{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from utils import *\n", "warnings.filterwarnings('ignore')\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Applying kmeans on the given similarity matrix to get 10 latent semantics (showing only top 10 label-weight pairs for each latent semantic)...\n", "Initialized centroids\n", "Iteration 6 - Converged\n", "Note: for K-Means we display distances, in ascending order\n", "Latent semantic no. 0\n", "label\t92\t-\tDistance\t3.230292112512146\n", "label\t4\t-\tDistance\t3.5335656340201087\n", "label\t2\t-\tDistance\t4.905027845590568\n", "label\t69\t-\tDistance\t4.993399423965622\n", "label\t65\t-\tDistance\t6.275170101152081\n", "label\t21\t-\tDistance\t6.792963383606834\n", "label\t95\t-\tDistance\t9.460863854781731\n", "label\t60\t-\tDistance\t10.659440914917885\n", "label\t82\t-\tDistance\t14.23961431596092\n", "label\t51\t-\tDistance\t14.308250416010853\n", "Latent semantic no. 1\n", "label\t47\t-\tDistance\t1.7917105751649582\n", "label\t42\t-\tDistance\t1.8293437639389183\n", "label\t35\t-\tDistance\t2.47989550940933\n", "label\t29\t-\tDistance\t2.4870731532031694\n", "label\t33\t-\tDistance\t3.0078415187323975\n", "label\t49\t-\tDistance\t3.1694527370940753\n", "label\t54\t-\tDistance\t3.1764161450515775\n", "label\t28\t-\tDistance\t3.520891544025031\n", "label\t19\t-\tDistance\t3.752147129401601\n", "label\t82\t-\tDistance\t3.9820650145644705\n", "Latent semantic no. 2\n", "label\t91\t-\tDistance\t2.7653145272024493\n", "label\t14\t-\tDistance\t3.829858168383929\n", "label\t93\t-\tDistance\t4.108580770102051\n", "label\t48\t-\tDistance\t4.25643528657963\n", "label\t85\t-\tDistance\t4.308356278561495\n", "label\t17\t-\tDistance\t4.72066235395654\n", "label\t52\t-\tDistance\t4.733719921198274\n", "label\t43\t-\tDistance\t5.593133775346241\n", "label\t75\t-\tDistance\t6.35213810417939\n", "label\t83\t-\tDistance\t6.365421291009637\n", "Latent semantic no. 3\n", "label\t63\t-\tDistance\t3.0750924250527425\n", "label\t98\t-\tDistance\t3.256907164618595\n", "label\t59\t-\tDistance\t3.36740335111714\n", "label\t32\t-\tDistance\t3.4369727667587036\n", "label\t84\t-\tDistance\t4.042695694344645\n", "label\t79\t-\tDistance\t4.051227266452548\n", "label\t94\t-\tDistance\t4.535286748567164\n", "label\t75\t-\tDistance\t4.567193344282598\n", "label\t11\t-\tDistance\t4.856460310962189\n", "label\t55\t-\tDistance\t5.036016117772108\n", "Latent semantic no. 4\n", "label\t80\t-\tDistance\t4.403201299886196\n", "label\t99\t-\tDistance\t4.731021526243766\n", "label\t3\t-\tDistance\t4.807090489912411\n", "label\t48\t-\tDistance\t8.911953449338059\n", "label\t85\t-\tDistance\t9.334554754293974\n", "label\t52\t-\tDistance\t11.390353342613288\n", "label\t43\t-\tDistance\t12.033766054009595\n", "label\t91\t-\tDistance\t12.446673116679838\n", "label\t14\t-\tDistance\t12.717196488491759\n", "label\t83\t-\tDistance\t13.5754060440636\n", "Latent semantic no. 