUrlOq1JhfnCdpQFKTXHHpRWQzBlHgsDI3w6XbL2K4r4uBrg4a5TLFfJ5i9wDbtmwmYxokhEQVCj29PYwMjpFMJFDV89ccUkpJT38XjttiYXGBK66+CicI6erqYmZmhvd94H3U6nWQgnKpzJEjR/F9H8Mw6e0fpNDRSbGjA8MQDPX1cMstt7Bhw3qWl5epVassLS1hGDqWpfK+n3g3g0NDfP7zn+c3/+4B/uszo/z2eD9/emSMP5jaxO8f2UhQ3ELSNCh2dDBZL/DNmY00vBef78myzOOP7Thv1+GlFEVBaCqaZSINFTt0UIz258eOH8eJAhK5DLZtM3lkCiOTxiz08qV/+RadW25FH347024ntuMSyhDbcYiCkJHhYf7Df/gPGLrOwtISumFQqTfYe/AQqUyGaq2KHwYIRSFfKDBfKxEoEb7vEwYBlmWhKvHtUSx2IcUzILE3ta9+9at86lOf4s/+7M+48sor+exnP8s73vEODh48SHf3D8+T69gr17c2TypvnnEZVrrQLsn7cqJI8sDfHzrrcR762jhjF3f9UJX1fSWJxYqiYKgaiiYR0icKFdB0HMfB9jyMFITSRQ0ipC4xVJAiIp1NEdZbuHYdRUsynM8zmO3Bi/x2aSZAEYKMIslZOkaqA4ngH75zJxs3bmR+YYFGvQFKyAd+7CYi4VBvRqS7u3n2sX+lrGvouooQYJkW2y6+HjNsEEjJ3PwCWirFyPAga0YHqZaWSOgqmaRJX2eeVD7N4vQ0b7n6Bh545AnSaZNQQLlpEwELi4s055fZnhw6L9dbURQOje/lLe+8mbmFJerNJivlKoHrUUjn2LNvDwtLS/T1DdBoNimVFhnt7eIf//mb+I06g6s2cHDfOMWxAfbt28noqgEe3vEYv/Tv/z1HJydJJNM4vkdvdyd/9Md/guIl+eX//kt8/itfJGzakB6jFbS/tylgeqJKq2ITIdmxPHpilC//83uyLPP5yvt4oUhKoigimU6DLkhn25XBXFslW8zjywhUlXqlhplMcvDYMZzkdiZSv4A/XgB1IwzDjGiyXTzMoHoYu9bkr770V1x3+WU4jkPDbYEQWIkUSd/H9l1sx8EyTVzPRTcSLDYrKFXBhpE1hIkkiUSSnMzHfQhjsQsoDvFjb2q/93u/x8c//nE+9rGPsWnTJv7sz/6MZDLJF77whTd6aLELTFEE139w7Rm3ue4Da08bOMyNV2hVvbMe51zzSH7QnGtisUCwbs1GhKLhhxJVEZRbNXTLxNB1bD/C0yTC0mk1bPBdRCRB00mn05iGSlovkg9DNm/cysP7DhEEz+cXWFGA4Tt4jToN2yfQLI4cOUIhl2Pj+rX0FgvcctNbiBRBs1UnmStQKVW4cvt28qkE9coK4wcPsm3bNqamZ/DDiGwuR61SpZjPsnnTJkpLS4wM9LNqsJeB7gI5S+cdb72FsbFVCCSB28CwDFp+xL6JwwRCIvTz+3zumuuvoV6vMjt7nMOTR6hUamy7eDstt0Uik6SnvxPXdent7SWbzWFYOl3dPXzwpz+MlUpR6CxiJZN86Gc/xOLKCu97/0/y6OOPM7e8yL5D4xw8OEk2keETP/shPvZzP8Hf//3X6M11s6VnNepLftUHgWRh3iWwJc3A4EzJ9ifLMl8IMoqYXZjHC3xSRpLA9VlaWqDulkl05zg4d4za0iJHj09ybGWBWmoz+xO342v5F+2nFSV5OHgbk+oqVoIWIpvgib17uPGmm5FOyFJphYWFaZAhrhfgSWg6DvNLKzz8xOMoIkGr5VOt2ySzOaaOTRJE7mmT+GOx2GsXByCxNy3P89i5cydvfetbn3tNURTe+ta38sgjj7zse1zXpVarvegj9sNr9fZubv23W0jlX7zMKl0wz1qC91xzSF7ptj90hGDXkzsxNROn6RBGAiEFru8hpQQvRIsUPMfHtT1CLyKMAjRNwUwkMBIZsuk0fcOr+OLffJ0HH3wC4wU39xIQmsJctYxa7GRyeQVd0xke6KdWXqHVavDVf/kux5dqKIk8gS8Z7uqjcmya7lyOwb5eLrvsUnbt2kWuo4NKtYZpJggjydLSErOzsyiaSrNegyAgqSmEdo2pI+Ps33cQy9RJpZJMH5+m5bo0bZee7m5y+dzzPUxeIykjVF1haWGRvs5uVo+uQtE0nnz8CTqKBSr1EktLixSLBY5NT6EokiCM+He/+H9x5Ogxpo5Occmll3FsYZ63fPhD5Asd+EHEkaPHcJoRXlXQZXVyfHyW2rEVGsdLXLLpYjb0joIQpz0Pu+af0/jPpXxzFIWvKondNE2OH5tmZuo4dqNBIZNDCA9haOzc+yyjfQMMDPTTNdjDMfPt7Te99HxOfP6MfxWOptBSJNm+Tnbu2sX69RuQCLZs2UBCNwBwbR/fj2jUW2RyBTRMkmaWJ3Y9Q71l4/geViLuhB6LXUjxEqzYm9by8jJhGNLT0/Oi13t6ejhw4MDLvuc3f/M3+fVf//XXY3ix18nq7d2MXdz1ijuhn2sOySvd9odNGAYUO/I0KjVkpFCv2+gJvb12XxVoEqQfYvsuIoxQRIRhGChRhB9IZGSSVk1sT7J3ago/AEPTkEG7/0QLlYbnMeeFPPno4yi5HJcMDDM/M029vIJQFXbvGUfk03TkVJ56ejeD3b1Ml2a5ZOt2xu/fQWffIDPz83QV06hAR2cXz+zbjxcKFEVDItiwYQOLR2fZuG4NS8tlNCvN3fc9yOHJ43z8F3+aQ9OLKEJgmgZ79+1lcNWGdoB1HqiqyszMPAndpJDLUq3XSFpJ1KhdEaxcWWHLts3YZYd0OoET1hkYGuD//MEfc/M1V9I3Ospv/c8/R+lN8Gf/6/fZtnYtd9zxPQrZTqSjEfLim30hIeED6pl/xZ/r6Z2tfPPBRx/i7s//CfYLHticSxJ7GEWoikIURayUVsgVhllaWCTdk4eag5VKsVhZQVVV0t2X4bu50w9CCDyRw7XWkginWa7USZo6HV1FXN+n5bkMDAzgBw7NZoOElSLfUWBmfoEjU0fp7upG0TRqzQa6rmPbLeT5X3UWi8VOiGdAYrEX+JVf+RWq1epzH9PT02/0kGLngaIIBtYXWHd5LwPrC+eUr9G3Nk8yZ5x1uzPlkbwZ6LqO49i0mg1UVaHeaBB6IelMhkIuh4bAVDRCP0SNBEnVwjQ0TD9AC8DzFOylRebnl3D8ACElgvadrxAKTx2b5f5nD3B4cYX9R+eYmVug2WzheS4jA0PceO3VpBIWu5/ejd1o8U933EHdcbjh5hsIIg/PtVmYm2V+bo7F0jJN2+aJJ58kiATTs/PUbY9cRzf/+p07OHz4MKpQSBgqpeUlFFXlv/23X+JP/+AL2PUmShTRV+igkMpyfOrYebuGQhHYLQcRQmlhkcD1SGgJDuyfQjd1ImEShAHl8grpjEVvX5F6vcbEwUN89g/+gN/6rf/Dp37536On09z12JPUajUOTx7BiBKI0yyfkpxbdGEqAZxh25eWZX6p+//6C3z7//zWi4IPOLckdlVRWFlaxjRNoihCFQqFXA4J9Oc6yCXT1FtNyisrLC+f2yzj9ILN9PE5Kq0mR+dm2PX0Mxi6SRCEZJMpErpBJpuhZduoqkomnUI1DJLpFOs3bWD37t0cPXqUcrkc54DEYhdQHIDE3rQ6OztRVZWFhYUXvb6wsEBvb+/Lvsc0TbLZ7Is+Yj+6tlw/cNZtzpRH8qYgBJqhIQDDMJFA6PkYikro+GRTaSSgIFAlFLN51EglrxkUNAOnZtOYP84zO5+kVvExpIvnt3NrIim564mnqUUKmpmjXG5Qmlvm2JEp+vv6OHpkkm1bNrNl1Sre9da3kpSS0e1bWHbqPHVgL41Wg65CkfXr2xWhyrUq6zdtwA8CBoeGOHZ8npmFZf7pW9+h0NHFtksu5bHHHiOXSUMYsGrVKqaPHuXWd76V9/7EezEFmJrO2jVr6O/tPW83oL4XUCh2cXxmmVymiKlbuHaVwb4CpXqN2951K/v2j1Np1kEIKnUPx1VZrDf43//7f/Bf/tMvMrUwT6nuMbtS4qFdz5Io9KCc4Vf46QKTl4pObH06p5RlfoFDjzzEk9/6pzPu/94vf+6My7G6ip2kEykKhQIiiujKd+C2bHB9Qt9nbPVqRoZH6LTOLaDyGovoms5KpULDcegfGOTY0WlCz8P3PBQEIoJsNksykWBpYZGuziIL8/PMz82RzWRYtWoVruudrz6UsVjsZcQBSOxNyzAMLr30Uu6+++7nXouiiLvvvpurr776DRxZ7Afd4V2L/NWnd/D4t4+cdhsrpZ81j+TNIIoijKTFwEAf6VSSYleBgf4uGitlWvU6kZQQSZKJNGODo+RSGfAERaHDSpmw1uS2G67kLZdt5+3XbeUd11/63NKfIAzp6yqyMjdHsdxk7UqTy/N57Min0qgyMNxNo1Hm4JH9aIpD52COZrVMqCscPzqJldIpFBL4XosrrrmWWqnCxP6DrKysMHt8mttufSvVUolVQ6uYmJpj7/Q0oa5xeHySyvICfcUUdqNKyoJHHt7J03v389t/9H8o9vXgi/OXAyAUhaNT02iaRRBAIpFCMyRDg31EIuJ737uDVsNhZM1q+gcHaDUjVDWJpypoSkhluUSpUsdK5VEMAyWTpeG/9kaJEokfvXxwYWWyL1uW+aQoCvn+5//krMc4WxK75zgUOgpomkYQhpRXVuhOtWdBRNQOCEPHpU9ZwAgqp183JiWaX2YkUSb0PTzXJ2GmEKhs2byVnp4eVKGgBBEJy0KoCo5tkzBM5mfnGOjrhyAik8mQzWbRdf2s5xaLxV69OAck9qb2qU99io985CNcdtllXHHFFXz2s5+l2WzysY997I0eWuwH1MneH6ez6pJOtrxlkIF157aU64edIgShkKQySVqej4w0NFVBeCF62iACdMuk1WwRhSGqIlAijeUj02xbu5WHHrmTxZEEXYUe5h98lI1XbSZoN+nG931uzA3R9dRBUt4s15GGBlSWXXbIGrWRLE/t3E2h2M300eOMjI6RUJMYVha7WsFxAtauXcf373+UQBr0j64i19vHkfkF7EqFbK7CzbfcyLe+fSe2J3hm/ChFy8BpeFSqVTqHI+wIGqUauppgbPV6/u//9hlSZoqm7SIT56cTnRACTTMwdY1UNsWe/XtBEaTNHLVKidGRXrKJFKXFBWory0SRJPA9srk8D9z7EP29a9kzvQ9dFaQ6urFdj57BAXDOfmwp27k2L50ROfn66R7za7rO6suvPO1+Z/bvxamfW5GO0yWxa6qGoWrIqF2ONwojFFUlJXSqjWVavke6I4eKIJXLsG7pHvao72kHIS9MRD8RlKxz7iFnmZQDh/nlJTauWcPE+AT9vb1U6isM96+ikLDAVHDrdSzLYGRkhHS+QLGjA9EBhw7uY9++fWhGiHxzP1uIxd5Q8QxI7E3tgx/8IL/7u7/Lr/7qr7Jt2zaefvppvve9752SmB6LQbv3x4NfHT/jNotH6j8ywQeAoqqkMxYhksh10YMIr+WQTuq4TYcolPiej1Rod5i2A9xKg43rLqO0tMyl64c5Xm+x89l9ZBXBnfc8gaG1n331VVqM3H2ApPfip9q5EN45XmP1SoTTdCgWu8km81RKVVRpsDxf47qrbmJufoXJo8eJIshkMswulpieWybT0c2lV17J+PhB5ufmyWYz2JFgYGQNgWahZTtYu+0yDs8u0fQVPvLRf4dpJfC8iGrFZmZugelj85yvNTgyktQrVUqlFSaPTpDN5kmmOkikMuRyOTo6svR0Zhno6kINI1zbYWVxgaHBAXY+/hQrC4sc2rcPJfRpNhrU63WeHj+AjzxtorxEIhXBVH0J3XxxkYQIiRDijMu0GqWVM85cnEtlrJPOmMQeSTzfI5fLEYUhSdOiPLtAz9gwKAp+0yb0A8rlMl3qYdZV/h4tqLxoF0ZYZZvzLQbcfegKjA4NctGGDTy7cxerxsaQQKFQoLy8wvLiEvV6nVKpTKVSwbFtCtkcS3MLHDt8hEu2XUKxWETX9VOKbcVisfMnngGJvel98pOf5JOf/OQbPYzYD4G58coZGxfC830/BtafuTLQm4WMInzPJRLtilgd2QyZdApTVakfX6BUqZJIaggFhAKmSNBcmOc7R5bpz2ts234xT+zaha8ZXH/NpTy6Zz+C9hP4TbMl4NTbfEE7LXrz/kXm39LLUmmR0dEB6vUGiyvTBC2PiSOH6evr5eDhSXL5FOl8Cj2loKgCt+UzMz3D2rXt3BDHdslnk3h2k5XlRbQwwAsCPMeh2Wry87/wS1xzy000mzWKXZ0oKnR2+udeJuocFPN5/MjG8zwkOrOzy6hRgGVpeHaTdWMjrCysMNi1AWfXXlaPDLJ61Sj/7j98gi/8xV+hqyGXbt3AkelplpbmySaSTEctxkQSKeUppXYFgsxAJ8uzh9G9GiYK1XKNiJB8LkW3kj7rmM8UZJytMtZJiWzutEnsMgpJGwqh16AVRuQzGVpuCyWpYzca6JpKo1YmCH2OzC1QCQOG8xVyzafJrXkLR2bKdCQlGX+altPECyLy2SyeY9PdkaWn63JWlsvoioYqoL+/m6Xjx1GVJF7g0Go1MTUTRZGkUjqZTIG5hVmyHUUyIslE3AckFrtg4hmQWCwWO+Fc+3m8qft+vISUkpmjx4miCMe3CUSIJ10Oz81AwqRmN5GagpQCLVLZv2s3v/je27n22u3oSYMIlWIxz5HDk/T0D3Dt1g0IRaGj6ZDww9M+gxdA0gnpcyIC6YIWoeiSZFLDsFQ6u7vo6Omgb7gHM6kyeXgvOC06kwkay4skDR3XCahWW/T09DPYlcWvLlNImBgqGKpgqLcbi4irb9jOs/ueQEqHeqPMSmmRZE47r0nIy4sLXH35lWxcvR5DMenI5SmtVNmyZRu1lQZL8wt0pVKsH+xhJJ9guDNPd0caK5jlqmG4eUOG+vwUolkhYaj0dXVyrLrE4aCBF0Uv/p4Jye7J3RxbnKanp5uG5xEkDYKEydZrrqTass9pzGcKMgY2bibd0XnWfdzy8794hi7qAsvUcVoO2WSWlJGkXqmTyuTJpHNEkcT3IjLJHNlcka5iP/mODtKpNFppD1f22XRFc1i6TldnF/0Dg5i6iSJh+ug0c9NzmEaSesPBdUIWFpZAUak3HAhVEnqabKqDdDpHLtdBq+WiGxaGYeD759YjJRaLvTpxABKLxWInnGs/jzdz34+XklKiqCYt10FLGtSdBpVmlaWlJWaOHWd0cIjKcom0mWLp2BzvvOVmko0SOx56mPmVGnfc+ySPPbKH2269hb/80t9QtASe72OeYxJ1eXoBI5nmvod2ML+wRLnRoHtggO/dcy+PPLGLe++7H8/1MQyLpKqxZniEDWOrqJfrzBxfIgwEK8s1NAmXbt5Gb88AUqrMzy7gOj7D/aNMHpnm13791xgZGcJxbNLZNJl0qt1Q4zxQFMHmDauYOHQIJRKsHhqFMMBxXcqlGjPHFjh++DjHj0zQndHZPNzFeuUY72n8A9q9v8EVyuP8/PAMv7lhig9vy5NO6HRmkhhAUxccsKvsqy4z4dS45+BuPCtkw+a1zB6bwg9Cji0s8uzEfjwlZHJ6GpFOEhCdsVDv2crvKorKzR/9xBnP+7Lb3sv6q6477ddVVW33+LBStCoNGpUmCTNN6AYszC5iagm6e/po1G0GBkbxvQgrlaFWa2IqFgf3HaKzq4dkKksqkaXVdMhlO+ju6mPVqrWsWbOeluMSCoWWF+JFkmQ2RyHXhRJqJPQUgR1QKdtMH1ukXnNxHZ9mq04ymYiXYMViF1AcgMRisdgJfWvzp3RNf6k3e9+Pl5JS0tnRTb3RwHZsZhZmKVfKmMKgvlRiXf8QQ13dTB8+xmj3EPd89/tsGBsll5L8zAffw403XsXHf/59dGUTjIwN8vBDjxCGEa5+biuAl0KVR3ceApFnds4GmWJ+sUnLNZhfcrju2h+n2DHClo1X4AYmk0eXSOf6SCQ76Ch0o2CSzXbS9BTmFmvUmiET00s0XJX9h+eoNEK2XHwdv/brv4OhZfjYv/klmk3Bs88ePlN7jFckDEMkPjIIOHbkOK5tU8xm2LR5M+OHxunu7COdytBs1OjJpHj3lhzv7TlCmhfPtCWFy62JfbxzrcV1V12JKiSLC3PUajWmlxdZcJsURwa56sqrOHr0KJdsv4T+/n48IZGGQtVtMb+yRCBhOWye/A6/7JjPVH73pLVXXsPtn/r0KTMhiWyW2/7Tf+eGD//cGd8vBHieT+i55DMJosCmp5jDduqUSgtIfOrNKn2DA0xPH6NaKtF0alQqSyQtlVRCI5u2mJ89huc2CCOXZEqnUl3CblXYt28XZlLQNVCko7eAE9iYaZ1KZQlNSPKZFB3ZDK7TwtRVuotFUokEhqLSqtXO5wq8WCz2EnEOSCwWi52gKILrP7j2jFWw3vR9P15CILBbLgkrTTKhUq9UQCpkTIsoVyApBYlQsH5oFeXZpXbZ2JbHJz72Ee69537ufPQQ//kjP04il6Faa3D1VddQnU9RUn1sXcU6zTIsCdiaipHqYTPtRG5N1ZChRLiC3twYiqew8vQiqqpg00QNFMqlcnvWRhHkFYu8kSBwQyKZQln26CZBZ98GOFFISaw4KCWPyzrWIJZ99n3z+2w3i1y0rkDaPHsjynO6hkKwefMlPHHP3VRqNVaPDrBlwxiHj80imlVuvvoydtx/N++65Xqmj0/ydvWJE+976feifV2uE/v4ox0qOhEDhQJjI2u569776Eoladkl5qb3sX79Gm6/7V186V++gZVOokUKSUVSKi/SOboK6XkEXWlyyyu0wueD7kyxk5s+cuYO5i+09sprWH35lczs30ujUiadLzCwcfNZgxeAMIyoVhpoZkhHR4ZmTWIaAl2HQiFNvV6hpyuP7dZo1EukUwadxSzlzhyaJil2ZHDcBooaYDs1kpbO8so8iaRGQrMIogAtpeIrDoqUoHnki2kcz2ZxYR5L72V8cpxcbzcg6ezs5OChQ4RSI4ya8KOR5hWLvSHiACQWi8VeYPX2bm79t1t48KvjL0pITxdMrvvA2jd934+XiqREiVSIJKlEGk0xkIHEFwpBEBFVC3gz3fT2d3Kkdj8f+akPsHfpONWFRQ4/u5e1a9Yw2NUDXoP1azewdvtbOLRzP6XpgH39nVxydKHd8+EFxzz54Hn/QCdJ4zQzUi9zf6sbLx8w6MrZJ/tN7YU7VOEFbSAMK3HW95+JIgSzR2bIqBojGzczP3UMPZmku7eP4wf3kk6arF89gu+45PUqhjh9joYACkbE2kSL7ssuY/zwJErg0NfVgSZDtEjS1dHB1PQirYaHa3tkUxn8coO+3h6EUKiXKxSTKSbn5viNNc9iB2kaeg/pD33+nIOHF52fojK0eesrvi4SiWmk6OrJIKXC4aljGKpJo9HEsiwSVgrTSrC0uEKhkCdAo1FtUswXiUKJaSTRhMbwwChNu0kqmUAXCkJVWFhexvY9wopPoKgUMlkMzaJaqZPP5ejq6SKRTnDRxRcxt7SC57lEfkguWyAIVFxfifsQxmIXUByAxGKx2Eus3t7N2MVd7apYNZdUtr3s6kdp5uMkAczPL2KkBQoBfV09tJpNkuE63jL6MxjTHWzNAU3oGLiV733rr1h/aYKtq9azde0qfvXzf4elqux4aAc/ftuH+dXf/hN+/r038vj+KRrJXsLRHrYcXyYZPN8t29ZV9g92Ui6m0ZHUbR8pQ3LpFFK2myMKRcHxPBKeREUQCWgZClEUoSoKYdSuDCWlbDdLlBAmAAUUodKVOHsCNbSDj2s/+OHXfB3NIOTt113LSq3O7NQM69duwlV8PvFz/4Zdj+xg+8ZNJKWgM2jB6RuHPycbNrjyim0sT+4nbCxy+ztuYmJigihI06w2ECfK+SY0C9UrowQetdIK/Z2dhLaLEgrwBLqq0mlWIZOCVxFEvCZSkM91UW/YKFJladFh3ViKpK4iIoHt2JSXHLq6hqkfm8U0kwRNSTE/gq6q+HgEnkWzbhPJFLqSw1A1wigik0/Q9JYpLSxiJk1Wmg6RJxAdSZL5LqykTxhaKELBcyv4no5rK/iOwAsiQqkQt0KPxS6cOACJxWKxl6Eo4kem1O6ZKIpCwtDIJBPYtSY9Hf30RZvYoPz8Kfdnmsgy0vFJHn/gd/jbXX/Hf/yP70YPAsaX5rjisqv49T/8LLf/2E+gKg6yo8BcWGemq5PvdqqYBw+RQ2MhkpQ7LNYPRLxvS5KL+9P8wwN78EJ49y0X88ieA0wfGic1uJm/vecu/tfKKN2aTl0X/PlFJmEUYWqCEIumYyOROK5PGJhM3xIQJgXdyW7ufv+XX7drqCoqF68fIS8cfD3i8m3rKFUX2bhxmKXDe3HLcwS1Ausuupjxx3ezIXf2fa5bu46i5fJvfvJW7rj/CeamJhgb7CWVEHSoAjHh0qitQOCwYaiTtVdsZvehCXQ1AkMhZZpk1ATyJRW0Xk+umuHO9M8iFAES5PUf4puKAtaJRonp9s+fLEtkGhCgIJCN9r9lJFEccaKpooDK80GnhPZ+htvHEifWrz3jCZg50Qul1f6a7HhBGeP+kzNwEsXIvr4XJBb7ERInocdisVjstKIoZH72OJPjx1hZXCawPVar7wdO7a59MiLZOvLv+JmP3YYv4ZJLtvGNux/E1rP8/L//D/R1Zbjj+3eze89+ujqL7NjxCEHk0xjr4amswrjVPubc3ALf+Na3iVyPK7Zt4t03XEarssI37rwftauDoaER0u7zz9AURcFpemTnmvRPBwxUAvAiDGGQNNOI8I17mq0ISeRUSGgeXXmDSzevIZeI6NJCbti6gdvfcgUFS3D40DMoHf34SuK0+e8S8NUEa956KzNT+1CDBmuH+tECH7tS5tafeQ9dnRm2X7SWkeFudGxCu0za8Fm/boikHnDx1tUkEhFdeQtVff1vA37h+rHnzydRIDLzRFYemeggNPOEZp7IKhBZBQIjd+LzPJGZJzBzhGaO0MgRWSc+t/Lt18z889uf+JBW++PkMU6+V1on9mnl22N44edWHmkVECeWoqXMV7YkLRaLnV08AxKLxWKx01JVjZGBQVIpk0arRsofxdBzp12dIoQAmWVx3mB0rMDb1m5lbKHKrCP56l//Pe+88mJueOvN2E8d5p++/V1sdFrNFh25BGG4TKteoyvVTU82Q3PaJZPv4MHvPc5Nm4dJJhKk0jm+8dDj/GLfFj71vn+D+PI97eP6IZ+ckORDHQhhoUlNF9zZH7LLDJDnq6TVqyClpFqrM5IvokYhInB4x/VXUzRUyisrbFm9gZmZY9RdG0UzsNM3kjn63dPmxrijN6B5ISOjY0wfnSOhJ+nIZli9ejWW3eDZ3XuQITRLS1hAppAjnUyw0Cy1k88dB93QiUIf0zQg8F7X6/EL168C4C8fPPK6HvfVSJkqv/z29W/0MGKxN504AInFYrHYaUVRRKVaRoYWgR+QUorn9D4z0cXE5EGOTNzL0xPT+J5OR3+Bo9NHKHb30dOZJ5NOMtQ/xtLyMqVln0y+g/JyCYFk7dAA77pxE1LRufORJ5GNFT582zu49opL8J5+nFw2w76nnuWSE7foiQgSL4mK0r7kfUcdgiGFQ5kkinDOJb3ivDMME5NOzEQv3X1ZEoaO3azRtFWyHUNMzy8ytnYbe/buprOjD5HOIwr9hHu/hurXn9tPqKXR1txOkFlFab6FEFnSWRXVUhkMdYa7e1kan2fD6u1YmskTj+zm+qtv4aHHnyCZ6mF8x14SUqVc8ggigzCEIAg5P7W+XplfuH7Vc4FILBb70RMHILFYLHaOJnYu8uX/9R1Mvd2k7KV9Al742kufXIsX/Lu9rXj+qbx8vuTqmd5/umf44uSfJxrnCRRGVw9xxW2rWHPpa6vaFYYhmVSGS8ZWs7p/hJnJFaQSIcSZl+6sVI4yOFZkqKeXKy+/nD/7ytf46Z/4WWr1KnsPHMbzfNauW8veI9NYmSIEIYmEiaFAMZ9DQVKtlKnkk9iKybJMoRsG60e6ySSu5Z677+Dp2aNspx9XAyM4dVJGASLgHYshh7PiDcspTsgWt8p/hQlQFEBCFpACQNArBM6xiFVSIhbbr1WRKEKgoKIIiCREvgPPfh0VgUp7ZiWDJIOgGxCl9vHGovbP123JEDn+AGMFiZh4iP86HKEogijazcmLYckwzrWOxWKvuzgAicVisXP0+Lcm6S0Mv9HDOCfl+RaPf2vyNQcgpWyad+XHsMo6fnmFbsB1PoeWuBnNXPcy75C4/gp6Zon5FYehjgLvuupqnn72CR556EGmlhtMHpvlL//Xr/L/fvZPKZUqWL5Kb2cOwzDYsG41hXyWqeljfPyW26g1a1Qcj6NLVdLFHJVnD3HV5kvxHMnuxnG0FQXzDE3VFaDgCgbqHnvlSxc1XWBX/xLc+RkAcob/+h33Rc5xzsdMX9hhxGKx2AvEAUgsFoudI89p38xJGWGHVQQCIQSqorSb2iFOzGSc+PvEtEZ0otKQOPnHiakMRQgiKV/wHoGUEfB8ZR9FKCde47nqPu1dixOVe9plZp/v3SCIPB1FUZ8b76s1n0txaLgH86Ud8aIWQevbCH4c9UVBiERK6B3bQ31eY2zVajRUykuLXH3VxXz9jr0cXmqS7x7GXprjg+++DffO+9m5e5x8KsEzu/dww+VbmZk5TlRd5tjiPOvWryGdyXHZ5tV4lRKBnmbHoQnWDPXyn4Y+yOKXHqSjdPZzMZI8X+no9XLNJ9t/P/LHr+9xXykzDTd95o0eRSwW+xESByCxWCz2CvmywZPl/4HnefT0DJATCTLpDEJCKpnA8zzsVgtUiW3bKIqC67g07RZKNoHneKRTSUI3QFEUcvkcvuc/F1S0Wi1aTYekbtLVWUSEAW6rhTANKvUa6WQSXYF8OkMgfZadGoqaJog8EskC2tS7yKe7XtM5SmBff7tXxim37SeCqKB1L4qx5rnlWH5Q4uIt+3l66n4GBvp4cMcONm/ezlzocvToEUqtCC1ZYGRkjPLiPPVAYWlpke3bLiaTSBLNRiQsC9M0IZ1hzUVbKK8sk0gmue3Gy7HrM6jJPF/+2tf4zPt+jFs2beMrqQfhHAKQSlpFyjcgA+SaTz4fiMRisVgMiAOQWCwWe8UEsGFsFEUqVOtNrKSGH9TpLBYxNIV6rYqqCzK5FKoeIKMIoQjyxU58HxpCUlkpUeztpNmy8Vp1ZCRQVYEfRHQVsojeLgxVw7ObKCIkkzMx0lmSuRSl5WXSySRh4GI7LQJVJ/QiWrZDtbHI4Hk4xxVDxTHO8CtCgKTJ6gO/jyVzIJr86vHvcvutH2W21YnVkcXqKjJ14BD9W9ajiQKRt0SomqzKNdg9NU/36BaiyCdrJVgorbB19XryuT6adoQf+Ci5FGnVxq3WmCktkUolGcxJ3nr5RfyfL32VX/svPQShZDkDHfWXrysfAaUMTOjixExUXH0+FovF3mjx/4ljsVjsFZJC0qgvU602UBWJZqgoho7nhyytlDCTCQwrwfJylcWFZWzbIZIhjtMgaYLvNPEJmF1cpmL7zC2VUHQdJwyxMgmc0KdVq1BaXqRlt6i0mlQ9j+nZaarNMslcApsAL6GT6Okkk0iRySQx0xp6Qj8vBWedc+z6brjz9C7upHfhAGulyj/e/QgrjRqu26LZaKBrBq6MCIKQG6+7Gr9V5wPvfQ89xW4ajQaGoeG4NvPKCiu9Dt8/tIOF5SVcxeCuux+n0oCa7dOf76ZRcxkZHOaSbZeQ7cry1W/8M2uOS/7xWgVBO9h4ofZiNvjKDSrBjP+CZWqxWCwWeyPFMyCxWCz2CqmKgqkbZIwCqVwKxXdJJhPtqkVJEyKJHYRYhkk6mSAIPLq6Omm2GhB5rB4dQddNit0DANRqDSzdQDc1HKdFJCNSiRSO4yAA13NRhIoX+KiaSuD7GIaB7wdoukYuUaBUraNlskQYiJXXfo5WdG5hjOk/nwH+6X/7Ib5wZA/N2WnKzTLbt27hvn/8PqP9XRgJCyudwApdRsbG+H6zyXxlheaAgnOzh5nqZoIqbE7itCC3S/LHn/86X/mj3yHT0UFrqUyr0qJhlTk2PcOHPvJRujIZlnf9NdsmJf/7PQofvSui8/mqtZQy8KW3Khxd9GjVJYjEa78wsVgsFnvN4gAkFovFXqFISrK5LB1WB+mkQdPRWSlXSKVTJM0EpqmTTiapNeqkkklUDTKZNNlMCssQCCnQhEHgOARugHB8LNMkdFzSmo7jusxMTgGQyWRIpVIoikLGsAikJJHtQAiBHwTUazXS2QTFTAe2VyMUBsfOQ3+3ohdieQGOrj5fI/iFpMTyAzqaDhJBJb+GyB9i7XCehnmYb/3tP7GwsMjwYB8N20aEAVP7nialScb3j5PN5Tk+GCK7vVPqNAUJSemakN7EGOl0ET2okc6k2Dt1jMkjj3LTLW/n6PQUjz3yKFcCVx6SuLrgv37cYHg+oNCAchqmuhXWHTbQJqqEWO3E/lgsFou94eIAJBaLxV4hKSWO7bDYWGQ+9HFUg6bt4c6XyKUzqIpKPm2RtnQajTqFjhzTpWNomkoylcBQFToLKVRTQdd0xnp6sG0b0EkkTVzXpae7B8u0CKMIRVFotVrtKlhCxfd9Wi2bMAwwDRND11EiSdZM4SjqKf1JXg0BbJpd5qmRnpe7AABsml1hqfNixte8H9cqwPH2l0MqvP36DuzwKYYLQ4SEVJp1LMvinW+9mfGpYyhWiruy+5+vDPbCY59oqHJovYPtOVw0UKCjt4ulXc9y15O70FMZtmzewt9+7WGuzK0B4JJDETO5JAupgMOyRr9f5OblNKCzbDZRgxOVxeKmF7FYLPaGiwOQWCwWe4VURUFRFVLJLL70SGsqpubTt2YNy8tLFHI5TNUg8gP6enpptepk02k8P6Bphyw0q5RrLpKQMAzp6egmDH1UVaVh1wlDn3S2SKVeJwzb23ieh1A0giCk2WySzWbp7uqi1qyxUq1QTBcIXIfAsM7befZWm6ybnuPAqn6UF/TasPyATbMrKPoa9mz++Cnv02QW3fkpCp0pcqkZntk/jpnK0my16BlL8ciuZxm6ejWedoZgQAiClODPH/wXfuszv8zRwwdZbLXYctll3PG9uyjkOnnnj10NDy8B7aDQTOfYWiiizh1n9lidkqxjGiky+W7qzgpRFAcgsVgs9oMgDkBisVjsFdJUlVWFbmSkg65SLtfYOLQa23HZuHotlVoNgYJpmiSSSSIB9XqNfL6AquoUCp2UV1YII4lpJGg4NpVqlZ6uIkQRpq7hOA0qlSqWZeF5LrbtML+0Qt/gAKqpMrc0x2J5iSgK6S72cGR+Bh+XWt0jyebzdq7FWoOljgq5OZtiU2FtKaCv6gCCHVe9v73RS5ZoCaEgpaSxeC2q9ycMDfSx3PCxMhkee+pJxo8usFdbgqv1sx7/4alxbs93MDbcR9JIMNCziu3FbjZv3MLo6Fp46CsAmKZFYBrc8+STmIrGUs1D1yS1VkgURgjFRFHCUxLVY7FYLPb6iwOQWCz2phRFITP799KolEnnCwxs3HzeqiApisLQ0Ai+r9JwKvQOjPLss/tQVZVyq4FQFObm5+nI51leXiYIQ3p7enBLy4S+ZGllGVVRQBFkUxk836a3t5cIiQxDqq0GvmzfVNuuSyKRAEWl30rg+QFh6JHOZtB1vb0czLOZX1zAVzxyuZdZMvUaaCG8/4Eyaff5W3ffVNm/Zmt72dVpCCHQRJG0vhY1u0TZroIImJ9f4i0334RbjDjO4bMef9+zk3S+7d3MTh/n0Ycf5ec+vp3NF21iYm6B6dlZVkUSVPA8jx27nkZNJOkw0nQWQgQhruNjhxGoKlEUEM+AxGKx2BsvDkBisdibzvhjO7jnS5+jUVp+7rV0Ryc3f/QTrL3ymte8/zCKODKzSKXcIpE1qB6bQ9E1vMAndCLS6TRdPd20HJtiXw9hGGKmU7RaNvVWg3xnEQDLsnBdl7SZRtM0pIzwfZ8oiqjbPoHQMA0DJ4iwkmkqywvouo6VTLQbFyoaihD4QtDV3YkXtmg6znn9H3saFdwXzxtobkj3ksLyOfQ61P00bvMYnuei6xGRpnHgwDN0Z7PoV0f4CXHaJHfFVlBmFBpeQK53EBuddMrkkX37+O5d93LjtZcjTpYLlhLhh6Q70vT0dpFstDi+uELaShMELs1mDSGs81KiOBaLxWKvTdwHJBaLvamMP7aDb/7eb7wo+ABolJb55u/9BuOP7XjNxwiDkNnlJRqeh1QVjEQ7kGi2WjTrDYSUJE2LhGWRSiYxTZNGvYHTstE1ja6uLhKWxezs7HOdv13XBcA0TXRdJ500UKSP79gI6dOoldGQEAZUlpdx7RYiDPAcm3q1hCEgpap05vLn5Rn/CytGvXR/AjC82rldq0TAcq1BJpOjVXe44pKLsXSNRqfG+qD7xMFOOTgA5k5wXBc7kPzVU/eTvnqIJ8uT3HH3Q2y6+FI6OorPj0kRFHN5PNvhyPRRGo5NKp/FzGaptprIc+xrEovFYrELL54BicVibxpRFHLPlz53xm3u/fLnWH35la9pOZaiKiRMDSKDmePHMKwk2XSWnmIngeeTTqYI7CLSVxCRjZDTZK0kqc5uFFRsxyGXTNOxYRNRGGI7DTRNo9Fo0NfTTc13SWqCZCpFrVYjqRkUe3qRkcCyrOe21XUdKQRNxyWnZ4kil6Wmy9R5uNeWvg+cfsFSoTKB6ZRxrfzLbiWlxJNlvPQK85M1bFmnt7+f8XSDg28zcU0HaOeSvDQA0RyF3G5wj0WwPslHVv6VWqcPnXCAZ9DeBeX941yWXftcsKIqKpmUhdNqMjg4wvF6i9n5Rbp6B9EsA11ENF/7ZYnFYrHYeRAHILFY7E1jZv/eU2Y+Xqq+sszM/r0Mbd76ivd/clZARCoJ2YeaqFHM95CyLHQtQRCGNNwhqoe3QJhqvwdI6i1GNxyh2F/BdiTH5mYJIh9NKGBqdBVGiUIf121SSGfoLhRw7SZCUShkCtQbTYTUyeWzuC0H6UkMDKJA4BNgGDpCVXEdiZXKvOLzelnhS7tzvJhAsnbi6+zZ/HGkkIgXBCFSShCQG3yKR558AkOoJAsF9uolnhhuvfwOJfSvZPEP1VEXJTo6zeEA47puavgv2jRICo5c6vCkN8W1J5ZvCSHoKhYYXbcWu94kcOuYqkltpYyhazh2I16CFYvFYj8g4gAkFou9aTQq5fO63Qsd3rWIXfPan0iLcPk2MBwyYwfpzM/h+hFLc53UZ6445b2hn+Dws5uo1B6l2FOhM5um5fm0XI8o0vCdOoFrk84mSVpQrSyRTmY4dnyWWq1OtqPIwUP7MC2dhKkj/QDTNPGjkCCShIaFqaRxA4eGpyLluld8fqdQzz5D1L38DL73dwjrx9Fk9rnXNdNGSTzARz92Cf/u41+kY3iEpm+zdxWAPDXnQwBSspSps/DAPgb6BjHNNM2tISray68Bk/CN8FmuEu2QIopCPKfJ4vgKumahthyymkYQgaoahJpCM4qA81OI4PVyIYspxGKx2BslDkBisdibRjp/+qpMr2a7kw7vWuR7f77nlNdDz2T24FaWSzWkdQx/5oYTX3n5O+bSzDaSuYfIF3JkMgqO3cJuthBGhK7pqMIn8CBpaszOTJDPZslmi9QbLfq6c0hFommQ1JI0G3UiEeHLECkTBEFAFEUYpoHzis7u5W9yhd4ukXu6zhkSaFkqhzMHKPQtENR72FDYwEppknR+kccffYzMV57h4k1bGT9+BLmxi5ZWO83eACHwTYk5VsCuhjgFBzWXOP2gBTQ1n4lhhd7j7VmXjmyWUEQ4tuSWy7exXGuyVLU5ND2LpRsogh+qMrwXuphCLBaLvVHiACQWi71pDGzcTLqj84zLsDLFTgY2nnufjCiSPPjV8dN8tR1YeKVLUbsERKkz7EkggwQiGgbh4PseyXSBVCJD3fOp1xuYhsXs/Ar5TJqevjGymRTlSpVEOk8Yge36JK0MXtPGSuRRZURgN9E0CxGquIFLMpOmes5nd/qb3A2WxokU8VOCkJPLmL6sLNOQaYywReeYR615gIf2fJ+h4R60/h5mqlU2jV3C+MwktvbiZVSnvUqjFtUHWmRGjHOqklJLt0emaTqzx2fYfvklHJurUF48ipbs4PjcLM1WC4QHmOc0hjfKCwPBytwMO77+t6dsc7KYwu2f+nQchMRisR9acQASi8XeNBRF5eaPfoJv/t5vnHabmz7yiVe0hGVuvEKz4p5hCwFhEiUY4MxZE23LSy0irYYbhHheBUU3mJ49ykBfP3aliZUs0AoFflNSrtZQVRPVsrAdl1Dq1FYcUlYSz3VRLINcsYiMwGl45Aydhnfuz/hPVgx7qUZpmSfzFpdUU2QbTXwhyQXPhyA1A3atS/PM7Az9gcvUXInDB46Qj3KsvugiZkrHyeZzHFmYpbryGIVcgcVyA4bOft2tLRnchx3KMyWKJM+6fa7RDof8wKero5vlxQVqVYe+oQxztSaL9QqOF3HJlg3sUKeJfkCzQF4uEDyT81FMIRaLxd4ocRneWCz2prL2ymu4/VOfJt3R+aLXM8XOV/XUuFk7U/DxPINzS/72XYFQwAsCXBlSa7XI5i2yeZNQ9enoK5DrypEt9pEtDpHMddNoSjxPIRIq6Ap26OErIVKRNFoN7JZPKpmh1XLpLvad0zjOpWLYvv4igQp/c2mGOy7J8c11Bn+0yuNPr0wSXLGa9RvWk0ya2IFPY7nKB973k0zNz5IopHjs0ce4/b0fZLayRC6fhzkXLTh7eS4lpeJ3hpT2VZH18LkqVy8lpUS1Yc2x57++XFmivrKAJl0CX+XAwaNoisK6Vf349iLi5fqN/AA4XenoMzlZTCEWi8V+GMUzILFY7E1n7ZXXsPryK89L8m4qe27LdiLvXOY/IJuzyOZCavUyigyRno10bRY8F9VIcHh8AqEZOHaD0A/IJFMYJ/IxGhUHhEo+X0BqGpEXoCmCREZHRj6plIEXNM5pHGetGCYEjqFT+/+3d+dxUlV3/v9ft/bqqq7qfaEXml02EVAJqIlGIrgkOouafBMDMROXqDNGx2iMJplkNH5NYvwlcTRmQb/zzUTNd0xMXMcgiCKiQUB22hbopul9q+7q6tru+f3R0tpCQ7dCsb2fj0cDde+5955zHvSt+tS553yy/ITy8iifMZ0/L38JV7CICk+YZMQQdPpoTfTicriZfeZZvPHmGro6unBnG0pGlXP/gw+Tm+XDHQzgDQZw18ZIjfUdtG7ubCgsyMLzeozk/OB+ngHrDzra/1gLdhE4wOV0Ma6snKKCAtq7Y2DSVJSXkBOL09cbJW2nSafS4D26gpDhBIJD+SiLKYiIHA0UgIjIccnhcH6kpXY/rHRCDoEc70EewzLEIkUH2P++XhNhe20TPq8Pr9OJP5hNMhYjZQyt7R00t3Tg9WcxqqSIQMhPZ1cXueEcsgNBYvEEwewgYNPR3oHf7ydl0sTSUdwOLziSWPbw5loM98Nr0u0mKzubn/70/6Mor5y5o6biTIEhSjlhCrsD1IXdnH32ubz24ms0NTVRMiaPiZMmU5ZXzLKlz/K3zZuY8skzqN++mtgwrjmpvIqiwjDx3ije3WE25OzGyn7/7cqK2hRvCTAjeyJYnf3bLItYT4rGRCs98SSV48oIJ8Amwsypk+lo6WCD9116SQyr3R/HSFauGs7S0UMZ6WIKIiJHCwUgIiIH4HBYnHX5hP2ugvW+99aFHZhfsP91o4wjRntiJ0U5BeyoeYft27Zgp5KMHT+GmpodLDh/Ie/U7MBEu3lt5XJKigtJp2zOnDuP3p4Ith0jlWrBGAfdsT6SJoDD5aKrI0a2P5vunnYSaQs3B59kP9wPr85Egp21tcwYM52xnlJIDR6O8Bgn4zrzefS+X9MQ6WB0VRVFeYW0tnSxYvkqZs2awtY311Hc3cXMksm8ENuG7bOG6CKDM24R6LFYs2ENoZCPmcWzGL3JTZsziTvgYGZpMfXbWmnasZsLPv8PsO75/h63LConTiLW10sQeOPtzTR29RIMZNG6Zi3jx04knU4f9ne9ka5c9VFHMUa6mIKIyNFEc0BERA5i3MwiTr9ozEFKWbz/qfrD8xYMBgiMrmHL9s08+NDPee6ZvxD0ukhEe0il4lxwwUIe//3/pbennY7GOr70+X+kMDebv7vwPF59+UXcJBldXozTSuP1O3C6Hfj8fhK2TTAYJpEwhLJz8GYFh9WmvSuGDckYfIkk4d4+8vILqfKXvtfKwZHD3tcTncUYhwPLQF1dPa0t7UyaMI6uWDejxlSQV1BMqidB1uohxkBM/9mcf+vC57QwJk5fXx+RSBd2Ok37hj24auK4ayPkeL3848JziUVbB1KKGGDrzh102zZRk6J87GSKKsYTKq6kKwGbdr5LMpUaVt98VEPN5di7ctW211+lbtPbbFn5MnWb3sa20x95FGOkiymIiBxNNAIiIjIM4eID5KT4gJyinUQ7R5FMvD93xHZEWbPz14RS3XS0NVBUkIPf6ebkqZNZ1lBPW3MjTeEws0+exv+8sIzC/CxeX/FX4n0p3t22kVSsG4/TZveuBkLhIpIGcsOFJG0HXlcWTo8Dn9uJx2tBX3pYy/AOZ8WwKXvasG0bokmctmfoFB5Y+B0esoyHnJxcumJtdLW2UVFRRHufzdhJ43jrrXWcUTaVnqxOdrTFaMqLY/bzFViW38euTTs4c948PH4/K197jeLiYrKysuhsb+OcL1zIyre20heLkzap92M9Y+jri7GrrpbunnY6w24S2T4CrhDe7DA2SVxuNwkOTxAynLkcz9x/L8a8v0pZMK+Ac778TwddOvqDsvMLOGeR8oCIyLFNAYiIyDAMdzK6L2sn5WM28dCvVjJm/FQ6u5tp7HgLy7LISVSQn+Vl1849nHbGWfRGuykuLiKZTrD61RVc/HeXcPrMU1j60jKqt25kVHEpecEcgv4sHv39Y5RWjOHcc8+nrbOTguJSujs6aO1oJzc/D0fKh9sN4cICOofZpr0rhn34kaHs/AImvVOHM5WmLZyNiaQAz0HP53d68Xi8xLuSVFVUEA742bxjG7kRD1MiAZItjUwizKTWMFFfitVT2qkteW9ExOpf2So63UdJUwFNjS0kMdi2g66ubjq7uhhTXMSenbXk+sP87r//zKxPTufU94ZAnA4Hs046iaWRbWwa4yRixYAY0IGzHEbX5PQHU4fJcOZyfDD4gP6Rkb/cfw+nfvbv+dtfnhzyuHmXfpGc0lHKhC4ixw0FICIiw1A6IQfLGnJVWMDgcPURdbTx//7PM6T8TrY1rSSdiNPaGmXmjPGMrqzEaYHf68bptHBgOOOMubz80gomjhnLM3/8E20trZRXlFOYm8uZc+fgcnrICoT41JQprNvyDvF0CqfXQ6wvhtPjoapqNCadwkpn4c9ykkgkhhqo2K/9rRgWi0R48Sd305dbBkDx8Bb4omxCBVbQS091FEc0zqzTp1H5TjHjenP2ebfJ6nNyzluFLJvVMhCEWJZF0mNI5zqYV3Uyf13xKraVJOly0hGP4dpZh/XpOVgGelMJIu1tQP+HcYdlUe1p57UxTfuM1KSz4N3pnTgP4/zzj7Mi1bbXVnDRN25j+aO/3icQ1GiHiByPFICIiAyDw2Hh8buI96YYKje4o2AraXeQCSefzksvLwenIR3vY/rk8TTs7iDg2cmaNeuYPn06q19/jS994YuMrqggPruTkpJiNq2v5itf/iK9vX1s376JnTU1dEWinDpzFq++tYaqMWNpamslFArjcDrJcrmJR/sIBnwYA90dbbj8w5sDMrht768YVr36Nf5y/z3gGPwp3rz354fngED/yEXCSmNCAd5cvYZgKExuboi2zh4mxgvBsE8ODgsLg+H0zXnUFddjPrC7aGwFr726ms6OXmIxm+x8H+GsMGfOOIl3a5tYu3U7Y8aOoyCvEEwzAGnL8Hx2zf4b+N4aAemDD+J8ZB9nRarutlayskN87YHfHJKlo0VEjnaahC4iMkwuT/+HQfPhSebOGK7StwgWtfH2xnXs3r2DosJsKorzGVUYxmknyc9zEwxms/D8hZh0mrGjq1i/di0tLS288urL5OblcNFnP0UylWTa9ClMGjeBaCTC1EmTWL/+bcaPn8TECRNwWA6qyirIDWRTmlvI2PIKQtkBggEf5SUl5IdDH7l9g+Yx7BMw9DMfGgLa2xc76GbrtncpK67A7QliOb00bm3Ej3vIBIAWFsE+FzO2hylp82K9d+o9NXsI5RQQT9lUlo2mpzVKaV4B5593Prv2NNPZ00d3dzfllVUDI1Ibi9N0WrEh56kMWiPgMDjopP6D6OnsGAgEJ5/xKSqmnqzgQ0SOWwpARERGyhHHKn0Zk7McE36G3qz/Q5K3caR7GF0W5pyzZjEqz8/sKWOYNrGK8tJCcnNyyMnJob62lu7uCCdPn0YyleDpPz9FW1cHL698ldPnzeWJJ5/kjbfeYsP6N7jtX2/iwV/+D4WFRSxbtoJVr73OuMrRhPwBvJYTRzKFHevDJJK4bEjGEzg/xl39YPMYLKx9gomkZbPd2YmjIAvLTjJj5nROmTmNprZm4tHeYV33lJocFq4u4R+XlVHZ6Kf55DTbTR1jqkbjc7sIuF1UFIX4r/+7hLKKcqaePJncwmzWvr0W672Rmkj2kX072zup/6NSTg8ROZEoABERGSGDTXN0A+322/T5G/F7LFzGgdMZoPbdBqrXbSHL8tLU2EpRUSGbNm+kvq6OgnA+OX4oyMth5556+pJ9nHPOXKaNm8y6tRvYVd/E1f90FaPDuZz3yU9xxx3f4uZv/h1vb9vIzTf/MybZS03NVuxUmoDPhZdeikNQkO0jO99Ncb6PvKzhrda1P8Odx9CblabW3UZbRYrXeYc2u4N0qodkKkpfrIs3Xl9OxegiUs6RrTi1d15IZXc29rl59BREwcQpLy2goiSM0xmnoaWOiooiSkrzyCsJDYzI5PUe+Qzneyf1f3gkxLIO/FarnB4icqLRHBARkRGzyMstpLcngteTTSDLIo1NQ1sLb2/bxuTx48gJhQlmeXj66aepqqpg2rRZvLJyBWPKcph+0nRWvPomexqaqdnZwGcuXsg7dbup72wj0tbOxeefz461b/HJcxfy6O8eY8Hf/SMvvvIavnAusWicnp4I2T4f2aEwqWSMNDZp22bn7lq8vmyg7CO1arjfwve5kpSOr2T1+jeYMGES29dvZ+zMU2iLdFFbt5MF557Ljj31RLOjxLtSeHDud+7Ivr363ryQLXnUFfcSn5VFaY8bhyNNLBblE3PmsHVrDR3tHdhpi65I98DDcBN224RsHxGrb6g8kP1TQQ5znDLUpP6/3H/PkMcop4eInGg0AiIiMkKWZeHzBQkFc0kmUsSMTUc0Sm8yzqgxVVg5eezY00Q8meCCiy7oX2IWw6jyMkpLS2javZugz0fZqCoamrtY8cY26lpsXnmjmkuuuJ7fPrWUtj4nReXjuPN7d7GnqZWy8RNZt7maM88+h8L8Aoxt09reTnc8SUtLC+/u2EEynSKV3v8yXbZtqN/WwfY3G6nf1oFt71vuYPMYjDH0ppLg85PtKcDvyKG9Nsq4ysk4CTBh3ClMmTAL4m76egzlReOwR+cOHDusvn1vXkhxh4+4J02n1yYQLMLnzsPvzqGqfBwhXxGxqJecvAoc740uOHGwIDHt/aT0gyre/5fHzsx3bh+eyzFx7pn7HRnJzi/gczfdrlWuROSEoxEQEZERstNpdux4h4DfRzKZBFculsuNM52irHIMf13+Kv/rks/RVruNPXtaycsfRWtbhIAviMP4GF1RArhp601Ss3MPjTUtNDW1ced3v8f/e+IvPPP0i8z613/mqRefZ3RZCc176ikfN5Hvfe8H/PW5Z7n8ogtJGJusYJikSRPMzSdYnIU7nSAatfcZAahZ28wrj1cT7YwPbAvkeDnr8gmMm1k0sG1QckJjBk9ENwYLmFHXSv6mKE5HDafYNlgxLNOCsWowxmBZDjxuN6enkv2vgfZQgJ2jCkh43MPuY3+8f0Tgoo4YszftwAFY1k4w/cHMZ4zB2mCR63C8V3cHOfUOPuUfx9rSeiL0DZwrx8piTlMlK/Le2btqb8btb2REq1yJyIlKAYiIyEhZFv4sN8ZOEQz66IslMXYSj9tJdlaQ0tJKmtu7+fSnzqO+oZZYrI/zPrOQ/3nuf0j1xejtjuF0WKSSMSonjOaWb/+If//ev/H7//sg11y9iLmnlfODH/5/WPFeHOkEN99wLS2RJA/+6jf0xnpIJuJ4vR46e2LYTjcudxbROMT7Uri94UEjADVrm3n+lxv3aUK0M87zv9zIwqunDQpC9s5j+OsDP6U3HhvY7kummLKnjZJIL2CB/d5SxAOZyHn/dSL53iaL9oCPLMvBKbX9y+W2Bf3UlOQdtItj3v7kI+XdULB3sH7vtSzr/SDrvb+jdhrLsphqlzEvNpkGbwfrdmwj5AhyWv5kon0xltvbD3rdw+mDyx2LiJzIFICIiIyQZQEpmzg27V0RXHgIej04sfH43YSzwyxbsZp/vuEbJN54gzPO+gTfuPlGfnzfj7jqi1fyn7/7FWtf/itVPd08/vvfce+/38a0iWNJj8mhrnozkWgvuf4cfvofD3DlF6/g69+4nZvuvJNdDY04XTa7OzvpaGygYlQ5u3ftIpwVIFxUQl+8j2hPgr1zQIwxvPJ49QHb8uoT1YyZUYjjA3k/9n5bv/m+n9Dy4v/gsw35iTSWLwi+/ecZaYm1YBsby4A36aIt5Ke6KJ+46/1v+L3JFONbOvCmUsSdzn2W+oX+R9WivjRNuXHyu2FMm4tElgPbtnG7XDicDrq6ewgGsjAG0uk0fZah9ayTKSku5t2dO9nVXE95eTlTvRMIB0N0dHThdmYNuRywiIhklmWG+2CuyAkoEokQDofp6uoiFPro+RXk+PDIbSv7H2NyxsidsozeWBzL7SXRGyfg85DGEEvBq2+u4+2NW2lvaWP2jJNp7WwlKxwknk7yrVvvpLe1gR9865vMPKmS3ICLf/32/2btW2uJJxI4XR6i0V56HA6Wv/g8t950A1u2baO+JUJHIk13bw8zTz6Zx//zP0lEelj05S/hdKbo7E2QE/AQjztoXHcaucFCfAE3fdHkQdt1yTdmUjbp4y0De+4fzqW5txlPwskFaycSbutfgvfDH/kNUDC6gLZdrftJ59j/drRsZn929K+YeZTEcnl3+3ZmTj2Z3KCfiG1Y/sbfmDJ+FJHWHnA48AZ9RHsTBP1+8sO51DY14HI4WL99O2VlZWR5faRi8Kfxf6PXlaQoq4illy79WO0VyRS9D8nxSJPQRURGyBhDpL0HO57GjiZwpCwSfTY2HsKFxYw/aSJdvd1MO+00zr7gs1SMPYm0O4Anp5hv3/0T7n3oUeYuWMD4adN5ZVUN/3TV1+jojdOegJaUE09ROeGScnqTab76T9fwwC9+S19vLztqamhr66K+qY2G1i7KxowlkU7gsBN4XYZYdwe9kbYhkwYOJRqJH7zQMFnGItTVf76hxhvadrcRy3ViOweXiPrSLJvVQnux4ZKek8mps4n19TF1+gxsy0Frby819Y3UNzbhcvqZNm0K4ewAbY1NFI0qoqm1lfz8fCxjqCqvZP6nP01XJMLuxj00treSSqcPWTtFROSj0yNYIiIj5HA4KCwqIZlKEe1NUlI1mv/+81/YVFNDgjRgmDR9GnsaG9myfRvv1NYRt20cHjfJlMHyutlYU0d4WhWnnTGBGSefyrrtm1m5YRtpl5dYvBe/5eEn//4dZk8ex/Vf+xoL5s9n9Lvv8tqbb7LixRfIzwnR2lzPuLLz8aXjdCdtnAk/aePmrXf76zncR44CIe8h65uiTi+O1NAf9C2AtCG3pIgafyclbj/xaJwWX5RkeTbjEjl8wZ5GpKOeZCpB4+56HA4nAa+f195YTUHlaPLyC1n1+hoCPouJEyYybdo01mzZTHZ2DvWNDbjdbjauX0/c46agsJDu7gh+TxincwdgH7K2iojIR6MREBGRETIG2rq6cfiz6EolePDJ/2bNniZa8UB2Ab02tHd2Eevt4Y47vo3DAelUikS8D4+VIGkn6YzFWPrqKqpOmsLcKRPZ9tYafA43VtrChROnP4u7/ve9TJtyJmedeSbVW7dTkR9m/uknk+VIM23CaG686kvYfe109XWxoXoD7+ypoa5lz8BcbYfLIpBz4OAimOuldELOIesbX3x4QY/TduBye8kfXYmvvJSq0on4dhmCHR52vruTYChEfmEB00+eQbQ3xjvv7sAXCFK7cxf5eTmcPm8uJWWVGKeHVNrQG41hWdDR1YkvGCA7FCLL78dhwOV04XK70APHIiJHBwUgIiIj5HBY+BwWo0rKCBWVUFfXjIWDYDAAdpxgwIMj1c2pkyZw6SWXELUTZIUdhLOSxO0Y6WQP+UE/gVA2azfV8Pq6N/jebTdy3rzZRLpbsJxOTpl2EuX5Rax86c807a4nGo/Q29dNyOOKnwAALT1JREFUUSjEVz//98ybNY26+jrqWjrY1Z4iq2gMjkAhzkBoIABJJ22mnjnqgG0587IJgyagf1y97uE95rSnuRk7ZVO/ew/rN2xg69ZtlBYVMr6ygtFlJXR2dhLKL6CxsYl4PEHluLEUFBUyurwMK51iT1Mj3X1Janc3EOnpI+APEPD5ifX1sXbj23T2dJNIJHBZDvKyQ/R0RXBoErqIyFFBj2CJiHwEHjtFd2sja19fSU52Fp3RKKk4hEM+ME68Djc3XLWIrdUN3P9f/wfbsrEsmyxnkjNnn8IZ06ZRVZiHicfoirbw2l9f4LwLLuEvLy/Fchhqt2zk7u/eSay7k4LCApo62tlWV8vGDesYVTqK2bNmg9uPAyeJuCEajVEYcGNHKgln9S9zG+9N8cbTO/BmucCCeDQ1UP9grpczLxucB+RQ6ChMk3ZaOIdIiAjg8rnB5yI3rxATjbJp0yZCQR8lhTk4U0kmVo2lp9NJb7yPWKyPZNqmvb2DSRMmkUrEeXfXuzS0tjJh4hSiXd20dHRRXj6a+l3vUllVRdLjIOTw0NUXw+t0keX3s2HPdph2SJsqIiIfkQIQEZERclgW4ypLiGMza9JoNlW/g0nESBlDa0sX+blB8nOCvPL8U7izCgm4LWynG8tYuK0kLz7zHJ+dcyrxjiaClsX/PPsCxVkFtO2qwR2L4nF6sOIJHv3Vz/nyZV8gt6SQhto6SqvGUDVpMulkimQqTTgQJuDx0NPdQ9KO4oiVE2+ctc/qtvHe/sDjtM9WkVOURSDU/9jVoRz52Ms2Nh0+i4Lo0AFIqCoPp8tFKp0m5Uhw3sILyAkF8btdhH1e1q/byOixVTQ2NjNt4mg6W7rIyvJh93SRMg5K80ooL6igKdKI2wnhnCCdnW2MHTcWj8fN9OKJ7NhcjYmnSHld1DTuoXxMGZvoOOTtFRGRkVMAIiIyQsbYRCKtWE4HVQW5jCoM4PRCa1cMHB7cLhfJvl7mnjaDeZd8mT8vmE8q7cSJi7gzyOQJ57HhbQflJaNwOOqYPONUZleNw+F2cfnF55PATzTWi9thU7Ormo1bthIeNQorkaavqx2nw4mdSILtprajjrQzTW5hMYma/q/4h5p8vuXVBq64a95hCTz2soCC0aW4+/pI1XVgku9P+k45wCoLU3TSeJqaOvF4swlklRHbsZPG3bsozM3DGwoy45ST2dPYSBJIArblwuH00NvbxZ6GFkqKR9Ha1II77CeZTGE5vTidHrAcbN1WjTEGZ9rgCWXT1NJAe3cPxXmlpNNpveuJiBwFdCsWERkhY8AfCNDb282e3e/y6TNP41f/9RjYXizLS6Sri2DYxYZNm8gJPss5p83Cm18EnaUEorNxmSBEoDUCseQYUtmvU+2ox+dzMGnKJH7yiyWUllcwaWwFz/31BaZMmURfVwsOy0s4GCKcFyaVThHt6cYTMGAsfKaYnlTWAevd0xGnobrzY+f8OBCHZeGIJ+nuS+AYFcbjdNDZ3kM0bUPAQ9DlZP3WGkLZuezYswPLSjChsoSykJf2tnaS8R5i8Qi4DD29MVK4iVpOYp09pJJR5s6ZTaSrm4K8HLbUNdDW1sme+kZ8Pg9unx+Xz08ylaRiYiUutw9/eweJunpq6/bgmOhEq2CJiBx5CkBEREYobaepi3TS1RbBn5NNS1MLp007hS3vvEtzawdefxZ2NEFpfj6dXa3kBD04YiU4ez65z7l87lyInc/6mt8xabqT8RVj+eyF59MR7cKT5WbStEnEk0m8Xi8er5u43Ud9w05SqRS+LD+98V56I1Gy3ScPq+6HMufHh1U2+vnEpjzseDO+97YZl0XOqDDFRcUEs4Psrt2JZdskEjFGFYRxuCHdG6G4sIixZWWs37KJltZmcPsxxtDSuIdgKJ/2aIRJo8uJ9UaI9fXS2xvD53MyceJYbNvG6XLzzs53cTgcpA1s37mDLF8W4WCIUaXF9ET6SNvKAyIicjRQACIi8hG09/TQHU9R37mLLH82E8ZWUTaqlL54EguLgoCHto4O2rq7icX6CMVOA8D6UHo+CwtjGUYFLiGS+jPPv/ACnR2dBHICtLdH8LjdeJweUimbrp52fB4voysqwRhs2yYnGMQqctBavxs/sw5a70OZ8+ODiusdzHqrcJ/tVspAbSeJRJJRc2eRioTZubuWaFsTs6ZNoamzDeNyEo8l6Ym2MXrMGJqaW6h5dyd5BUWUhLLZ095KLNKG111GKmnjdLrA7aFxZzUTJ0yktm4H2eFCenv7aG9vZ8qUKdTsqaW1uYPKUhvcTgpLCnC5dpPQCIiIyBGnAEREZIQsh8Xu3bvx+8IU5Oezp6WJoCvdn6AwN4jP4yfk99PQsJtx4ybRtqYVKx0Y+nxYkA7S1xYg5enEF/SRjqcJOLNIJJK4Al5isV783gAej5sddXXkhMJkZwUI+oP0xnvB14Lp7gYT3CfI2etQ5/zYy7bTTFnnfr8t++HsSFC3YyfGWJw0cTJ5AR9+RxrbzmZXQxu1De+SSltMmnwS0ViSM06fh9fhpLOxjs6ODorz8+ho7aInmmBXYyP5JSWcd+58Nm/ezKiSEvriUJhTSFFeER6Hh4AnhOUK0NvTR2tPBz2xJPZYA85D3nwRERkh5QERERkh2za43W66u3uI9vaSnR0gHu2hq62VWLSb3u4ulq5YTns0xu7GJuz08EYd4lHoi0UJBPyEAz5K8/PIDQTwpCyK/bm4YoZEMoVxuYnE4zQ1t1K7s47mxiYsj5OYbzkWYIbIuHeoc37sVb9lE/6YY8jgAyAVT+J1hehOutjwTj01tc0YvBhHFh1xi17jJZJ2s2F7HR5PmHRPgpDTRTi3jEBOCd0JF0njwe3P4aTps0nho6WuE/rcFIfK8TkDpOJJivOLMCkIukJkuQOEs/NxWlm4XdnYtjIRiogcDTQCIiIyQsYYQqEQxu7D2IZUNI7H5WFURTnd3b1khcKMnzgJt9/NO+9sJc8/oX85p4PIK/JSUDqRSGcXpfn5NNe2kt4RxU7YJOn/8t5yQqrQTY83iTOeYmxpGR3RVtx+L8ncPRB4FdM8D8t6/6v+w5XzY6+ezuEtb/uH6HLeLYhCgYXTsjDdNk6Xk9QYG4Nh7/iJw7JwWODstkgbSGfbOBwOMAbLYWGihrTf4Eo5IBfoNRgfUN5/HRMymFD/ilxYYBcbjA3GPfQIjYiIZI4CEBGRkTIGt9siGPTjcafJKyzG6XCTSKfptLuJJ5L09Paw6Y11nD57FpHOaoJ04SQE+/0AbDCOHhra1hJLBMlyedjZspNYbRyDGfSh2UpDVmMST+Fo3Nl+Ysk28vIL2NncTrq3i2TiNUK9J5ETLMSb5eL8q6cftpwfewVzhreqVm8oDdn99Ui/F3DYA3My+reb9/algSTvj1i8X+79bclhz+ewPvAnBNxDPw4nIiKHnwIQEZERsizI9lgUB0KYVB/pdBKHZfA4HLhIEY9FyPI4uej8BSSTSYyxwazGdHwGPhRQ9AcYkA6txO/w4/S6cSXcdNZGsdjfpPV+7tZ2vMmvkuroY4/zb/jyo0Qc0JdOEXqvjMvjHFhy17YNDdWdRCPxfRIRHmjfcJRNnkowr4Ce9tb97jcY+vwGuzxM0REegAi4A1x/yvVHthIiIic4BSAiIiPkcrmIdEfoiHVTXl5MV2cX8VQKr9tHOBQkNzePZCqFMQaTMnhdXoKhVrx5bxGtn0ay7wNzQhw9pMNv0h7fTjAnxOiiKmqWrTv4g0KmGztVj8tdQU76k6SbTyPhfYGku3qfY2vWNvPK49VEO99fgjeQ4+WsyycADLlvuI9sORxOPr34Kv5839373W9hcfm13+aOOfOA/knr9Vs20dPZQTAnl7LJU3E4NDtcROREoQBERGSEkqkUndFuutp6aY924fY48fgCdHT3YNuGzq4IvX19OJweACyHg5yCLIxrN33hdSTc+bidYSxfgrq2txhbMoVRZjSdHR28u3Lj8CtiogP/dOCjIH4xzuD/8MGp1jVrm3n+l/ueM9oZ3+/2D+5bePW0YQchE+bM43M33c5Ljzw8aCQkO7+AcxZdxYT3go/q1a/tUyaYV8CnF79fRkREjm8KQERERsiyHODLZvTk8exp2E3cSuExNn3JNG6nh5xgiGBWiEhPD9nZ2cTjcZo62kmnUjgcFt7cCPUNW0l2psgvKKB2dx0k0xT5QtiJ1Agq8v5cBgsLYwzZ0Xn00Af0T5Z/5fHqj9zOV5+oZsyMwmE/jjVhzjzGnTZnyNGN6tWv7XeUpKe9lT/fdzefu+l2BSEiIicABSAiIiNk2zbReJrW2j043U5cbjeWNwu7z8aXHSaBi7aONlxuJwnbYDtcxFJpksk0bpdFtKOLkBUgFush3RbDk+ulpLiIWP3wVpMCwMrG4SobvMmycJlsXM7+jN92ytAXTXzkdvZ0xGmo7hyYRzIcDoeTiqn7ZmW37TQvPfLwAY9d9ujDjDttjh7HEhE5zikAEREZIWPATnvoi3XhswN4HU4SXTFygzkk4gli6Six3i58PifG7aC8uIJYNEkqmaC1dhfZPU6ctoUfL/QZ6E7Q2LGbrGzfsG/K7qyz+0di9mPv9qHygYxENBI/eKFhqN+yachJ6nt1t7VSv2XTfgMYERE5figAEREZIYfDSSiQQ5YnSE9PnLzsMNFoD6m4wU5ZBLPDFE0pY+eunfTZTna3tJBKpXB09hGK7HvbNUmb7HZIeQy208JKmwNMQrdwZV2I0zPhAPXrD0As6+MvORUIDS+J4sEMN1fIcMuJiMixS5nQRURGyLIMHZ2NYMXxZzlwug2WK43DbeP1Owhke+mNtJHldpHtdlIQdFMSdpPdnX5vad0Pne+9H29HGm9VaIhMIf1cWRfg8k4csm4Gg9flB8DhsgjkfPQAIpjbvyTvoTDcXCHDLSciIscuBSAiIiOUtg29SWjp6KG1K0pTRzeRWJq2SIz2njgbttYQjdkU5hbR2thBfV0zpseBSRw4cZ4dT9HTF8eMzsa4BochxgXxnBIcvqoDnsPCGphDYVnWwFK7H8WZl004ZAkM9+YKOZDs/ALKJk89JNcTEZGjlx7BEpHj0uHMNeEmSEXPYqB/Pgg9+ynUDR0WhDkTotDVtgMPrx703FbjqcQdY7AsG8vZDMQAPzZFEHUQc8UJ+IY/qjFuZhELr562T66PYK6XMy/bfx6QvfuGuwTvcBwsVwjAOYuu0gR0EZETgAIQETnuHK5cE6fMr2Dl/3sHgJxA4YiOTSf7SO4vUPmQgL8Up3vvuYtHWMPBPL7+D/PjZhYxZkbhkNnOD7TvUBpurhARETm+WeZQLJMiMgJ33XUXzzzzDOvWrcPj8dDZ2blPmdraWq699lqWLVtGMBhk0aJF/PCHP8Tlej9mXr58OTfddBObNm2ioqKCO+64g8WLFw86zwMPPMCPfvQjGhsbmTFjBj//+c85/fTTh13XSCRCOBymq6uLUCj0UZssGTRUrom9Pm6uiXV/rWXdX+tGfJwxNp11/4Gd7h6yjMOZTU7F14dc3ar/PIZYJMGB7tyWBeEiP3M+N47xs0c2ipGJLOXKhC4yfHofkuORRkAk4xKJBJdeeilz587lN7/5zT770+k0F154ISUlJbz22ms0NDTw5S9/Gbfbzd1393+w3LFjBxdeeCHXXHMNv/vd71i6dCn/9E//RGlpKQsWLADg8ccf56abbuKhhx5izpw53H///SxYsIBt27ZRVHToHi2Ro0cmck2cMr+SU+ZXfqRjq1c7DxgcXfQvNwwrOBoqu/leC64afgbzwfXLTJbyoXKFiIjIiUEjIHLEPPLII9x44437jIA899xzXHTRRezZs4fi4v5HUB566CFuvfVWWlpa8Hg83HrrrTzzzDNs3Pj+h7DPf/7zdHZ28vzzzwMwZ84cTjvtNH7xi18A/cnjKioquOGGG7jtttuGVUd983Rsqdv0Nk98//aDlrvsO3cfsQ/A+/uQ/1EeQapZ23xI524c7pEjEflo9D4kxyONgMhRZ9WqVUyfPn0g+ABYsGAB1157LZs2bWLmzJmsWrWK+fPnDzpuwYIF3HjjjUD/KMuaNWv41re+NbDf4XAwf/58Vq1alZF2SOYdC7kmJsyZx7jT5nzsR5AONq9jJJSlXEREMkkBiBx1GhsbBwUfwMDrxsbGA5aJRCLEYjE6OjpIp9P7LbN169Yhrx2Px4nH3/9GORKJfKy2SGYdK7kmDtUjSA6HRdmkj98WZSkXEZFMUh4QOSRuu+02LMs64M+BPvgfLX74wx8SDocHfioqKo50lWQElGviozkWRo5EROT4oREQOSRuvvnmfVag+rCxY8cO61wlJSW88cYbg7Y1NTUN7Nv7995tHywTCoXw+/04nU6cTud+y+w9x/5861vf4qabbhp4HYlEFIQcQ5Rr4qM5VkaORETk+KAARA6JwsJCCgtHlhdhKHPnzuWuu+6iubl5YLWqF198kVAoxJQpUwbKPPvss4OOe/HFF5k7dy4AHo+H2bNns3TpUi655BKgfxL60qVLuf7664e8ttfrxesdfpI3Ofoo18TI7R05OtBjWBo5EhGRQ0UBiGRcbW0t7e3t1NbWkk6nWbduHQDjx48nGAxy3nnnMWXKFK644gruvfdeGhsbueOOO7juuusGgoNrrrmGX/ziF3zzm9/kyiuv5KWXXuKJJ57gmWeeGbjOTTfdxKJFizj11FM5/fTTuf/++4lGo3zlK185Es2WDDpUE72PlEznydDIkYiIZJKW4ZWMW7x4MY8++ug+25ctW8bZZ58NwK5du7j22mtZvnw5gUCARYsWcc899+yTiPAb3/gGmzdvpry8nDvvvHOfx8B+8YtfDCQiPOWUU/jZz37GnDlzhl1XLX8omZapXBzDvbZGjkSOLL0PyfFIAYjIAejGL5l0NOTiUJZykaOL3ofkeKRHsEREjgJHSy4OZSkXEZHDTcvwiogcBUaSi0NERORYpgBEROQooFwcIiJyolAAIiJyFFAuDhEROVEoABEROQooi7uIiJwoFICIiBwF9ubiOBDl4hARkeOBAhARkaPE3izuHx4Jyc4vyMgSvCIiIpmgZXhFRI4ix3oWdxERkYNRACIixy3bNjRUdxKNxAmEvJROyMHhsI50tQ5KuThEROR4pgBERI5LNWubeeXxaqKd8YFtgRwvZ10+gXEzi45gzURERE5smgMiIsedmrXNPP/LjYOCD4BoZ5znf7mRmrXNR6hmR55tp6nb9DZbVr5M3aa3se30ka6SiIicYDQCIiLHFds2vPJ49QHLvPpENWNmFB4Tj2MdStWrX+OlRx4elHE9mFfApxdfpQnuIiKSMRoBEZHjSkN15z4jHx/W0xGnobozMxU6SlSvfo0/33f3oOADoKe9lT/fdzfVq187QjUTEZETjQIQETmuRCMHDj5GWu54YNtpXnrk4QOWWfbow3ocS0REMkIBiIgcVwIh7yEtdzyo37Jpn5GPD+tua6V+y6YM1UhERE5kCkBE5LhSOiGHQM6Bg4tgbv+SvCeKns6OQ1pORETk41AAIiLHFYfD4qzLJxywzJmXTTihJqAHc3IPaTkREZGPQwGIiBx3xs0sYuHV0/YZCQnmell49bQTLg9I2eSpBPMKDlgmO7+AsslTM1QjERE5kWkZXhE5Lo2bWcSYGYXHZCb0Q83hcPLpxVfx5/vuHrLMOYuuwuFwZrBWIiJyorKMMeZIV0LkaBWJRAiHw3R1dREKhY50dUQ+lv3lAcnOL+CcRcoDInK00vuQHI80AiIixyzbNhrhGIEJc+Yx7rQ5/atidXYQzMmlbPJUjXyIiEhGKQARkWNSzdpmXnm8elDSwUCOl7Mun3DCzfEYCYfDScXUk490NURE5ASmSegicsypWdvM87/cuE/G82hnnOd/uZGatc1HqGYiIiJyMApAROSYYtuGVx6vPmCZV5+oxrY1vU1ERORopABERI4pDdWd+4x8fFhPR5yG6s7MVEhERERGRAGIiBxTopEDBx8jLSciIiKZpQBERI4pgZD34IVGUE5EREQySwGIiBxTSifk7JPh/MOCuf1L8oqIiMjRRwGIiBxTHA6Lsy6fcMAyZ142QflAREREjlIKQETkmDNuZhELr562z0hIMNfLwqunKQ+IiIjIUUyJCEXkmDRuZhFjZhQqE7qIiMgxRgGIiByzHA6Lskm5R7oaIiIiMgJ6BEtERERERDJGAYiIiIiIiGSMAhAREREREckYBSAiIiIiIpIxCkBERERERCRjFICIiIiIiEjGKAAREREREZGMUQAiIiIiIiIZowBEREREREQyRgGIiIiIiIhkjAIQERERERHJGAUgIiIiIiKSMa4jXQERkROJbaep37KJns4Ogjm5lE2eisPhPNLVEhERyRgFICIiGVK9+jVeeuRhetpbB7YF8wr49OKrmDBn3hGsmYiISOboESwRkQyoXv0af77v7kHBB0BPeyt/vu9uqle/doRqJiIiklkKQEREDjPbTvPSIw8fsMyyRx/GttMZqpGIiMiRo0ewRA7AGANAJBI5wjWRY9nuLRtpbWo4YJm+xga2vrma8snTMlQrETkW7H3/2ft+JHI8sIz+R4sMaffu3VRUVBzpaoiIyAmurq6O8vLyI10NkUNCAYjIAdi2zZ49e8jOzsayrCNdnUMqEolQUVFBXV0doVDoSFfnmKf+PPTUp4ee+vTQykR/GmPo7u5m1KhROBx6cl6OD3oES+QAHA7Hcf+NUygU0geRQ0j9eeipTw899emhdbj7MxwOH7ZzixwJCqVFRERERCRjFICIiIiIiEjGKAAROUF5vV6++93v4vV6j3RVjgvqz0NPfXroqU8PLfWnyEejSegiIiIiIpIxGgEREREREZGMUQAiIiIiIiIZowBEREREREQyRgGIiIiIiIhkjAIQkePIzp07+epXv8qYMWPw+/2MGzeO7373uyQSiUHl3n77bc466yx8Ph8VFRXce++9+5zrD3/4AyeddBI+n4/p06fz7LPPDtpvjOE73/kOpaWl+P1+5s+fT3V19WFt35Fw1113MW/ePLKyssjJydlvmdraWi688EKysrIoKirilltuIZVKDSqzfPlyZs2ahdfrZfz48TzyyCP7nOeBBx6gqqoKn8/HnDlzeOONNw5Di44N6ouhrVixgs9+9rOMGjUKy7L405/+NGj/cH4329vb+eIXv0goFCInJ4evfvWr9PT0DCoznPvE8eCHP/whp512GtnZ2RQVFXHJJZewbdu2QWX6+vq47rrryM/PJxgM8g//8A80NTUNKnOo7gMiJwQjIseN5557zixevNi88MILpqamxjz11FOmqKjI3HzzzQNlurq6THFxsfniF79oNm7caH7/+98bv99vfvnLXw6UWblypXE6nebee+81mzdvNnfccYdxu91mw4YNA2XuueceEw6HzZ/+9Cezfv1687nPfc6MGTPGxGKxjLb5cPvOd75j7rvvPnPTTTeZcDi8z/5UKmWmTZtm5s+fb9auXWueffZZU1BQYL71rW8NlHn33XdNVlaWuemmm8zmzZvNz3/+c+N0Os3zzz8/UOaxxx4zHo/H/Pa3vzWbNm0yX/va10xOTo5pamrKRDOPKuqLA3v22WfNt7/9bfPkk08awPzxj38ctH84v5sLFy40M2bMMK+//rp55ZVXzPjx480XvvCFgf3DuU8cLxYsWGCWLFliNm7caNatW2cuuOACU1lZaXp6egbKXHPNNaaiosIsXbrU/O1vfzOf+MQnzLx58wb2H6r7gMiJQgGIyHHu3nvvNWPGjBl4/R//8R8mNzfXxOPxgW233nqrmTRp0sDryy67zFx44YWDzjNnzhxz9dVXG2OMsW3blJSUmB/96EcD+zs7O43X6zW///3vD1dTjqglS5bsNwB59tlnjcPhMI2NjQPbHnzwQRMKhQb6+Jvf/KaZOnXqoOMuv/xys2DBgoHXp59+urnuuusGXqfTaTNq1Cjzwx/+8BC35Oinvhi+Dwcgw/nd3Lx5swHMm2++OVDmueeeM5Zlmfr6emPM8O4Tx6vm5mYDmJdfftkY099/brfb/OEPfxgos2XLFgOYVatWGWMO3X1A5EShR7BEjnNdXV3k5eUNvF61ahWf/OQn8Xg8A9sWLFjAtm3b6OjoGCgzf/78QedZsGABq1atAmDHjh00NjYOKhMOh5kzZ85AmRPFqlWrmD59OsXFxQPbFixYQCQSYdOmTQNlDtSfiUSCNWvWDCrjcDiYP3/+Cdef6ouPZzi/m6tWrSInJ4dTTz11oMz8+fNxOBysXr16oMzB7hPHq66uLoCB++aaNWtIJpOD+vSkk06isrJyUJ9+3PuAyIlEAYjIceydd97h5z//OVdfffXAtsbGxkFvksDA68bGxgOW+eD+Dx63vzInio/Tn5FIhFgsRmtrK+l0Wv0J6ouPaTi/m42NjRQVFQ3a73K5yMvLO+j/2Q9e43hk2zY33ngjZ5xxBtOmTQP62+vxePaZA/bhPv249wGRE4kCEJFjwG233YZlWQf82bp166Bj6uvrWbhwIZdeeilf+9rXjlDNj04fpT9F5Ph33XXXsXHjRh577LEjXRWR45rrSFdARA7u5ptvZvHixQcsM3bs2IF/79mzh3POOYd58+bx8MMPDypXUlKyz+ote1+XlJQcsMwH9+/dVlpaOqjMKaecMvyGHSEj7c8DKSkp2WeFpuH2ZygUwu/343Q6cTqdB+zzE0VBQYH64mMYzu9mSUkJzc3Ng45LpVK0t7cf9P/sB69xvLn++ut5+umnWbFiBeXl5QPbS0pKSCQSdHZ2DhoF+fA98ePeB0ROJBoBETkGFBYWctJJJx3wZ++z2vX19Zx99tnMnj2bJUuW4HAM/jWfO3cuK1asIJlMDmx78cUXmTRpErm5uQNlli5dOui4F198kblz5wIwZswYSkpKBpWJRCKsXr16oMzRbCT9eTBz585lw4YNgz7Qvfjii4RCIaZMmTJQ5kD96fF4mD179qAytm2zdOnSY6I/DyX1xccznN/NuXPn0tnZyZo1awbKvPTSS9i2zZw5cwbKHOw+cbwwxnD99dfzxz/+kZdeeokxY8YM2j979mzcbvegPt22bRu1tbWD+vTj3gdETihHeha8iBw6u3fvNuPHjzfnnnuu2b17t2loaBj42auzs9MUFxebK664wmzcuNE89thjJisra59leF0ul/nxj39stmzZYr773e/udxnenJwc89RTT5m3337bXHzxxcflMry7du0ya9euNf/2b/9mgsGgWbt2rVm7dq3p7u42xry//OZ5551n1q1bZ55//nlTWFi43+U3b7nlFrNlyxbzwAMP7HcZXq/Xax555BGzefNmc9VVV5mcnJxBq+qcKNQXB9bd3T3w/xAw9913n1m7dq3ZtWuXMWZ4v5sLFy40M2fONKtXrzavvvqqmTBhwqBleIdznzheXHvttSYcDpvly5cPumf29vYOlLnmmmtMZWWleemll8zf/vY3M3fuXDN37tyB/YfqPiByolAAInIcWbJkiQH2+/NB69evN2eeeabxer2mrKzM3HPPPfuc64knnjATJ040Ho/HTJ061TzzzDOD9tu2be68805TXFxsvF6vOffcc822bdsOa/uOhEWLFu23P5ctWzZQZufOneb88883fr/fFBQUmJtvvtkkk8lB51m2bJk55ZRTjMfjMWPHjjVLlizZ51o///nPTWVlpfF4POb00083r7/++mFu3dFLfTG0ZcuW7ff/5KJFi4wxw/vdbGtrM1/4whdMMBg0oVDIfOUrXxkIqvcazn3ieDDUPfODv6OxWMx8/etfN7m5uSYrK8v83d/93aAvdow5dPcBkROBZYwxGRxwERERERGRE5jmgIiIiIiISMYoABERERERkYxRACIiIiIiIhmjAERERERERDJGAYiIiIiIiGSMAhAREREREckYBSAiIiIiIpIxCkBERERERCRjFICIiGTA4sWLsSyLa665Zp991113HZZlsXjx4n3KW5aF2+2muLiYz3zmM/z2t7/Ftu1Bx69fv57Pfe5zFBUV4fP5qKqq4vLLL6e5uflwN+u4VlVVxf3333/Qcg8//DBnn302oVAIy7Lo7Ow87HUTETmWKQAREcmQiooKHnvsMWKx2MC2vr4+/uu//ovKysp9yi9cuJCGhgZ27tzJc889xznnnMO//Mu/cNFFF5FKpQBoaWnh3HPPJS8vjxdeeIEtW7awZMkSRo0aRTQazVjbTmS9vb0sXLiQ22+//UhXRUTkmKAAREQkQ2bNmkVFRQVPPvnkwLYnn3ySyspKZs6cuU95r9dLSUkJZWVlzJo1i9tvv52nnnqK5557jkceeQSAlStX0tXVxa9//WtmzpzJmDFjOOecc/jpT3/KmDFjhqxLPB7n1ltvpaKiAq/Xy/jx4/nNb34zsP/ll1/m9NNPx+v1Ulpaym233TYQ9ACcffbZ3HDDDdx4443k5uZSXFzMr371K6LRKF/5ylfIzs5m/PjxPPfccwPHLF++HMuyeOaZZzj55JPx+Xx84hOfYOPGjYPq9t///d9MnToVr9dLVVUVP/nJTwbtr6qq4u677+bKK68kOzubyspKHn744UFl6urquOyyy8jJySEvL4+LL76YnTt3DuxfvHgxl1xyCT/+8Y8pLS0lPz+f6667jmQyOdC+Xbt28Y1vfGNgJGooN954I7fddhuf+MQnhiwjIiLvUwAiIpJBV155JUuWLBl4/dvf/pavfOUrwz7+05/+NDNmzBgIYkpKSkilUvzxj3/EGDPs83z5y1/m97//PT/72c/YsmULv/zlLwkGgwDU19dzwQUXcNppp7F+/XoefPBBfvOb3/Dv//7vg87x6KOPUlBQwBtvvMENN9zAtddey6WXXsq8efN46623OO+887jiiivo7e0ddNwtt9zCT37yE958800KCwv57Gc/O/DBf82aNVx22WV8/vOfZ8OGDXzve9/jzjvvHAi49vrJT37Cqaeeytq1a/n617/Otddey7Zt2wBIJpMsWLCA7OxsXnnlFVauXEkwGGThwoUkEomBcyxbtoyamhqWLVvGo48+yiOPPDJwnSeffJLy8nK+//3v09DQQENDw7D7VkREDsKIiMhht2jRInPxxReb5uZm4/V6zc6dO83OnTuNz+czLS0t5uKLLzaLFi3ap/z+XH755Wby5MkDr2+//XbjcrlMXl6eWbhwobn33ntNY2PjkHXZtm2bAcyLL7643/233367mTRpkrFte2DbAw88YILBoEmn08YYYz71qU+ZM888c2B/KpUygUDAXHHFFQPbGhoaDGBWrVpljDFm2bJlBjCPPfbYQJm2tjbj9/vN448/bowx5n/9r/9lPvOZzwyqzy233GKmTJky8Hr06NHmS1/60sBr27ZNUVGRefDBB40xxvznf/7nPvWPx+PG7/ebF154wRjT37+jR482qVRqoMyll15qLr/88kHX+elPf7rfPtqfve3r6OgY9jEiIicijYCIiGRQYWEhF154IY888ghLlizhwgsvpKCgYETnMMYMeiTorrvuorGxkYceeoipU6fy0EMPcdJJJ7Fhw4b9Hr9u3TqcTief+tSn9rt/y5YtzJ07d9A1zjjjDHp6eti9e/fAtpNPPnng306nk/z8fKZPnz6wrbi4GGCfyfBz584d+HdeXh6TJk1iy5YtA9c+44wzBpU/44wzqK6uJp1O7/falmVRUlIycJ3169fzzjvvkJ2dTTAYJBgMkpeXR19fHzU1NQPHTZ06FafTOfC6tLRUE/dFRDLAdaQrICJyornyyiu5/vrrAXjggQdGfPyWLVv2md+Rn5/PpZdeyqWXXsrdd9/NzJkz+fGPf8yjjz66z/F+v/+jVfxD3G73oNd7V+z64Gtgn1W7Dte1916np6eH2bNn87vf/W6f4woLC4d1DhEROXw0AiIikmF75yLsnaswEi+99BIbNmzgH/7hH4Ys4/F4GDdu3JCrYE2fPh3btnn55Zf3u3/y5MmsWrVq0JySlStXkp2dTXl5+Yjquz+vv/76wL87OjrYvn07kydPHrj2ypUrB5VfuXIlEydOHDRacSCzZs2iurqaoqIixo8fP+gnHA4Pu54ej2fQqIuIiBwaCkBERDLM6XSyZcsWNm/efMAP1fF4nMbGRurr63nrrbe4++67ufjii7nooov48pe/DMDTTz/Nl770JZ5++mm2b9/Otm3b+PGPf8yzzz7LxRdfvN/zVlVVsWjRIq688kr+9Kc/sWPHDpYvX84TTzwBwNe//nXq6uq44YYb2Lp1K0899RTf/e53uemmm3A4Pv7bxve//32WLl3Kxo0bWbx4MQUFBVxyySUA3HzzzSxdupQf/OAHbN++nUcffZRf/OIX/Ou//uuwz//FL36RgoICLr74Yl555ZWB9v3zP//zoEfIDqaqqooVK1ZQX19Pa2vrkOUaGxtZt24d77zzDgAbNmxg3bp1tLe3D/taIiInEj2CJSJyBIRCoYOWef755yktLcXlcpGbm8uMGTP42c9+xqJFiwYCgSlTppCVlcXNN99MXV0dXq+XCRMm8Otf/5orrrhiyHM/+OCD3H777Xz961+nra2NysrKgTwWZWVlPPvss9xyyy3MmDGDvLw8vvrVr3LHHXcckrbfc889/Mu//AvV1dWccsop/OUvf8Hj8QD9oxdPPPEE3/nOd/jBD35AaWkp3//+9wclaTyYrKwsVqxYwa233srf//3f093dTVlZGeeee+6w+n2v73//+1x99dWMGzeOeDw+5CpjDz30EP/2b/828PqTn/wkAEuWLBlRvUVEThSWGeqOKiIicggtX76cc845h46ODnJyco50dURE5AjRI1giIiIiIpIxCkBERERERCRj9AiWiIiIiIhkjEZAREREREQkYxSAiIiIiIhIxigAERERERGRjFEAIiIiIiIiGaMAREREREREMkYBiIiIiIiIZIwCEBERERERyRgFICIiIiIikjEKQEREREREJGMUgIiIiIiISMYoABERERERkYxRACIiIiIiIhmjAERERERERDJGAYiIiIiIiGSMAhAREREREckYBSAiIiIiIpIxCkBERERERCRjFICIiIiIiEjGKAAREREREZGMUQAiIiIiIiIZowBEREREREQyRgGIiIiIiIhkjAIQERERERHJGAUgIiIiIiKSMQpAREREREQkYxSAiIiIiIhIxigAERERERGRjFEAIiIiIiIiGaMAREREREREMkYBiIiIiIiIZIwCEBERERERyRgFICIiIiIikjEKQEREREREJGMUgIiIiIiISMYoABERERERkYxRACIiIiIiIhmjAERERERERDJGAYiIiIiIiGSMAhAREREREckYBSAiIiIiIpIxCkBERERERCRjFICIiIiIiEjGKAAREREREZGMUQAiIiIiIiIZ8/8DyiwN4FtxinEAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\Kaushik\\ASU\\CSE 515 - Multimedia and Web Databases\\Project\\Phase 3\\task2.ipynb Cell 9\u001b[0m line \u001b[0;36m9\n\u001b[0;32m 5\u001b[0m label_img_ids \u001b[39m=\u001b[39m [\n\u001b[0;32m 6\u001b[0m label_img[\u001b[39m\"\u001b[39m\u001b[39mimage_id\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39mfor\u001b[39;00m label_img \u001b[39min\u001b[39;00m fd_collection\u001b[39m.\u001b[39mfind({\u001b[39m\"\u001b[39m\u001b[39mtrue_label\u001b[39m\u001b[39m\"\u001b[39m: label})\n\u001b[0;32m 7\u001b[0m ]\n\u001b[0;32m 8\u001b[0m \u001b[39mfor\u001b[39;00m img_id \u001b[39min\u001b[39;00m label_img_ids:\n\u001b[1;32m----> 9\u001b[0m img, true_label \u001b[39m=\u001b[39m dataset[img_id]\n\u001b[0;32m 10\u001b[0m label_imgs\u001b[39m.\u001b[39mappend(transforms\u001b[39m.\u001b[39mToPILImage()(img))\n\u001b[0;32m 12\u001b[0m \u001b[39m# get image features\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\torchvision\\datasets\\caltech.py:112\u001b[0m, in \u001b[0;36mCaltech101.__getitem__\u001b[1;34m(self, index)\u001b[0m\n\u001b[0;32m 109\u001b[0m target \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(target) \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(target) \u001b[39m>\u001b[39m \u001b[39m1\u001b[39m \u001b[39melse\u001b[39;00m target[\u001b[39m0\u001b[39m]\n\u001b[0;32m 111\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtransform \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> 112\u001b[0m img \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtransform(img)\n\u001b[0;32m 114\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_transform \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 115\u001b[0m target \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_transform(target)\n", + "File \u001b[1;32mc:\\Kaushik\\ASU\\CSE 515 - Multimedia and Web Databases\\Project\\Phase 3\\task2_utils.py:48\u001b[0m, in \u001b[0;36mdatasetTransform\u001b[1;34m(image)\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdatasetTransform\u001b[39m(image):\n\u001b[0;32m 47\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"Transform while loading dataset as scaled tensors of shape (channels, (img_shape))\"\"\"\u001b[39;00m\n\u001b[1;32m---> 48\u001b[0m \u001b[39mreturn\u001b[39;00m transforms\u001b[39m.\u001b[39;49mCompose(\n\u001b[0;32m 49\u001b[0m [\n\u001b[0;32m 50\u001b[0m transforms\u001b[39m.\u001b[39;49mToTensor() \u001b[39m# ToTensor by default scales to [0,1] range, the input range for ResNet\u001b[39;49;00m\n\u001b[0;32m 51\u001b[0m ]\n\u001b[0;32m 52\u001b[0m )(image)\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\torchvision\\transforms\\transforms.py:95\u001b[0m, in \u001b[0;36mCompose.__call__\u001b[1;34m(self, img)\u001b[0m\n\u001b[0;32m 93\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\u001b[39mself\u001b[39m, img):\n\u001b[0;32m 94\u001b[0m \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtransforms:\n\u001b[1;32m---> 95\u001b[0m img \u001b[39m=\u001b[39m t(img)\n\u001b[0;32m 96\u001b[0m \u001b[39mreturn\u001b[39;00m img\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\torchvision\\transforms\\transforms.py:137\u001b[0m, in \u001b[0;36mToTensor.