{ "cells": [ { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "import json\n", "import os\n", "import numpy as np\n", "from utils import *\n", "import math\n", "import heapq\n", "import random" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n", "all_images = fd_collection.find()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "image_sim-cm_fd-kmeans-10-semantics.json loaded\n" ] } ], "source": [ "selected_latent_space = valid_latent_spaces[\n", " str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n", "]\n", "\n", "selected_feature_model = valid_feature_models[\n", " str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n", "]\n", "\n", "k = int(input(\"Enter value of k: \"))\n", "if k < 1:\n", " raise ValueError(\"k should be a positive integer\")\n", "\n", "selected_dim_reduction_method = str(\n", " input(\n", " \"Enter dimensionality reduction method - one of \"\n", " + str(list(valid_dim_reduction_methods.keys()))\n", " )\n", ")\n", "\n", "image_id = int(input(\"Enter image ID: \"))\n", "if image_id < 0 and image_id > 8676 and image_id % 2 != 0:\n", " raise ValueError(\"image id should be even number between 0 and 8676\")\n", "\n", "knum = int(input(\"Enter value of knum: \"))\n", "if knum < 1:\n", " raise ValueError(\"knum should be a positive integer\")\n", "\n", "match selected_latent_space:\n", " case \"\":\n", " if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n", " else:\n", " print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n", " case \"cp\":\n", " if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n", " print(f\"{selected_feature_model}-cp-{k}-semantics.json loaded\")\n", " else: \n", " print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\")\n", " case _:\n", " if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n", " else:\n", " print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls1_ls4(latent_space, dim_reduction, selected_feature_model, data, image_id):\n", "\n", " image_fd = np.array(all_images[int(image_id / 2)][selected_feature_model]).flatten()\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " if len(S.shape) == 1:\n", " S = np.diag(S)\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", " \n", " comparison_feature_space = np.matmul(U, S)\n", "\n", " if latent_space == \"image_sim\":\n", " comparison_vector = comparison_feature_space[int(image_id / 2)]\n", " else:\n", " comparison_vector = np.matmul(np.matmul(image_fd, V), S)\n", " \n", " case \"nmf\":\n", " H = np.array(data['semantic-feature'])\n", " comparison_feature_space = np.array(data['image-semantic'])\n", "\n", " if latent_space == \"image_sim\":\n", " comparison_vector = comparison_feature_space[int(image_id / 2)]\n", " else:\n", " comparison_vector = np.matmul(image_fd, np.transpose(H))\n", "\n", " case \"kmeans\":\n", " comparison_vector = []\n", " comparison_feature_space = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantic-feature\"])\n", "\n", " for centroid in S:\n", " if latent_space == \"image_sim\":\n", " sim_matrix = np.array(data[\"sim-matrix\"])\n", " comparison_vector.append(math.dist(sim_matrix[int(image_id / 2)], centroid))\n", " else:\n", " comparison_vector.append(math.dist(image_fd, centroid))\n", "\n", " n = len(comparison_feature_space)\n", "\n", " distances = []\n", " for i in range(n):\n", " if (i * 2) != image_id:\n", " distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"], \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", "\n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n", "\n", " for x in distances:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls2(data, image_id):\n", "\n", " IS = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", "\n", " if len(S.shape) == 1:\n", " S = np.diag(S)\n", "\n", " comparison_feature_space = np.matmul(IS, S)\n", " comparison_vector = comparison_feature_space[int(image_id / 2)]\n", "\n", " distances = []\n", "\n", " n = len(comparison_feature_space)\n", " for i in range(n):\n", " if i != (image_id / 2):\n", " distances.append({\"image_id\": i * 2, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", " \n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n", "\n", " for x in distances:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls3(dim_reduction, data, image_id):\n", "\n", " img_label = all_images[int(image_id / 2)][\"true_label\"]\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", "\n", " comparison_feature_space = np.matmul(U, S)\n", " comparison_vector = comparison_feature_space[img_label]\n", " \n", " case \"nmf\":\n", " comparison_feature_space = np.array(data['image-semantic'])\n", " comparison_vector = comparison_feature_space[img_label]\n", "\n", " case \"kmeans\":\n", " comparison_feature_space = np.array(data[\"image-semantic\"])\n", " comparison_vector = comparison_feature_space[img_label]\n", "\n", " n = len(comparison_feature_space)\n", " distance = float('inf')\n", " most_similar_label = img_label\n", " for i in range(n):\n", " if i != img_label:\n", " temp_distance = math.dist(comparison_vector, comparison_feature_space[i])\n", " if distance > temp_distance:\n", " distance = temp_distance\n", " most_similar_label = i\n", "\n", " label_images = [x[\"image_id\"] for x in all_images if x[\"true_label\"] == most_similar_label]\n", " similar_images = random.sample(label_images, knum)\n", "\n", " print(f\"Most similar label to {img_label} is {most_similar_label}\")\n", " for img in similar_images:\n", " print(img)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'image_id': 2457, 'label': 39, 'distance': 5.400083378408386}\n", "{'image_id': 2629, 'label': 46, 'distance': 6.360136822031199}\n", "{'image_id': 1916, 'label': 23, 'distance': 8.279651870400942}\n", "{'image_id': 1975, 'label': 24, 'distance': 9.305370097143731}\n", "{'image_id': 3287, 'label': 65, 'distance': 9.696792665660324}\n", "{'image_id': 292, 'label': 1, 'distance': 10.198675122162054}\n", "{'image_id': 3965, 'label': 90, 'distance': 11.544874878013612}\n", "{'image_id': 4018, 'label': 92, 'distance': 12.064116415014514}\n", "{'image_id': 4037, 'label': 92, 'distance': 13.383239007317492}\n", "{'image_id': 4307, 'label': 99, 'distance': 14.448284626506538}\n" ] } ], "source": [ "match selected_latent_space:\n", "\n", " case \"\" | \"image_sim\":\n", " \n", " extract_similarities_ls1_ls4(selected_latent_space, selected_dim_reduction_method, selected_feature_model, data, image_id)\n", "\n", " case \"label_sim\":\n", "\n", " extract_similarities_ls3(selected_dim_reduction_method, data, image_id)\n", "\n", " case \"cp\":\n", "\n", " extract_similarities_ls2(data, image_id)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 2 }