{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'task0a'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[1;32me:\\Fall 23\\CSE 515 - Multimedia and web databases\\CSE515_MWDB_Project\\Phase 2\\task1.ipynb Cell 1\u001b[0m line \u001b[0;36m4\n\u001b[0;32m 2\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmath\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mpyplot\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mplt\u001b[39;00m\n\u001b[1;32m----> 4\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mtask0a\u001b[39;00m \u001b[39mimport\u001b[39;00m \u001b[39m*\u001b[39m\n\u001b[0;32m 5\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mscipy\u001b[39;00m\n", "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'task0a'" ] } ], "source": [ "from pymongo import MongoClient\n", "import math\n", "import matplotlib.pyplot as plt\n", "from task0a import *\n", "import scipy" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'loadDataset' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32me:\\Fall 23\\CSE 515 - Multimedia and web databases\\CSE515_MWDB_Project\\Phase 2\\task1.ipynb Cell 2\u001b[0m line \u001b[0;36m7\n\u001b[0;32m 4\u001b[0m \u001b[39m# Select the database\u001b[39;00m\n\u001b[0;32m 5\u001b[0m db \u001b[39m=\u001b[39m client\u001b[39m.\u001b[39mMultimedia_Web_DBs\n\u001b[1;32m----> 7\u001b[0m caltechDataset \u001b[39m=\u001b[39m loadDataset()\n\u001b[0;32m 9\u001b[0m \u001b[39m# Fetch all documents from the collection and then sort them by \"_id\"\u001b[39;00m\n\u001b[0;32m 10\u001b[0m feature_descriptors \u001b[39m=\u001b[39m \u001b[39mlist\u001b[39m(db\u001b[39m.\u001b[39mCaltech101_Feature_Descriptors\u001b[39m.\u001b[39mfind({}))\n", "\u001b[1;31mNameError\u001b[0m: name 'loadDataset' is not defined" ] } ], "source": [ "client = MongoClient()\n", "client = MongoClient(host=\"localhost\", port=27017)\n", "\n", "# Select the database\n", "db = client.Multimedia_Web_DBs\n", "\n", "caltechDataset = loadDataset()\n", "\n", "# Fetch all documents from the collection and then sort them by \"_id\"\n", "feature_descriptors = list(db.Caltech101_Feature_Descriptors.find({}))\n", "feature_descriptors = sorted(list(db.Caltech101_Feature_Descriptors.find({})), key=lambda x: x[\"_id\"], reverse=False)\n", "\n", "num_labels = 101" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def calculate_label_means(l, feature_model):\n", " \n", " label_vectors = [x[feature_model] for x in feature_descriptors if x[\"label\"] == l and x[\"_id\"] % 2 == 0]\n", " \n", " label_mean_vector = [sum(col)/len(col) for col in zip(*label_vectors)]\n", " return label_mean_vector" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def findKRelevantImages(mean_vector, feature_model, l):\n", "\n", " label_vectors = [(x[\"_id\"], x[feature_model]) for x in feature_descriptors if x[\"_id\"] % 2 == 0]\n", "\n", " n = len(label_vectors)\n", "\n", " similarities = []\n", "\n", " match feature_model:\n", "\n", " case \"color_moments\":\n", "\n", " for i in range(n):\n", " similarities.append({\"_id\": label_vectors[i][0], \"similarity\": math.dist(mean_vector, label_vectors[i][1])})\n", " similarities = sorted(similarities, key=lambda x: x[\"similarity\"], reverse=False)\n", "\n", " case \"hog\":\n", "\n", " for i in range(n):\n", " similarities.append({\"_id\": label_vectors[i][0], \"similarity\": (np.dot(mean_vector, label_vectors[i][1]) / (np.linalg.norm(mean_vector) * np.linalg.norm(label_vectors[i][1])))})\n", " similarities = sorted(similarities, key=lambda x: x[\"similarity\"], reverse=True)\n", " \n", " case \"layer3\" | \"avgpool\" | \"fc\":\n", "\n", " for i in range(n):\n", " similarities.append({\"_id\": label_vectors[i][0], \"similarity\": scipy.stats.pearsonr(mean_vector, label_vectors[i][1]).statistic})\n", " similarities = sorted(similarities, key=lambda x: x[\"similarity\"], reverse=True)\n", " \n", " return similarities\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def main():\n", "\n", " # Load dataset\n", "\n", " # User input for Image ID\n", " l = int(input(\"Enter query label: \"))\n", " k = int(input(\"Enter k: \"))\n", "\n", " features = ['color_moments', 'hog', 'layer3', 'avgpool', 'fc']\n", "\n", " # User input for feature model to extract\n", " print(\"1: Color moments\")\n", " print(\"2: HOG\")\n", " print(\"3: Resnet50 Avgpool layer\")\n", " print(\"4: Resnet50 Layer 3\")\n", " print(\"5: Resnet50 FC layer\")\n", " feature_model = features[int(input(\"Select the feature model: \")) - 1]\n", "\n", " mean_vector = calculate_label_means(l, feature_model)\n", "\n", " similar_images = findKRelevantImages(mean_vector, feature_model, l)\n", "\n", " for i in range(k):\n", " print(similar_images[i])\n", "\n", " fig, axes = plt.subplots(1, k, figsize=(15, 5))\n", "\n", " for i in range(k):\n", " axes[i].imshow(caltechDataset[similar_images[i][\"_id\"]][1].permute(1, 2, 0))\n", " axes[i].set_title(f'id: {similar_images[i][\"_id\"]}')\n", "\n", " # Show the figure with all the images\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "if __name__ == \"__main__\":\n", " main()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 2 }