__call__\u001b[1;34m(self, pic)\u001b[0m\n\u001b[0;32m 129\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\u001b[39mself\u001b[39m, pic):\n\u001b[0;32m 130\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m 131\u001b[0m \u001b[39m Args:\u001b[39;00m\n\u001b[0;32m 132\u001b[0m \u001b[39m pic (PIL Image or numpy.ndarray): Image to be converted to tensor.\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 135\u001b[0m \u001b[39m Tensor: Converted image.\u001b[39;00m\n\u001b[0;32m 136\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 137\u001b[0m \u001b[39mreturn\u001b[39;00m F\u001b[39m.\u001b[39;49mto_tensor(pic)\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\torchvision\\transforms\\functional.py:166\u001b[0m, in \u001b[0;36mto_tensor\u001b[1;34m(pic)\u001b[0m\n\u001b[0;32m 164\u001b[0m \u001b[39m# handle PIL Image\u001b[39;00m\n\u001b[0;32m 165\u001b[0m mode_to_nptype \u001b[39m=\u001b[39m {\u001b[39m\"\u001b[39m\u001b[39mI\u001b[39m\u001b[39m\"\u001b[39m: np\u001b[39m.\u001b[39mint32, \u001b[39m\"\u001b[39m\u001b[39mI;16\u001b[39m\u001b[39m\"\u001b[39m: np\u001b[39m.\u001b[39mint16, \u001b[39m\"\u001b[39m\u001b[39mF\u001b[39m\u001b[39m\"\u001b[39m: np\u001b[39m.\u001b[39mfloat32}\n\u001b[1;32m--> 166\u001b[0m img \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mfrom_numpy(np\u001b[39m.\u001b[39;49marray(pic, mode_to_nptype\u001b[39m.\u001b[39;49mget(pic\u001b[39m.\u001b[39;49mmode, np\u001b[39m.\u001b[39;49muint8), copy\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m))\n\u001b[0;32m 168\u001b[0m \u001b[39mif\u001b[39;00m pic\u001b[39m.\u001b[39mmode \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m1\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[0;32m 169\u001b[0m img \u001b[39m=\u001b[39m \u001b[39m255\u001b[39m \u001b[39m*\u001b[39m img\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\PIL\\Image.py:688\u001b[0m, in \u001b[0;36mImage.__array_interface__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 686\u001b[0m new[\u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtobytes(\u001b[39m\"\u001b[39m\u001b[39mraw\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mL\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 687\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m--> 688\u001b[0m new[\u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtobytes()\n\u001b[0;32m 689\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m 690\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(e, (\u001b[39mMemoryError\u001b[39;00m, \u001b[39mRecursionError\u001b[39;00m)):\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\PIL\\Image.py:746\u001b[0m, in \u001b[0;36mImage.tobytes\u001b[1;34m(self, encoder_name, *args)\u001b[0m\n\u001b[0;32m 743\u001b[0m \u001b[39mif\u001b[39;00m encoder_name \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mraw\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mand\u001b[39;00m args \u001b[39m==\u001b[39m ():\n\u001b[0;32m 744\u001b[0m args \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode\n\u001b[1;32m--> 746\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mload()\n\u001b[0;32m 748\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mwidth \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mheight \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[0;32m 749\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mb\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m\"\u001b[39m\n", + "File \u001b[1;32mc:\\Users\\rknar\\.pyenv\\pyenv-win\\versions\\3.10.5\\lib\\site-packages\\PIL\\ImageFile.py:260\u001b[0m, in \u001b[0;36mImageFile.load\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 254\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mOSError\u001b[39;00m(\n\u001b[0;32m 255\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mimage file is truncated \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 256\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m(\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mlen\u001b[39m(b)\u001b[39m}\u001b[39;00m\u001b[39m bytes not processed)\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 257\u001b[0m )\n\u001b[0;32m 259\u001b[0m b \u001b[39m=\u001b[39m b \u001b[39m+\u001b[39m s\n\u001b[1;32m--> 260\u001b[0m n, err_code \u001b[39m=\u001b[39m decoder\u001b[39m.\u001b[39;49mdecode(b)\n\u001b[0;32m 261\u001b[0m \u001b[39mif\u001b[39;00m n \u001b[39m<\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[0;32m 262\u001b[0m \u001b[39mbreak\u001b[39;00m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "all_label_clusterings = []\n", + "for label in range(NUM_LABELS):\n", + " # get label's images in PIL format\n", + " label_imgs = []\n", + " label_img_ids = [\n", + " label_img[\"image_id\"] for label_img in fd_collection.find({\"true_label\": label})\n", + " ]\n", + " for img_id in label_img_ids:\n", + " img, true_label = dataset[img_id]\n", + " label_imgs.append(transforms.ToPILImage()(img))\n", + "\n", + " # get image features\n", + " label_fds = np.array(\n", + " [\n", + " np.array(img_fds[selected_feature_model]).flatten()\n", + " for img_fds in fd_collection.find({\"true_label\": label})\n", + " ]\n", + " )\n", + "\n", + "\n", + " label_dbscan_results = (np.empty(label_fds.shape[0]), 0, 0)\n", + " label_min_noise = label_fds.shape[0]\n", + "\n", + " label_img_sim_matrix = calculate_image_similarity(\n", + " label_fds, selected_distance_measure\n", + " )\n", + "\n", + " # decrementally try min_samples, starting from twice the desired no. of clusters\n", + " for cur_min_samples in range(2 * selected_c, 1, -1):\n", + " # find range of epsilon to try, by checking all from mean to min knn distance\n", + " # k is current min_samples\n", + " max_eps, min_eps = avgandmin_knn_distance(label_img_sim_matrix, cur_min_samples)\n", + "\n", + " # try epsilon values\n", + " for cur_eps in np.linspace(min_eps, max_eps, num=100):\n", + " label_dbscan = DBSCAN(\n", + " label_fds,\n", + " selected_distance_measure,\n", + " cur_eps,\n", + " cur_min_samples,\n", + " label_img_sim_matrix,\n", + " )\n", + "\n", + " clusters = label_dbscan.dbscan()\n", + "\n", + " # store only most desirable clustering: c clusters, minimum noise\n", + " cluster_counts = np.unique(clusters, return_counts=True)\n", + " cluster_counts_dict = dict(\n", + " (unique_label, unique_count)\n", + " for unique_label, unique_count in zip(\n", + " cluster_counts[0], cluster_counts[1]\n", + " )\n", + " )\n", + " if (len(cluster_counts_dict.keys() - {-1}) == selected_c) and (\n", + " cluster_counts_dict[-1] < label_min_noise\n", + " ):\n", + " label_dbscan_results = (clusters, cur_eps, cur_min_samples)\n", + " label_min_noise = cluster_counts_dict[-1]\n", + "\n", + " # store best clustering\n", + " all_label_clusterings.append(label_dbscan_results)\n", + " print(\"Label:\", label)\n", + " print(\"Epsilon:\", label_dbscan_results[1], \"\\tMinPts:\", label_dbscan_results[2])\n", + " display_cluster_stats(label_dbscan_results[0])\n", + "\n", + " best_label_dbscan = DBSCAN(\n", + " label_fds,\n", + " selected_distance_measure,\n", + " label_dbscan_results[1],\n", + " label_dbscan_results[2],\n", + " label_img_sim_matrix,\n", + " )\n", + " best_label_dbscan.clusters = label_dbscan_results[0]\n", + " # MDS point cloud\n", + " best_label_dbscan.mds_scatter_clusters()\n", + " # Image thumbnail overlay\n", + " best_label_dbscan.group_image_clusters(label_imgs)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Phase 3/task2_utils.py b/Phase 3/task2_utils.py new file mode 100644 index 0000000..7128547 --- /dev/null +++ b/Phase 3/task2_utils.py @@ -0,0 +1,1333 @@ +# All imports +# Math +import math +import random +import cv2 +import numpy as np +from scipy.stats import pearsonr + +# from scipy.sparse.linalg import svds +# from sklearn.decomposition import NMF +from sklearn.decomposition import LatentDirichletAllocation + +# from sklearn.cluster import KMeans + +# Torch +import torch +import torchvision.transforms as transforms +from torchvision.datasets import Caltech101 +from torchvision.models import resnet50, ResNet50_Weights + +import tensorly as tl + +# OS and env +import json +import os +from os import getenv +from dotenv import load_dotenv +import warnings +from joblib import dump, load + +load_dotenv() + +# MongoDB +from pymongo import MongoClient + +# Visualizing +import matplotlib.pyplot as plt + + +def getCollection(db, collection): + """Load feature descriptor collection from MongoDB""" + client = MongoClient("mongodb://localhost:27017") + return client[db][collection] + + +def datasetTransform(image): + """Transform while loading dataset as scaled tensors of shape (channels, (img_shape))""" + return transforms.Compose( + [ + transforms.ToTensor() # ToTensor by default scales to [0,1] range, the input range for ResNet + ] + )(image) + + +def loadDataset(dataset): + """Load TorchVision dataset with the defined transform""" + return dataset( + root=getenv("DATASET_PATH"), + download=False, # True if you wish to download for first time + transform=datasetTransform, + ) + + +dataset = loadDataset(Caltech101) +NUM_LABELS = 101 +NUM_IMAGES = 4339 + + +class GridPartition: + """Class transform to partition image into (rows, cols) grid""" + + def __init__(self, rows, cols): + self.rows = rows + self.cols = cols + + def __call__(self, img): + # img is in (C,(H,W)) format, so first element is channel + img_width, img_height = img.size()[1:] + cell_width = img_width // self.cols + cell_height = img_height // self.rows + + grids = [] + for i in range(self.rows): + for j in range(self.cols): + left = j * cell_width + right = left + cell_width + + top = i * cell_height + bottom = top + cell_height + + # Slice out + grid = img[:, left:right, top:bottom] + grids.append(grid) + + return grids + + +def compute_color_moments(grid_cell): + """Compute color moments (mean, std. deviation, skewness), assuming RGB channels""" + grid_cell = np.array(grid_cell) # Convert tensor to NumPy array + moments = [] + + for channel in range(3): # Iterate over RGB channels + channel_data = grid_cell[:, :, channel] + mean = np.mean(channel_data) + std_dev = np.std(channel_data) + + # Avoiding NaN values + skew_cubed = np.mean((channel_data - mean) ** 3) + if skew_cubed > 0: + skew = math.pow(skew_cubed, float(1) / 3) + elif skew_cubed < 0: + skew = -math.pow(abs(skew_cubed), float(1) / 3) + else: + skew = 0 + + moments.append([mean, std_dev, skew]) + + return moments + + +def compute_color_moments_for_grid(grid): + color_moments = [compute_color_moments(grid_cell) for grid_cell in grid] + return np.array(color_moments).flatten() + + +def combine_color_moments(grid_color_moments): + return torch.Tensor(grid_color_moments).view( + 10, 10, 3, 3 + ) # resize as needed: 10x10 grid, 3 channels per cell, 3 moments per channel + + +# Transform pipeline to get CM10x10 900-dimensional feature descriptor +CM_transform = transforms.Compose( + [ + transforms.Resize((100, 300)), # resize to H:W=100:300 + GridPartition( + rows=10, cols=10 + ), # partition into grid of 10 rows, 10 columns as a list + compute_color_moments_for_grid, + combine_color_moments, + ] +) + + +def compute_gradient_histogram(grid_cell): + """Compute HOG using [-1,0,1] masks for gradient""" + histograms = [] + + # Convert grid