ls1 and ls3 svd and nmf

This commit is contained in:
pranavbrkr 2023-10-13 10:43:00 -07:00
parent a0d7b500b3
commit 6e012173f0
2 changed files with 194 additions and 14 deletions

View File

@ -2,9 +2,18 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 62,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [ "source": [
"%load_ext autoreload\n", "%load_ext autoreload\n",
"%autoreload 2" "%autoreload 2"
@ -12,18 +21,31 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 63,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import json\n", "import json\n",
"import os\n", "import os\n",
"from utils import *" "import numpy as np\n",
"from utils import *\n",
"import math\n",
"import heapq"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n",
"all_images = fd_collection.find()\n"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -50,6 +72,11 @@
"if label < 0 and label > 100:\n", "if label < 0 and label > 100:\n",
" raise ValueError(\"k should be between 0 and 100\")\n", " raise ValueError(\"k should be between 0 and 100\")\n",
"\n", "\n",
"knum = int(input(\"Enter value of knum: \"))\n",
"if knum < 1:\n",
" raise ValueError(\"knum should be a positive integer\")\n",
"\n",
"label_rep = calculate_label_representatives(fd_collection, label, selected_feature_model)\n",
"\n", "\n",
"match selected_latent_space:\n", "match selected_latent_space:\n",
" case \"\":\n", " case \"\":\n",
@ -72,34 +99,169 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 66,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": [
"def extract_similarities_ls1(dim_reduction, data, label, label_rep):\n",
"\n",
" match dim_reduction:\n",
"\n",
" case 'svd':\n",
" U = np.array(data[\"image-semantic\"])\n",
" S = np.array(data[\"semantics-core\"])\n",
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
"\n",
" comparison_feature_space = np.matmul(U, S)\n",
" comparison_vector = np.matmul(np.matmul(label_rep, V), S)\n",
" \n",
" case \"nmf\":\n",
" H = np.array(data['semantic-feature'])\n",
" comparison_feature_space = np.array(data['image-semantic'])\n",
" comparison_vector = np.matmul(label_rep, np.transpose(H))\n",
"\n",
" print(comparison_feature_space.shape)\n",
" n = len(comparison_feature_space)\n",
" \n",
" distances = []\n",
" for i in range(n):\n",
" if i != label:\n",
" distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"],\"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
"\n",
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)\n",
"\n",
" similar_labels = []\n",
" unique_labels = set()\n",
"\n",
" for img in distances:\n",
" if img['label'] not in unique_labels:\n",
" similar_labels.append(img)\n",
" unique_labels.add(img[\"label\"])\n",
"\n",
" if len(similar_labels) == knum:\n",
" break\n",
"\n",
"\n",
" for x in similar_labels:\n",
" print(x)"
]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"def extract_similarities_ls3(dim_reduction, data, label):\n",
"\n",
" match dim_reduction:\n",
"\n",
" case 'svd':\n",
" U = np.array(data[\"image-semantic\"])\n",
" S = np.array(data[\"semantics-core\"])\n",
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
"\n",
" comparison_feature_space = np.matmul(U, S)\n",
" comparison_vector = comparison_feature_space[label]\n",
" \n",
" case \"nmf\":\n",
" comparison_feature_space = np.array(data['image-semantic'])\n",
" comparison_vector = comparison_feature_space[label]\n",
"\n",
" n = len(comparison_feature_space)\n",
" distances = []\n",
" for i in range(n):\n",
" if i != label:\n",
" distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
"\n",
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n",
"\n",
" for x in distances:\n",
" print(x)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"(101, 10)\n", "{'label': 4, 'distance': 0.9931105104385977}\n",
"(10, 10)\n", "{'label': 92, 'distance': 1.1209182190288185}\n",
"(10, 101)\n" "{'label': 65, 'distance': 1.2107732156271573}\n",
"{'label': 21, 'distance': 1.5053484881391492}\n",
"{'label': 2, 'distance': 1.698430977110922}\n",
"{'label': 100, 'distance': 1.8636096001573115}\n",
"{'label': 95, 'distance': 2.003755992104511}\n",
"{'label': 11, 'distance': 2.069066281581252}\n",
"{'label': 60, 'distance': 2.070894540798742}\n",
"{'label': 88, 'distance': 2.0925931256031}\n",
"{'label': 43, 'distance': 2.1056747598887218}\n",
"{'label': 33, 'distance': 2.165431005806523}\n",
"{'label': 90, 'distance': 2.174626607979455}\n",
"{'label': 83, 'distance': 2.188609736988739}\n",
"{'label': 68, 'distance': 2.209562202827548}\n",
"{'label': 59, 'distance': 2.27130902508622}\n",
"{'label': 35, 'distance': 2.276916489521396}\n",
"{'label': 70, 'distance': 2.283111150497479}\n",
"{'label': 53, 'distance': 2.2871296343421075}\n",
"{'label': 42, 'distance': 2.2943393449254192}\n",
"{'label': 1, 'distance': 2.299515307388396}\n",
"{'label': 89, 'distance': 2.300444335700286}\n",
"{'label': 64, 'distance': 2.3105619552648906}\n",
"{'label': 47, 'distance': 2.3258018764464126}\n",
"{'label': 28, 'distance': 2.33793138436563}\n",
"{'label': 91, 'distance': 2.348432279582375}\n",
"{'label': 66, 'distance': 2.378823252101462}\n",
"{'label': 52, 'distance': 2.3845656934663344}\n",
"{'label': 17, 'distance': 2.3851103284430946}\n",
"{'label': 29, 'distance': 2.392106657184808}\n",
"{'label': 46, 'distance': 2.4059349825734024}\n",
"{'label': 98, 'distance': 2.425981349727766}\n",
"{'label': 12, 'distance': 2.4320238781945878}\n",
"{'label': 5, 'distance': 2.433658250868235}\n",
"{'label': 72, 'distance': 2.4438014606638965}\n",
"{'label': 96, 'distance': 2.446857205149324}\n",
"{'label': 18, 'distance': 2.4473786634019508}\n",
"{'label': 0, 'distance': 2.4482053195868017}\n",
"{'label': 49, 'distance': 2.451590137889849}\n",
"{'label': 14, 'distance': 2.4717097207497414}\n",
"{'label': 85, 'distance': 2.473715190942228}\n",
"{'label': 19, 'distance': 2.4754273396104534}\n",
"{'label': 51, 'distance': 2.4810475345400316}\n",
"{'label': 75, 'distance': 2.4850838216864224}\n",
"{'label': 93, 'distance': 2.4867224184341175}\n",
"{'label': 44, 'distance': 2.498509815319209}\n",
"{'label': 82, 'distance': 2.501339416798757}\n",
"{'label': 54, 'distance': 2.506342353975533}\n",
"{'label': 9, 'distance': 2.5065630929096394}\n",
"{'label': 41, 'distance': 2.51345667730748}\n"
] ]
} }
], ],
"source": [ "source": [
"match selected_latent_space:\n", "match selected_latent_space:\n",
"\n", "\n",
" case \"\":\n",
" \n",
" extract_similarities_ls1(selected_dim_reduction_method, data, label, label_rep)\n",
"\n",
" case \"label_sim\":\n", " case \"label_sim\":\n",
"\n", "\n",
" extract_simila\n" " extract_similarities_ls3(selected_dim_reduction_method, data, label)\n",
" "
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