5\n", "label\t77\t-\tDistance\t2.144778050426236\n", "label\t45\t-\tDistance\t2.3391902699042175\n", "label\t73\t-\tDistance\t2.5586280095180554\n", "label\t22\t-\tDistance\t2.833603911721891\n", "label\t57\t-\tDistance\t2.9256965790964955\n", "label\t50\t-\tDistance\t3.216841848641699\n", "label\t74\t-\tDistance\t3.2964675276683377\n", "label\t38\t-\tDistance\t3.3501016749777297\n", "label\t72\t-\tDistance\t3.461208008080578\n", "label\t34\t-\tDistance\t3.8970766980234073\n", "Latent semantic no. 6\n", "label\t78\t-\tDistance\t1.772794735295686\n", "label\t6\t-\tDistance\t1.9243189269571448\n", "label\t67\t-\tDistance\t2.0159218514234905\n", "label\t23\t-\tDistance\t2.0402136200750687\n", "label\t7\t-\tDistance\t2.1597363741525943\n", "label\t15\t-\tDistance\t2.2890961861911463\n", "label\t86\t-\tDistance\t2.418355035843437\n", "label\t39\t-\tDistance\t2.431493894783776\n", "label\t20\t-\tDistance\t2.4339361855736694\n", "label\t61\t-\tDistance\t2.4663666328704577\n", "Latent semantic no. 7\n", "label\t36\t-\tDistance\t2.148560462001178\n", "label\t10\t-\tDistance\t2.336732460490279\n", "label\t76\t-\tDistance\t2.410558517560451\n", "label\t9\t-\tDistance\t2.4853810228702433\n", "label\t44\t-\tDistance\t2.822322732248757\n", "label\t16\t-\tDistance\t2.8525379488476954\n", "label\t19\t-\tDistance\t2.887333058828606\n", "label\t41\t-\tDistance\t3.2609266747980072\n", "label\t0\t-\tDistance\t3.4462772872176073\n", "label\t8\t-\tDistance\t3.4492972662700305\n", "Latent semantic no. 8\n", "label\t60\t-\tDistance\t3.2878466679861047\n", "label\t66\t-\tDistance\t3.8429959542446595\n", "label\t95\t-\tDistance\t4.407501055402251\n", "label\t51\t-\tDistance\t4.675169110980285\n", "label\t82\t-\tDistance\t4.930711123344968\n", "label\t1\t-\tDistance\t5.746326956457264\n", "label\t42\t-\tDistance\t5.932080034810729\n", "label\t29\t-\tDistance\t5.934164464898548\n", "label\t47\t-\tDistance\t6.3479330191887025\n", "label\t35\t-\tDistance\t6.422013021100036\n", "Latent semantic no. 9\n", "label\t83\t-\tDistance\t5.036696108166727\n", "label\t100\t-\tDistance\t5.163440732380748\n", "label\t43\t-\tDistance\t5.447889420797845\n", "label\t88\t-\tDistance\t6.470159759945887\n", "label\t64\t-\tDistance\t6.8077571085247355\n", "label\t17\t-\tDistance\t7.350448996699054\n", "label\t55\t-\tDistance\t7.555979165305925\n", "label\t11\t-\tDistance\t7.84770773092541\n", "label\t91\t-\tDistance\t7.869761874577601\n", "label\t75\t-\tDistance\t7.997112142085329\n" ] } ], "source": [ "selected_feature_model = valid_feature_models[\n", " str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n", "]\n", "\n", "k = int(input(\"Enter value of k: \"))\n", "if k < 1:\n", " raise ValueError(\"k should be a positive integer\")\n", "\n", "selected_dim_reduction_method = str(\n", " input(\n", " \"Enter dimensionality reduction method - one of \"\n", " + str(list(valid_dim_reduction_methods.keys()))\n", " )\n", ")\n", "\n", "label_sim_matrix = find_label_label_similarity(fd_collection,selected_feature_model)\n", "\n", "extract_latent_semantics_from_sim_matrix(\n", " label_sim_matrix,\n", " selected_feature_model,\n", " \"label\",\n", " k,\n", " selected_dim_reduction_method,\n", " top_images=10,\n", ")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" } }, "nbformat": 4, "nbformat_minor": 2 }