get_all_fd bugfix

This commit is contained in:
Kaushik Narayan R 2023-10-11 17:38:45 -07:00
parent 331f346756
commit 6b256ca19d

View File

@ -270,9 +270,28 @@ def resnet_extractor(image):
)
def get_all_fd(image_id, img=None, label=None):
def resnet_output(image):
"""Get image features from ResNet50 (full execution)"""
resized_image = (
torch.Tensor(np.array(transforms.Resize((224, 224))(image)).flatten())
.view(1, 3, 224, 224)
.to(dev)
)
with torch.no_grad():
features = model(resized_image)
return features.detach().cpu().tolist()
def get_all_fd(image_id, given_image=None, given_label=None):
"""Get all feature descriptors of a given image"""
if image_id == -1:
img, label = given_image, given_label
else:
img, label = dataset[image_id]
img_shape = np.array(img).shape
print(img_shape)
if img_shape[0] >= 3:
true_channels = 3
else:
@ -283,6 +302,7 @@ def get_all_fd(image_id, img=None, label=None):
cm_fd = CM_transform(img).tolist()
hog_fd = HOG_transform(img).tolist()
avgpool_1024_fd, layer3_1024_fd, fc_1000_fd = resnet_extractor(img)
resnet_fd = resnet_output(img)
return {
"image_id": image_id,
@ -293,6 +313,7 @@ def get_all_fd(image_id, img=None, label=None):
"avgpool_fd": avgpool_1024_fd,
"layer3_fd": layer3_1024_fd,
"fc_fd": fc_1000_fd,
"resnet_fd": resnet_fd,
}
@ -336,6 +357,7 @@ valid_feature_models = {
"avgpool": "avgpool_fd",
"layer3": "layer3_fd",
"fc": "fc_fd",
"resnet": "resnet_fd"
}
valid_distance_measures = {
"euclidean": euclidean_distance_measure,
@ -348,6 +370,7 @@ feature_distance_matches = {
"layer3_fd": pearson_distance_measure,
"avgpool_fd": pearson_distance_measure,
"fc_fd": pearson_distance_measure,
"resnet_fd": pearson_distance_measure,
}
@ -576,6 +599,109 @@ def show_similar_images_for_label(
plt.show()
def show_similar_labels_for_image(
fd_collection,
target_image_id,
target_image=None,
target_label=None,
k=10,
feature_model="fc",
distance_measure=pearson_distance_measure,
save_plots=False,
):
# if target from dataset
if target_image_id != -1:
print(
"Showing {} similar labels for image ID {}, using {} for {} feature descriptor...".format(
k, target_image_id, distance_measure.__name__, feature_model
)
)
# store target_image itself
min_dists = {target_image_id: 0}
if target_image_id % 2 == 0:
# Get target image's feature descriptors from database
target_image = fd_collection.find_one({"image_id": target_image_id})
else:
# Calculate target image's feature descriptors
target_image = get_all_fd(target_image_id)
target_image_fd = target_image[feature_model]
target_label = target_image["true_label"]
else:
print(
"Showing {} similar labels for given image, using {} for {} feature descriptor...".format(
k, distance_measure.__name__, feature_model
)
)
# store distance to target_image itself
min_dists = {-1: 0}
target_image_fds = get_all_fd(-1, target_image, target_label)
target_image_fd = np.array(target_image_fds[feature_model])
label_dict = {target_image_id: target_label}
target_image_fd = np.array(target_image[feature_model + "_fd"])
assert (
feature_model in valid_feature_models
), "feature_model should be one of " + str(valid_feature_models)
assert (
distance_measure in valid_distance_measures.values()
), "distance_measure should be one of " + str(list(valid_distance_measures.keys()))
# only RGB for non RGB images
if feature_model != "hog":
all_images = fd_collection.find({"true_channels": 3})
else:
all_images = fd_collection.find()
for cur_img in all_images:
cur_img_id = cur_img["image_id"]
# skip target itself
if cur_img_id == target_image_id:
continue
cur_img_fd = np.array(cur_img[feature_model + "_fd"])
cur_dist = distance_measure(
cur_img_fd,
target_image_fd,
)
cursor = fd_collection.find({"image_id": cur_img_id})
label=cursor[0]["true_label"]
# store first k images irrespective of distance (so that we store no more than k minimum distances)
if len(min_dists) < k + 1 and label not in label_dict.values():
min_dists[cur_img_id] = cur_dist
label_dict[cur_img_id] = label
# if lower distance:
elif cur_dist < max(min_dists.values()) and label not in label_dict.values():
# add to min_dists
min_dists.update({cur_img_id: cur_dist})
label_dict.update({cur_img_id: label})
# remove greatest distance by index
pop_key=max(min_dists, key=min_dists.get)
min_dists.pop(pop_key)
label_dict.pop(pop_key)
min_dists = dict(sorted(min_dists.items(), key=lambda item: item[1]))
for image_id in min_dists.keys():
if image_id==target_image_id:
continue
else:
print("Label: ", label_dict[image_id], "; distance: ", min_dists[image_id])
sample_image, sample_label = dataset[image_id]
plt.imshow(transforms.ToPILImage()(sample_image))
plt.show()
valid_dim_reduction_methods = {
"svd": 1,
"nmf": 2,