{ "cells": [ { "cell_type": "code", "execution_count": 207, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 208, "metadata": {}, "outputs": [], "source": [ "import json\n", "import os\n", "import numpy as np\n", "from utils import *\n", "import math\n", "import heapq" ] }, { "cell_type": "code", "execution_count": 209, "metadata": {}, "outputs": [], "source": [ "fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n", "all_images = fd_collection.find()\n" ] }, { "cell_type": "code", "execution_count": 210, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cm_fd-cp-10-semantics.json loaded\n" ] } ], "source": [ "selected_latent_space = valid_latent_spaces[\n", " str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n", "]\n", "\n", "selected_feature_model = valid_feature_models[\n", " str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n", "]\n", "\n", "k = int(input(\"Enter value of k: \"))\n", "if k < 1:\n", " raise ValueError(\"k should be a positive integer\")\n", "\n", "selected_dim_reduction_method = str(\n", " input(\n", " \"Enter dimensionality reduction method - one of \"\n", " + str(list(valid_dim_reduction_methods.keys()))\n", " )\n", ")\n", "\n", "label = int(input(\"Enter label: \"))\n", "if label < 0 and label > 100:\n", " raise ValueError(\"k should be between 0 and 100\")\n", "\n", "knum = int(input(\"Enter value of knum: \"))\n", "if knum < 1:\n", " raise ValueError(\"knum should be a positive integer\")\n", "\n", "label_rep = calculate_label_representatives(fd_collection, label, selected_feature_model)\n", "\n", "match selected_latent_space:\n", " case \"\":\n", " if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n", " else:\n", " print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n", " case \"cp\":\n", " if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n", " print(f\"{selected_feature_model}-cp-{k}-semantics.json loaded\")\n", " else: \n", " print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\")\n", " case _:\n", " if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n", " data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n", " print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n", " else:\n", " print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n" ] }, { "cell_type": "code", "execution_count": 211, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls1_ls4(latent_space, dim_reduction, data, label, label_rep):\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " if len(S.shape) == 1:\n", " S = np.diag(S)\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", "\n", " if latent_space == \"image_sim\":\n", " label_vectors = []\n", " length = len(U)\n", " for i in range(length):\n", " if all_images[i][\"true_label\"] == label:\n", " label_vectors.append(U[i])\n", " label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n", " \n", " comparison_feature_space = np.matmul(U, S)\n", "\n", " if latent_space == \"image_sim\":\n", " comparison_vector = np.matmul(label_rep, S)\n", " else:\n", " comparison_vector = np.matmul(np.matmul(label_rep, V), S)\n", " \n", " case \"nmf\":\n", " H = np.array(data['semantic-feature'])\n", " comparison_feature_space = W = np.array(data['image-semantic'])\n", " if latent_space == \"image_sim\":\n", " label_vectors = []\n", " length = len(W)\n", " for i in range(length):\n", " if all_images[i][\"true_label\"] == label:\n", " label_vectors.append(W[i])\n", " label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n", "\n", " if latent_space == \"image_sim\":\n", " comparison_vector = label_rep\n", " else:\n", " comparison_vector = np.matmul(label_rep, np.transpose(H))\n", "\n", " case \"kmeans\":\n", " comparison_vector = []\n", " comparison_feature_space = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantic-feature\"])\n", "\n", " if latent_space == \"image_sim\":\n", " sim_matrix = np.array(data[\"sim-matrix\"])\n", " label_vectors = []\n", " length = len(sim_matrix)\n", " for i in range(length):\n", " if all_images[i][\"true_label\"] == label:\n", " label_vectors.append(sim_matrix[i])\n", " label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n", "\n", "\n", " for centroid in S:\n", " comparison_vector.append(math.dist(label_rep, centroid))\n", "\n", " n = len(comparison_feature_space)\n", "\n", " distances = []\n", " for i in range(n):\n", " if all_images[i][\"true_label\"] != label:\n", " distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"], \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", "\n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)\n", "\n", " similar_labels = []\n", " unique_labels = set()\n", "\n", " for img in distances:\n", " if img['label'] not in unique_labels:\n", " similar_labels.append(img)\n", " unique_labels.add(img[\"label\"])\n", "\n", " if len(similar_labels) == knum:\n", " break\n", "\n", "\n", " for x in similar_labels:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 233, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls2(data, label):\n", "\n", " LS = np.array(data[\"label-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", "\n", " if len(S.shape) == 1:\n", " S = np.diag(S)\n", "\n", " comparison_vector = LS[label]\n", " comparison_feature_space = np.matmul(LS, S)\n", "\n", " distances = []\n", "\n", " n = len(comparison_feature_space)\n", " for i in range(n):\n", " if i != label:\n", " distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", " \n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n", "\n", " for x in distances:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 234, "metadata": {}, "outputs": [], "source": [ "def extract_similarities_ls3(dim_reduction, data, label):\n", "\n", " match dim_reduction:\n", "\n", " case 'svd':\n", " U = np.array(data[\"image-semantic\"])\n", " S = np.array(data[\"semantics-core\"])\n", " V = np.transpose(np.array(data[\"semantic-feature\"]))\n", "\n", " comparison_feature_space = np.matmul(U, S)\n", " comparison_vector = comparison_feature_space[label]\n", " \n", " case \"nmf\":\n", " comparison_feature_space = np.array(data['image-semantic'])\n", " comparison_vector = comparison_feature_space[label]\n", "\n", " case \"kmeans\":\n", " comparison_feature_space = np.array(data[\"image-semantic\"])\n", " comparison_vector = comparison_feature_space[label]\n", "\n", " n = len(comparison_feature_space)\n", " distances = []\n", " for i in range(n):\n", " if i != label:\n", " distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n", "\n", " distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n", "\n", " for x in distances:\n", " print(x)" ] }, { "cell_type": "code", "execution_count": 235, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'label': 2, 'distance': 0.9999999999999999}\n", "{'label': 4, 'distance': 0.9999999999999999}\n", "{'label': 6, 'distance': 0.9999999999999999}\n", "{'label': 7, 'distance': 0.9999999999999999}\n", "{'label': 8, 'distance': 0.9999999999999999}\n", "{'label': 9, 'distance': 0.9999999999999999}\n", "{'label': 10, 'distance': 0.9999999999999999}\n", "{'label': 11, 'distance': 0.9999999999999999}\n", "{'label': 13, 'distance': 0.9999999999999999}\n", "{'label': 14, 'distance': 0.9999999999999999}\n" ] } ], "source": [ "match selected_latent_space:\n", "\n", " case \"\" | \"image_sim\":\n", " \n", " extract_similarities_ls1_ls4(selected_latent_space, selected_dim_reduction_method, data, label, label_rep)\n", "\n", " case \"label_sim\":\n", "\n", " extract_similarities_ls3(selected_dim_reduction_method, data, label)\n", "\n", " case \"cp\":\n", "\n", " extract_similarities_ls2(data, label)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 2 }