cell to NumPy array + grid_array = np.array(grid_cell, dtype=np.float32) + grid_array = grid_array.reshape( + grid_array.shape[1], grid_array.shape[2] + ) # ignore extra dimension + + # Compute the gradient using first-order central differences + dx = cv2.Sobel( + grid_array, cv2.CV_32F, dx=1, dy=0, ksize=1 + ) # first order x derivative = [-1, 0, 1] + dy = cv2.Sobel( + grid_array, cv2.CV_32F, dx=0, dy=1, ksize=1 + ) # first order y derivative = [-1, 0, 1]^T + + # Compute magnitude and direction of gradients + magnitude = np.sqrt(dx**2 + dy**2) + direction = np.arctan2(dy, dx) * 180 / np.pi # in degrees + + # Compute HOG - 9 bins, counted across the range of -180 to 180 degrees, weighted by gradient magnitude + histogram, _ = np.histogram(direction, bins=9, range=(-180, 180), weights=magnitude) + + histograms.append(histogram) + + return histograms + + +def compute_histograms_for_grid(grid): + histograms = [compute_gradient_histogram(grid_cell) for grid_cell in grid] + return np.array(histograms).flatten() + + +def combine_histograms(grid_histograms): + return torch.Tensor(grid_histograms).view(10, 10, 9) + + +# Transform pipeline to get HOG10x10 900-dimensional feature descriptor +HOG_transform = transforms.Compose( + [ + transforms.Grayscale(num_output_channels=1), # grayscale transform + transforms.Resize((100, 300)), # resize to H:W=100:300 + GridPartition( + rows=10, cols=10 + ), # partition into grid of 10 rows, 10 columns as a list + compute_histograms_for_grid, + combine_histograms, + ] +) + + +def loadResnet(): + """Load ResNet50 pre-trained model with default weights""" + # Load model + model = resnet50(weights=ResNet50_Weights.DEFAULT) + + # try to use Nvidia GPU + if torch.cuda.is_available(): + dev = torch.device("cuda") + torch.cuda.empty_cache() + else: + dev = torch.device("cpu") + + model = model.to(dev) + model.eval() # switch to inference mode - important! since we're using pre-trained model + return model, dev + + +model, dev = loadResnet() + + +class FeatureExtractor(torch.nn.Module): + """Feature extractor module for all layers at once""" + + def __init__(self, model, layers): + super().__init__() + self.model = model + self.layers = layers + self._features = {layer: None for layer in layers} # store layer outputs here + + # Create hooks for all specified layers at once + for layer_id in layers: + layer = dict(self.model.named_modules())[ + layer_id + ] # get actual layer in the model + layer.register_forward_hook( + self.save_outputs_hook(layer_id) + ) # register feature extractor hook on layer + + # Hook to save output of layer + def save_outputs_hook(self, layer_id): + def fn(_module, _input, output): + self._features[layer_id] = output + + return fn + + # Forward pass returns extracted features + def forward(self, input): + _ = self.model(input) + return self._features + + +def resnet_extractor(image): + """Extract image features from avgpool, layer3 and fc layers of ResNet50""" + resized_image = ( + torch.Tensor(np.array(transforms.Resize((224, 224))(image)).flatten()) + .view(1, 3, 224, 224) + .to(dev) + ) + + # Attach all hooks on model and extract features + resnet_features = FeatureExtractor(model=model, layers=["avgpool", "layer3", "fc"]) + features = resnet_features(resized_image) + + avgpool_2048 = features["avgpool"] + # Reshape the vector into row pairs of elements and average across rows + avgpool_1024_fd = torch.mean(avgpool_2048.view(-1, 2), axis=1) + + layer3_1024_14_14 = features["layer3"] + # Reshape the vector into 1024 rows of 196 elements and average across rows + layer3_1024_fd = torch.mean(layer3_1024_14_14.view(1024, -1), axis=1) + + fc_1000_fd = features["fc"].view(1000) + + return ( + avgpool_1024_fd.detach().cpu().tolist(), + layer3_1024_fd.detach().cpu().tolist(), + fc_1000_fd.detach().cpu().tolist(), + ) + + +def resnet_output(image): + """Get image features from ResNet50 (full execution) and apply a softmax layer""" + resized_image = ( + torch.Tensor(np.array(transforms.Resize((224, 224))(image)).flatten()) + .view(1, 3, 224, 224) + .to(dev) + ) + + with torch.no_grad(): + features = model(resized_image) + features = torch.nn.Softmax()(features) + + return features.detach().cpu().tolist() + + +def get_all_fd(image_id, given_image=None, given_label=None): + """Get all feature descriptors of a given image""" + if image_id == -1: + img, label = given_image, given_label + else: + img, label = dataset[image_id] + img_shape = np.array(img).shape + if img_shape[0] >= 3: + true_channels = 3 + else: + # stacking the grayscale channel on itself thrice to get RGB dimensions + img = torch.tensor(np.stack((np.array(img[0, :, :]),) * 3, axis=0)) + true_channels = 1 + + cm_fd = CM_transform(img).tolist() + hog_fd = HOG_transform(img).tolist() + avgpool_1024_fd, layer3_1024_fd, fc_1000_fd = resnet_extractor(img) + resnet_fd = resnet_output(img) + + return { + "image_id": image_id, + "true_label": label, + "true_channels": true_channels, + "cm_fd": cm_fd, + "hog_fd": hog_fd, + "avgpool_fd": avgpool_1024_fd, + "layer3_fd": layer3_1024_fd, + "fc_fd": fc_1000_fd, + "resnet_fd": resnet_fd, + } + + +def euclidean_distance_measure(img_1_fd, img_2_fd): + img_1_fd_reshaped = img_1_fd.flatten() + img_2_fd_reshaped = img_2_fd.flatten() + + # Calculate Euclidean distance + return math.dist(img_1_fd_reshaped, img_2_fd_reshaped) + + +def cosine_distance_measure(img_1_fd, img_2_fd): + img_1_fd_reshaped = img_1_fd.flatten() + img_2_fd_reshaped = img_2_fd.flatten() + + # Calculate dot product + dot_product = np.dot(img_1_fd_reshaped, img_2_fd_reshaped.T) + + # Calculate magnitude (L2 norm) of the feature descriptor + magnitude1 = np.linalg.norm(img_1_fd_reshaped) + magnitude2 = np.linalg.norm(img_2_fd_reshaped) + + # Calculate cosine distance (similarity is higher => distance should be lower, so subtract from 1) + cosine_similarity = dot_product / (magnitude1 * magnitude2) + return 1 - cosine_similarity + + +def pearson_distance_measure(img_1_fd, img_2_fd): + # Replace nan with 0 (color moments) + img_1_fd_reshaped = img_1_fd.flatten() + img_2_fd_reshaped = img_2_fd.flatten() + + # Invert and scale in half to fit the actual range [-1, 1] into the new range [0, 1] + # such that lower distance implies more similarity + return 0.5 * (1 - pearsonr(img_1_fd_reshaped, img_2_fd_reshaped).statistic) + + +def kl_divergence_measure(p, q): + p_f = p.flatten() + q_f = q.flatten() + # Avoid division by zero + epsilon = 1e-10 + + return np.sum(p_f * np.log((p_f + epsilon) / (q_f + epsilon))) + + +valid_feature_models = { + "cm": "cm_fd", + "hog": "hog_fd", + "avgpool": "avgpool_fd", + "layer3": "layer3_fd", + "fc": "fc_fd", + "resnet": "resnet_fd", +} +valid_latent_spaces = { + "ls1": "", + "ls2": "cp", + "ls3": "label_sim", + "ls4": "image_sim", +} +valid_distance_measures = { + "euclidean": euclidean_distance_measure, + "cosine": cosine_distance_measure, + "pearson": pearson_distance_measure, + "kl": kl_divergence_measure, +} +feature_distance_matches = { + "cm_fd": euclidean_distance_measure, + "hog_fd": cosine_distance_measure, + "layer3_fd": pearson_distance_measure, + "avgpool_fd": pearson_distance_measure, + "fc_fd": pearson_distance_measure, + "resnet_fd": kl_divergence_measure, +} + + +def show_similar_images_for_image( + fd_collection, + target_image_id, + target_image=None, + target_label=None, + k=10, + feature_model="fc_fd", + distance_measure=pearson_distance_measure, + save_plots=False, +): + """Set `target_image_id = -1` if giving image data and label manually""" + + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + assert ( + distance_measure in valid_distance_measures.values() + ), "distance_measure should be one of " + str(list(valid_distance_measures.keys())) + + all_images = fd_collection.find() + + # if target from dataset + if target_image_id != -1: + print( + "Showing {} similar images for image ID {}, using {} for {} feature descriptor...".format( + k, target_image_id, distance_measure.__name__, feature_model + ) + ) + + # store distance to target_image itself + min_dists = {target_image_id: 0} + + # in phase 2, we only have even-numbered image IDs in database + if target_image_id % 2 == 0: + # Get target image's feature descriptors from database + target_image_fds = fd_collection.find_one({"image_id": target_image_id}) + else: + # Calculate target image's feature descriptors + target_image, target_label = dataset[target_image_id] + target_image_fds = get_all_fd(target_image_id, target_image, target_label) + + target_image_fd = np.array(target_image_fds[feature_model]) + + for cur_img in all_images: + cur_img_id = cur_img["image_id"] + # skip target itself + if cur_img_id == target_image_id: + continue + cur_img_fd = np.array(cur_img[feature_model]) + + cur_dist = distance_measure( + cur_img_fd, + target_image_fd, + ) + + # store first k images irrespective of distance (so that we store no more than k minimum distances) + if len(min_dists) < k + 1: + min_dists[cur_img_id] = cur_dist + + # if lower distance: + elif cur_dist < max(min_dists.values()): + # add to min_dists + min_dists.update({cur_img_id: cur_dist}) + # remove greatest distance by index + min_dists.pop(max(min_dists, key=min_dists.get)) + + min_dists = dict(sorted(min_dists.items(), key=lambda item: item[1])) + + # Display the target image along with the k images + fig, axs = plt.subplots(1, k + 1, figsize=(48, 12)) + for idx, (img_id, distance) in enumerate(min_dists.items()): + cur_img, _cur_label = dataset[img_id] + axs[idx].imshow(transforms.ToPILImage()(cur_img)) + if idx == 0: + axs[idx].set_title(f"Target image") + else: + axs[idx].set_title(f"Distance: {round(distance, 3)}") + axs[idx].axis("off") + + if save_plots: + plt.savefig( + f"Plots/Image_{target_image_id}_{feature_model}_{distance_measure.__name__}_k{k}.png" + ) + plt.show() + + # else, if target from some image file + else: + print( + "Showing {} similar images for given image, using {} for {} feature descriptor...".format( + k, distance_measure.__name__, feature_model + ) + ) + + # store distance to target_image itself + min_dists = {-1: 0} + + target_image_fds = get_all_fd(-1, target_image, target_label) + target_image_fd = np.array(target_image_fds[feature_model]) + + for cur_img in all_images: + cur_img_id = cur_img["image_id"] + cur_img_fd = np.array(cur_img[feature_model]) + cur_dist = distance_measure( + cur_img_fd, + target_image_fd, + ) + + # store first k images irrespective of distance (so that we store no more than k minimum distances) + if len(min_dists) < k + 1: + min_dists[cur_img_id] = cur_dist + + # if lower distance: + elif cur_dist < max(min_dists.values()): + # add to min_dists + min_dists.update({cur_img_id: cur_dist}) + # remove greatest distance by index + min_dists.pop(max(min_dists, key=min_dists.get)) + + min_dists = dict(sorted(min_dists.items(), key=lambda item: item[1])) + + # Display the target image along with the k images + fig, axs = plt.subplots(1, k + 1, figsize=(48, 12)) + for idx, (img_id, distance) in enumerate(min_dists.items()): + if idx == 0: + axs[idx].imshow(transforms.ToPILImage()(target_image)) + axs[idx].set_title(f"Target image") + else: + cur_img, _cur_label = dataset[img_id] + axs[idx].imshow(transforms.ToPILImage()(cur_img)) + axs[idx].set_title(f"Distance: {round(distance, 3)}") + axs[idx].axis("off") + + if save_plots: + plt.savefig( + f"Plots/Image_{target_image_id}_{feature_model}_{distance_measure.