View File

@ -841,6 +841,25 @@ def svd(matrix, k):
return left_singular_vectors, np.diag(singular_values), right_singular_vectors.T return left_singular_vectors, np.diag(singular_values), right_singular_vectors.T
def nmf(matrix, k, num_iterations=100):
d1, d2 = matrix.shape
# Initialize W and H matrices with random non-negative values
W = np.random.rand(d1, k)
H = np.random.rand(k, d2)
for iteration in range(num_iterations):
# Update H matrix
numerator_h = np.dot(W.T, matrix)
denominator_h = np.dot(np.dot(W.T, W), H)
H *= numerator_h / denominator_h
# Update W matrix
numerator_w = np.dot(matrix, H.T)
denominator_w = np.dot(W, np.dot(H, H.T))
W *= numerator_w / denominator_w
return W, H
def extract_latent_semantics_from_feature_model( def extract_latent_semantics_from_feature_model(
fd_collection, fd_collection,
k, k,
@ -1087,8 +1106,7 @@ def extract_latent_semantics_from_sim_matrix(
) )
model.fit(feature_vectors_shifted) model.fit(feature_vectors_shifted)
W = model.transform(feature_vectors_shifted) W, H = nmf(feature_vectors_shifted, k = k)
H = model.components_
all_latent_semantics = { all_latent_semantics = {
"image-semantic": W.tolist(), "image-semantic": W.tolist(),