{ "cells": [ { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "import json\n", "import os\n", "import numpy as np\n", "from utils import *\n", "import math\n", "import heapq" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n", "all_images = fd_collection.find()\n" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "selected_latent_space = valid_latent_spaces[\n", " str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n", "]\n", "\n", "selected_feature_model = valid_feature_models[\n", " str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n", "]\n", "\n", "k = int(input(\"Enter value of k: \"))\n", "if k < 1:\n", " raise ValueError(\"k should be a positive integer\")\n", "\n", "selected_dim_reduction_method = str(\n", " input(\n", " \"Enter dimensionality reduction method - one of \"\n", " + str(list(valid_dim_reduction_methods.keys()))\n", " )\n", ")\n", "\n", "label = int(input(\"Enter label: \"))\n", "if label < 0 and label > 100:\n", " raise ValueError(\"k should be between 0 and 100\")\n", "\n", "knum = int(input(\"Enter value of knum: \"))\n", "if knum < 1:\n", " raise ValueError(\"knum should be a positive integer\")\n", "\n", "label_rep = calculate_label_representatives(fd_collection, label, selected_feature_model)\n", "\n", "match selected_latent_space:\n", " case \"\":\n", " if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " else:\n", " print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n", " case \"cp\":\n", " if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n", " else:\n", " \n", " print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\" )\n", " case _:\n", " if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " else:\n", " print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls1(dim_reduction, data, label, label_rep):\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", "\n", " comparison_feature_space = np.matmul(U, S)\n", " comparison_vector = np.matmul(np.matmul(label_rep, V), S)\n", " \n", " case \"nmf\":\n", " H = np.array(data['semantic-feature'])\n", " comparison_feature_space = np.array(data['image-semantic'])\n", " comparison_vector = np.matmul(label_rep, np.transpose(H))\n", "\n", " case \"\"\n", "\n", " print(comparison_feature_space.shape)\n", " n = len(comparison_feature_space)\n", " \n", " distances = []\n", " for i in range(n):\n", " if i != label:\n", " distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"],\"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", "\n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)\n", "\n", " similar_labels = []\n", " unique_labels = set()\n", "\n", " for img in distances:\n", " if img['label'] not in unique_labels:\n", " similar_labels.append(img)\n", " unique_labels.add(img[\"label\"])\n", "\n", " if len(similar_labels) == knum:\n", " break\n", "\n", "\n", " for x in similar_labels:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls3(dim_reduction, data, label):\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", "\n", " comparison_feature_space = np.matmul(U, S)\n", " comparison_vector = comparison_feature_space[label]\n", " \n", " case \"nmf\":\n", " comparison_feature_space = np.array(data['image-semantic'])\n", " comparison_vector = comparison_feature_space[label]\n", "\n", " n = len(comparison_feature_space)\n", " distances = []\n", " for i in range(n):\n", " if i != label:\n", " distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", "\n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n", "\n", " for x in distances:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'label': 4, 'distance': 0.9931105104385977}\n", "{'label': 92, 'distance': 1.1209182190288185}\n", "{'label': 65, 'distance': 1.2107732156271573}\n", "{'label': 21, 'distance': 1.5053484881391492}\n", "{'label': 2, 'distance': 1.698430977110922}\n", "{'label': 100, 'distance': 1.8636096001573115}\n", "{'label': 95, 'distance': 2.003755992104511}\n", "{'label': 11, 'distance': 2.069066281581252}\n", "{'label': 60, 'distance': 2.070894540798742}\n", "{'label': 88, 'distance': 2.0925931256031}\n", "{'label': 43, 'distance': 2.1056747598887218}\n", "{'label': 33, 'distance': 2.165431005806523}\n", "{'label': 90, 'distance': 2.174626607979455}\n", "{'label': 83, 'distance': 2.188609736988739}\n", "{'label': 68, 'distance': 2.209562202827548}\n", "{'label': 59, 'distance': 2.27130902508622}\n", "{'label': 35, 'distance': 2.276916489521396}\n", "{'label': 70, 'distance': 2.283111150497479}\n", "{'label': 53, 'distance': 2.2871296343421075}\n", "{'label': 42, 'distance': 2.2943393449254192}\n", "{'label': 1, 'distance': 2.299515307388396}\n", "{'label': 89, 'distance': 2.300444335700286}\n", "{'label': 64, 'distance': 2.3105619552648906}\n", "{'label': 47, 'distance': 2.3258018764464126}\n", "{'label': 28, 'distance': 2.33793138436563}\n", "{'label': 91, 'distance': 2.348432279582375}\n", "{'label': 66, 'distance': 2.378823252101462}\n", "{'label': 52, 'distance': 2.3845656934663344}\n", "{'label': 17, 'distance': 2.3851103284430946}\n", "{'label': 29, 'distance': 2.392106657184808}\n", "{'label': 46, 'distance': 2.4059349825734024}\n", "{'label': 98, 'distance': 2.425981349727766}\n", "{'label': 12, 'distance': 2.4320238781945878}\n", "{'label': 5, 'distance': 2.433658250868235}\n", "{'label': 72, 'distance': 2.4438014606638965}\n", "{'label': 96, 'distance': 2.446857205149324}\n", "{'label': 18, 'distance': 2.4473786634019508}\n", "{'label': 0, 'distance': 2.4482053195868017}\n", "{'label': 49, 'distance': 2.451590137889849}\n", "{'label': 14, 'distance': 2.4717097207497414}\n", "{'label': 85, 'distance': 2.473715190942228}\n", "{'label': 19, 'distance': 2.4754273396104534}\n", "{'label': 51, 'distance': 2.4810475345400316}\n", "{'label': 75, 'distance': 2.4850838216864224}\n", "{'label': 93, 'distance': 2.4867224184341175}\n", "{'label': 44, 'distance': 2.498509815319209}\n", "{'label': 82, 'distance': 2.501339416798757}\n", "{'label': 54, 'distance': 2.506342353975533}\n", "{'label': 9, 'distance': 2.5065630929096394}\n", "{'label': 41, 'distance': 2.51345667730748}\n" ] } ], "source": [ "match selected_latent_space:\n", "\n", " case \"\":\n", " \n", " extract_similarities_ls1(selected_dim_reduction_method, data, label, label_rep)\n", "\n", " case \"label_sim\":\n", "\n", " extract_similarities_ls3(selected_dim_reduction_method, data, label)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 2 }