__name__}_{k}_images.png" + ) + plt.show() + + +def calculate_label_representatives(fd_collection, label, feature_model): + """Calculate representative feature vector of a label as the mean of all feature vectors under a feature model""" + + label_fds = [ + np.array( + img_fds[feature_model] + ).flatten() # get the specific feature model's feature vector + for img_fds in fd_collection.find( + {"true_label": label} + ) # repeat for all images + ] + + # Calculate mean across each dimension + # and build a mean vector out of these means + label_mean_vector = [sum(col) / len(col) for col in zip(*label_fds)] + return label_mean_vector + + +def show_similar_images_for_label( + fd_collection, + target_label, + k=10, + feature_model="fc_fd", + distance_measure=pearson_distance_measure, + save_plots=False, +): + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + assert ( + distance_measure in valid_distance_measures.values() + ), "distance_measure should be one of " + str(list(valid_distance_measures.keys())) + + all_images = fd_collection.find() + + print( + "Showing {} similar images for label {}, using {} for {} feature descriptor...".format( + k, target_label, distance_measure.__name__, feature_model + ) + ) + + # store distance to target_label itself ({image_id: distance}, -1 for target label) + min_dists = {} + + # Calculate representative feature vector for label + label_rep = calculate_label_representatives( + fd_collection, target_label, feature_model + ) + + for cur_img in all_images: + cur_img_id = cur_img["image_id"] + cur_img_fd = np.array(cur_img[feature_model]).flatten() + + cur_dist = distance_measure( + cur_img_fd, + np.array(label_rep), + ) + + # store first k images irrespective of distance (so that we store no more than k minimum distances) + if len(min_dists) < k: + min_dists[cur_img_id] = cur_dist + + # if lower distance: + elif cur_dist < max(min_dists.values()): + # add to min_dists + min_dists.update({cur_img_id: cur_dist}) + # remove greatest distance by index + min_dists.pop(max(min_dists, key=min_dists.get)) + + min_dists = dict(sorted(min_dists.items(), key=lambda item: item[1])) + + # Display the k images + fig, axs = plt.subplots(1, k, figsize=(48, 12)) + for idx, (img_id, distance) in enumerate(min_dists.items()): + cur_img, _cur_label = dataset[img_id] + axs[idx].imshow(transforms.ToPILImage()(cur_img)) + axs[idx].set_title(f"Distance: {round(distance, 3)}") + axs[idx].axis("off") + + if save_plots: + plt.savefig( + f"Plots/Label_{target_label}_{feature_model}_{distance_measure.__name__}_{k}_images.png" + ) + plt.show() + + +def show_similar_labels_for_image( + fd_collection, + target_image_id, + target_image=None, + target_label=None, + k=10, + feature_model="fc_fd", + distance_measure=pearson_distance_measure, + save_plots=False, +): + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(valid_feature_models.keys()) + + assert ( + distance_measure in valid_distance_measures.values() + ), "distance_measure should be one of " + str(list(valid_distance_measures.keys())) + + # if target from dataset + if target_image_id != -1: + print( + "Showing {} similar labels for image ID {}, using {} for {} feature descriptor...".format( + k, target_image_id, distance_measure.__name__, feature_model + ) + ) + + # store target_image itself + min_dists = {target_image_id: 0} + + if target_image_id % 2 == 0: + # Get target image's feature descriptors from database + target_image = fd_collection.find_one({"image_id": target_image_id}) + else: + # Calculate target image's feature descriptors + target_image = get_all_fd(target_image_id) + + target_image_fd = np.array(target_image[feature_model]) + target_label = target_image["true_label"] + + else: + print( + "Showing {} similar labels for given image, using {} for {} feature descriptor...".format( + k, distance_measure.__name__, feature_model + ) + ) + + # store distance to target_image itself + min_dists = {-1: 0} + + target_image_fds = get_all_fd(-1, target_image, target_label) + target_image_fd = np.array(target_image_fds[feature_model]) + + label_dict = {target_image_id: target_label} + + all_images = fd_collection.find({}) + for cur_img in all_images: + cur_img_id = cur_img["image_id"] + # skip target itself + if cur_img_id == target_image_id: + continue + cur_img_fd = np.array(cur_img[feature_model]).flatten() + cur_dist = distance_measure( + cur_img_fd, + target_image_fd, + ) + cur_label = cur_img["true_label"] + + # store first k images irrespective of distance (so that we store no more than k minimum distances) + if len(min_dists) < k + 1 and cur_label not in label_dict.values(): + min_dists[cur_img_id] = cur_dist + label_dict[cur_img_id] = cur_label + + # if lower distance: + elif ( + cur_dist < max(min_dists.values()) and cur_label not in label_dict.values() + ): + # add to min_dists + min_dists.update({cur_img_id: cur_dist}) + label_dict.update({cur_img_id: cur_label}) + # remove label with greatest distance by index + pop_key = max(min_dists, key=min_dists.get) + min_dists.pop(pop_key) + label_dict.pop(pop_key) + + min_dists = dict(sorted(min_dists.items(), key=lambda item: item[1])) + + fig, axs = plt.subplots(1, k, figsize=(48, 12)) + for idx, image_id in enumerate(min_dists.keys()): + if image_id == target_image_id: + continue + else: + sample_image, sample_label = dataset[image_id] + axs[idx - 1].imshow(transforms.ToPILImage()(sample_image)) + axs[idx - 1].set_title( + f"Label: {label_dict[image_id]}; Distance: {min_dists[image_id]}" + ) + axs[idx - 1].axis("off") + + if save_plots: + plt.savefig( + f"Plots/Image_{target_image_id}_{feature_model}_{distance_measure.__name__}_{k}_labels.png" + ) + plt.show() + + +valid_dim_reduction_methods = { + "svd": 1, + "nmf": 2, + "lda": 3, + "kmeans": 4, +} + + +class KMeans: + def __init__(self, n_clusters, tol=0.001, max_iter=300, verbose=0): + self.n_clusters = n_clusters + self.max_iter = max_iter + self.tol = tol + self.cluster_centers_ = None + self.verbose = verbose + + def _initialize_centroids(self, data): + random_indices = np.random.choice(data.shape[0], self.n_clusters, replace=False) + self.cluster_centers_ = data[random_indices] + + def fit(self, data): + data = np.array(data) + self._initialize_centroids(data) + + if self.verbose > 0: + print("Initialized centroids") + + for itr in range(self.max_iter): + clusters = {j: [] for j in range(self.n_clusters)} + + for feature_set in data: + distances = np.linalg.norm(feature_set - self.cluster_centers_, axis=1) + cluster = np.argmin(distances) + clusters[cluster].append(feature_set) + + prev_centroids = np.copy(self.cluster_centers_) + + for c in range(self.n_clusters): + if len(clusters[c]) > 0: + self.cluster_centers_[c] = np.mean(clusters[c], axis=0) + else: + # Reinitialize centroid to a random point in the dataset + random_index = np.random.choice(data.shape[0]) + self.cluster_centers_[c] = data[random_index] + + # Check if centroids have converged + convergence_tol = np.sum( + np.abs((prev_centroids - self.cluster_centers_) / prev_centroids) + ) + if convergence_tol < self.tol: + if self.verbose > 0: + print(f"Iteration {itr} - Converged") + break + + return self + + def transform(self, data): + if self.cluster_centers_ is None: + raise ValueError("Fit the model first using the 'fit' method.") + + data = np.array(data) + Y = np.empty((data.shape[0], self.n_clusters)) + + for idx, feature_set in enumerate(data): + Y[idx] = np.linalg.norm(feature_set - self.cluster_centers_, axis=1) + + return Y + + +def svd(matrix, k): + # Step 1: Compute the covariance matrix + cov_matrix = np.dot(matrix.T, matrix) + + # Step 2: Compute the eigenvalues and eigenvectors of the covariance matrix + eigenvalues, eigenvectors = np.linalg.eig(cov_matrix) + + # Step 3: Sort the eigenvalues and corresponding eigenvectors + sort_indices = eigenvalues.argsort()[::-1] + eigenvalues = eigenvalues[sort_indices] + eigenvectors = eigenvectors[:, sort_indices] + + # Step 4: Compute the singular values and the left and right singular vectors + singular_values = np.sqrt(eigenvalues) + left_singular_vectors = np.dot(matrix, eigenvectors) + right_singular_vectors = eigenvectors + + # Step 5: Normalize the singular vectors + for i in range(left_singular_vectors.shape[1]): + left_singular_vectors[:, i] /= singular_values[i] + + for i in range(right_singular_vectors.shape[1]): + right_singular_vectors[:, i] /= singular_values[i] + + # Keep only the top k singular values and their corresponding vectors + singular_values = singular_values[:k] + left_singular_vectors = left_singular_vectors[:, :k] + right_singular_vectors = right_singular_vectors[:, :k] + + return left_singular_vectors, np.diag(singular_values), right_singular_vectors.T + + +def nmf(matrix, k, H=None, update_H=True, num_iterations=100): + """ + Non-negative matrix factorization by multiplicative update + + Pass `H` and `update_H=False` to transform given data as per the given H matrix, else leave `H=None` and `update_H=True` to fit and transform + """ + d1, d2 = matrix.shape + # Initialize W and H matrices with random non-negative values + W = np.random.rand(d1, k) + if update_H is True: + H = np.random.rand(k, d2) + + for iteration in range(num_iterations): + if update_H is True: + # Update H matrix + numerator_h = np.dot(W.T, matrix) + denominator_h = np.dot(np.dot(W.T, W), H) + H *= numerator_h / denominator_h + + # Update W matrix + numerator_w = np.dot(matrix, H.T) + denominator_w = np.dot(W, np.dot(H, H.T)) + W *= numerator_w / denominator_w + + return W, H + + +def extract_latent_semantics_from_feature_model( + fd_collection, + k, + feature_model, + dim_reduction_method, + top_images=None, +): + """ + Extract latent semantics for entire collection at once for a given feature_model and dim_reduction_method, and display the imageID-semantic weight pairs + + Leave `top_images` blank to display all imageID-weight pairs + """ + + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + assert ( + dim_reduction_method in valid_dim_reduction_methods.keys() + ), "dim_reduction_method should be one of " + str( + list(valid_dim_reduction_methods.keys()) + ) + + all_images = list(fd_collection.find()) + feature_ids = [img["image_id"] for img in all_images] + + top_img_str = "" + if top_images is not None: + top_img_str = f" (showing only top {top_images} image-weight pairs for each latent semantic)" + + feature_vectors = np.array( + [np.array(img[feature_model]).flatten() for img in all_images] + ) + print( + "Applying {} on the {} space to get {} latent semantics{}...".format( + dim_reduction_method, feature_model, k, top_img_str + ) + ) + + displayed_latent_semantics = {} + all_latent_semantics = {} + + match valid_dim_reduction_methods[dim_reduction_method]: + # singular value decomposition + case 1: + U, S, V_T = svd(feature_vectors, k=k) + + all_latent_semantics = { + "image-semantic": U.tolist(), + "semantics-core": S.tolist(), + "semantic-feature": V_T.tolist(), + } + + # for each latent semantic, sort imageID-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in U.T + ] + + # non-negative matrix factorization + case 2: + # NNMF requires non-negative input data + # so shift the input by subtracting the smallest value + min_value = np.min(feature_vectors) + feature_vectors_shifted = feature_vectors - min_value + + W, H = nmf(feature_vectors_shifted, k) + + all_latent_semantics = { + "image-semantic": W.tolist(), + "semantic-feature": H.tolist(), + } + + # for each latent semantic, sort imageID-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in W.T + ] + + # unsupervised LDA to extract topics (Latent Dirichlet Allocation) + # Note: LDA takes a bit of time + case 3: + # LDA requires non-negative input data + # so shift the input by subtracting the smallest value + min_value = np.min(feature_vectors) + feature_vectors_shifted = feature_vectors - min_value + # round off to reduce dictionary size + feature_vectors_shifted = np.round(feature_vectors_shifted, 3) + + model = LatentDirichletAllocation( + n_components=k, learning_method="online", verbose=4 + ) + model.fit(feature_vectors_shifted) + + # K (k x fd_dim) is the pseudocount for latent semantic-feature pairs + K = model.components_ + # X (4339 x k) is the image-semantic distribution (image ID-latent semantic pairs) + X = model.transform(feature_vectors_shifted) + + all_latent_semantics = { + "image-semantic": X.tolist(), + "semantic-feature": K.tolist(), + } + + dump(model, f"{feature_model}-{dim_reduction_method}-{k}-model.joblib") + + # for each latent semantic, sort imageID-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in X.T + ] + + # k-means clustering to reduce to k clusters/dimensions + case 4: + model = KMeans(n_clusters=k, verbose=2).fit(feature_vectors) + CC = model.cluster_centers_ + Y = model.transform(feature_vectors) + + all_latent_semantics = { + "image-semantic": Y.tolist(), + "semantic-feature": CC.tolist(), + } + + # for each latent semantic, sort imageID-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=False, + )[:top_images] + for latent_semantic in Y.T + ] + + if valid_dim_reduction_methods[dim_reduction_method] == 4: + print("Note: for K-Means we display distances, in ascending order") + for idx, latent_semantic in enumerate(displayed_latent_semantics): + print(f"Latent semantic no. {idx}") + for image_id, weight in latent_semantic: + if valid_dim_reduction_methods[dim_reduction_method] == 4: + print(f"Image_ID\t{image_id}\t-\tDistance\t{weight}") + else: + print(f"Image_ID\t{image_id}\t-\tWeight\t{weight}") + + with open( + f"{feature_model}-{dim_reduction_method}-{k}-semantics.json", + "w", + encoding="utf-8", + ) as output_file: + json.dump(all_latent_semantics, output_file, ensure_ascii=False) + + +def extract_latent_semantics_from_sim_matrix( + sim_matrix, + feature_model, + sim_type, + k, + dim_reduction_method, + top_images=None, +): + """ + Extract latent semantics for a given similarity matrix for a given dim_reduction_method, and display the object-semantic weight pairs + + Leave `top_images` blank to display all imageID-weight pairs + """ + + assert sim_type in ["image", "label"], "sim_type should be one of " + str( + ["image", "label"] + ) + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + assert ( + dim_reduction_method in valid_dim_reduction_methods.keys() + ), "dim_reduction_method should be one of " + str( + list(valid_dim_reduction_methods.keys()) + ) + assert len(sim_matrix) == len(sim_matrix[0]), "sim_matrix must be square matrix" + + top_img_str = "" + if top_images is not None: + top_img_str = f" (showing only top {top_images} {sim_type}-weight pairs for each latent semantic)" + + feature_vectors = sim_matrix + feature_ids = list(range(len(sim_matrix))) + + print( + "Applying {} on the given similarity matrix to get {} latent semantics{}...".format( + dim_reduction_method, k, top_img_str + ) + ) + + displayed_latent_semantics = {} + all_latent_semantics = {} + + match valid_dim_reduction_methods[dim_reduction_method]: + # singular value decomposition + case 1: + U, S, V_T = svd(feature_vectors, k=k) + + all_latent_semantics = { + "image-semantic": U.tolist(), + "semantics-core": S.tolist(), + "semantic-feature": V_T.tolist(), + } + + # for each latent semantic, sort object-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in U.T + ] + + # non-negative matrix factorization + case 2: + # NNMF requires non-negative input data + # so shift the input by subtracting the smallest value + min_value = np.min(feature_vectors) + feature_vectors_shifted = feature_vectors - min_value + + W, H = nmf(feature_vectors_shifted, k) + + all_latent_semantics = { + "image-semantic": W.tolist(), + "semantic-feature": H.tolist(), + } + + # for each latent semantic, sort object-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in W.T + ] + + # unsupervised LDA to extract topics (Latent Dirichlet Allocation) + # Note: LDA takes a bit of time + case 3: + # LDA requires non-negative input data + # so shift the input by subtracting the smallest value + min_value = np.min(feature_vectors) + feature_vectors_shifted = feature_vectors - min_value + # round off to reduce dictionary size + feature_vectors_shifted = np.round(feature_vectors_shifted, 3) + + model = LatentDirichletAllocation( + n_components=k, learning_method="online", verbose=4 + ) + model.fit(feature_vectors_shifted) + + # K (k x fd_dim) is the pseudocount for latent semantic-feature pairs + K = model.components_ + # X (4339 x k) is the image-semantic distribution (image ID-latent semantic pairs) + X = model.transform(feature_vectors_shifted) + + all_latent_semantics = { + "image-semantic": X.tolist(), + "semantic-feature": K.tolist(), + } + + dump( + model, + f"{sim_type}_sim-{feature_model}-{dim_reduction_method}-{k}-model.joblib", + ) + + # for each latent semantic, sort object-weight pairs by weights in descending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in X.T + ] + + # k-means clustering to reduce to k clusters/dimensions + case 4: + model = KMeans(n_clusters=k, verbose=2).fit(feature_vectors) + CC = model.cluster_centers_ + Y = model.transform(feature_vectors) + + all_latent_semantics = { + "image-semantic": Y.tolist(), + "semantic-feature": CC.tolist(), + } + + # for each latent semantic, sort object-weight pairs by weights in ascending order + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids, latent_semantic)), + key=lambda x: x[1], + reverse=False, + )[:top_images] + for latent_semantic in Y.T + ] + print("Note: for K-Means we display distances, in ascending order") + + for idx, latent_semantic in enumerate(displayed_latent_semantics): + print(f"Latent semantic no. {idx}") + for obj_id, weight in latent_semantic: + if valid_dim_reduction_methods[dim_reduction_method] == 4: + print(f"{sim_type}\t{obj_id}\t-\tDistance\t{weight}") + else: + print(f"{sim_type}\t{obj_id}\t-\tWeight\t{weight}") + + # Finally also save sim_matrix + all_latent_semantics["sim-matrix"] = sim_matrix.tolist() + + with open( + f"{sim_type}_sim-{feature_model}-{dim_reduction_method}-{k}-semantics.json", + "w", + encoding="utf-8", + ) as output_file: + json.dump(all_latent_semantics, output_file, ensure_ascii=False) + + +def find_label_label_similarity(fd_collection, feature_model): + """ + Calculate similarity between labels. Lower values indicate higher similarities + """ + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + label_sim_matrix = [] + label_mean_vectors = [] + + for label in range(NUM_LABELS): + # get representative vectors for the label + label_mean_vectors.append( + calculate_label_representatives(fd_collection, label, feature_model) + ) + + label_sim_matrix = np.zeros((NUM_LABELS, NUM_LABELS)) + + # Calculate half and fill the other + for i in range(NUM_LABELS): + for j in range(i + 1, NUM_LABELS): + # Note: lower the value, lower the distance => higher the similarity + label_sim_matrix[i][j] = label_sim_matrix[j][i] = feature_distance_matches[ + feature_model + ](np.array(label_mean_vectors[i]), np.array(label_mean_vectors[j])) + return label_sim_matrix + + +def find_image_image_similarity(fd_collection, feature_model): + """ + Calculate similarity between images. Lower values indicate higher similarities + """ + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + feature_vectors = [ + np.array( + img_fds[feature_model] + ).flatten() # get the specific feature model's feature vector + for img_fds in fd_collection.find() # repeat for all images + ] + image_sim_matrix = np.zeros((NUM_IMAGES, NUM_IMAGES)) + + # Calculate half and fill the other + for i in range(NUM_IMAGES): + for j in range(i + 1, NUM_IMAGES): + # Note: lower the value, lower the distance => higher the similarity + image_sim_matrix[i][j] = image_sim_matrix[j][i] = feature_distance_matches[ + feature_model + ](np.array(feature_vectors[i]), np.array(feature_vectors[j])) + return image_sim_matrix + + +def compute_cp_decomposition(fd_collection, feature_model, rank): + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + all_images = list(fd_collection.find()) + + # (images, features, labels) + data_tensor_shape = ( + NUM_IMAGES, + np.array(all_images[0][feature_model]).flatten().shape[0], + NUM_LABELS, + ) + data_tensor = np.zeros(data_tensor_shape) + print(data_tensor_shape) + + # create data tensor + for img_id in range(NUM_IMAGES): + label = all_images[img_id]["true_label"] + data_tensor[img_id, :, label] = np.array( + all_images[img_id][feature_model] + ).flatten() + + weights_tensor, factor_matrices = tl.decomposition.parafac( + data_tensor, rank=rank, normalize_factors=True + ) + return weights_tensor, factor_matrices + + +def extract_CP_semantics_from_feature_model( + fd_collection, + rank, + feature_model, + top_images=None, +): + assert ( + feature_model in valid_feature_models.values() + ), "feature_model should be one of " + str(list(valid_feature_models.keys())) + + top_img_str = "" + if top_images is not None: + top_img_str = f" (showing only top {top_images} image-weight pairs for each latent semantic)" + print( + "Applying CP decomposition on the {} space to get {} latent semantics{}...".format( + feature_model, rank, top_img_str + ) + ) + + all_images = list(fd_collection.find()) + img_ids = [img for img in range(NUM_IMAGES)] + img_feature_ids = [ + feature_num for feature_num in range(len(all_images[0][feature_model])) + ] + img_label_ids = [label for label in range(NUM_LABELS)] + feature_ids = [img_ids, img_feature_ids, img_label_ids] + + weights_tensor, factor_matrices = compute_cp_decomposition( + fd_collection, feature_model, rank + ) + + all_latent_semantics = { + "image-semantic": factor_matrices[0].tolist(), + "feature-semantic": factor_matrices[1].tolist(), + "label-semantic": factor_matrices[2].tolist(), + "semantics-core": weights_tensor.tolist(), + } + + strs = ["image", "feature", "label"] + for i in range(3): + displayed_latent_semantics = [ + sorted( + list(zip(feature_ids[i], latent_semantic)), + key=lambda x: x[1], + reverse=True, + )[:top_images] + for latent_semantic in factor_matrices[i].T + ] + print(f"Showing {strs[i]}-weight latent semantic") + for idx, latent_semantic in enumerate(displayed_latent_semantics): + print(f"Latent semantic no. {idx}") + for obj_id, weight in latent_semantic: + print(f"{strs[i]}\t{obj_id}\t-\tweight\t{weight}") + + with open( + f"{feature_model}-cp-{rank}-semantics.json", + "w", + encoding="utf-8", + ) as output_file: + json.dump(all_latent_semantics, output_file, ensure_ascii=False)