213 lines
7.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
"from utils import *\n",
"warnings.filterwarnings('ignore')\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Applying svd on the given similarity matrix to get 10 latent semantics (showing only top 10 label-weight pairs for each latent semantic)...\n",
"Latent semantic no. 0\n",
"label\t28\t-\tWeight\t0.2583354411312026\n",
"label\t29\t-\tWeight\t0.2301362547676974\n",
"label\t33\t-\tWeight\t0.2129183683279978\n",
"label\t9\t-\tWeight\t0.17625685452423093\n",
"label\t95\t-\tWeight\t0.16277551497836534\n",
"label\t47\t-\tWeight\t0.1424860388015467\n",
"label\t39\t-\tWeight\t0.1349747704005884\n",
"label\t30\t-\tWeight\t0.13251434767496492\n",
"label\t52\t-\tWeight\t0.12669069496270755\n",
"label\t8\t-\tWeight\t0.1257730807471899\n",
"Latent semantic no. 1\n",
"label\t96\t-\tWeight\t0.2666765976054894\n",
"label\t97\t-\tWeight\t0.19087869496500426\n",
"label\t25\t-\tWeight\t0.17776094778851348\n",
"label\t3\t-\tWeight\t0.1759798805642099\n",
"label\t98\t-\tWeight\t0.16951497899752574\n",
"label\t22\t-\tWeight\t0.1667032655640346\n",
"label\t24\t-\tWeight\t0.16034180060184824\n",
"label\t19\t-\tWeight\t0.15345532912389587\n",
"label\t52\t-\tWeight\t0.13271640119612757\n",
"label\t29\t-\tWeight\t0.12856388746021633\n",
"Latent semantic no. 2\n",
"label\t46\t-\tWeight\t0.21813474254675366\n",
"label\t79\t-\tWeight\t0.19091788352587957\n",
"label\t55\t-\tWeight\t0.1871080482210247\n",
"label\t56\t-\tWeight\t0.18322792605578184\n",
"label\t78\t-\tWeight\t0.17506936966351683\n",
"label\t98\t-\tWeight\t0.1733164832137484\n",
"label\t22\t-\tWeight\t0.17114312653027375\n",
"label\t38\t-\tWeight\t0.16928636840289424\n",
"label\t45\t-\tWeight\t0.1567042877228484\n",
"label\t4\t-\tWeight\t0.15108693899889344\n",
"Latent semantic no. 3\n",
"label\t96\t-\tWeight\t0.2736613529052896\n",
"label\t98\t-\tWeight\t0.218185914155306\n",
"label\t22\t-\tWeight\t0.1963451355822489\n",
"label\t3\t-\tWeight\t0.17627732148468614\n",
"label\t39\t-\tWeight\t0.1728992502839298\n",
"label\t52\t-\tWeight\t0.15597562436756945\n",
"label\t51\t-\tWeight\t0.1291470561734402\n",
"label\t30\t-\tWeight\t0.12453129554714541\n",
"label\t18\t-\tWeight\t0.1236867360720947\n",
"label\t38\t-\tWeight\t0.12184856229773917\n",
"Latent semantic no. 4\n",
"label\t6\t-\tWeight\t0.23875690719216863\n",
"label\t67\t-\tWeight\t0.21007869938490106\n",
"label\t63\t-\tWeight\t0.18822840034389135\n",
"label\t14\t-\tWeight\t0.18738002200878218\n",
"label\t87\t-\tWeight\t0.17508576062247283\n",
"label\t23\t-\tWeight\t0.167492867766091\n",
"label\t15\t-\tWeight\t0.15522709562173342\n",
"label\t61\t-\tWeight\t0.13244353806854162\n",
"label\t45\t-\tWeight\t0.12833204093005665\n",
"label\t68\t-\tWeight\t0.12622315521729294\n",
"Latent semantic no. 5\n",
"label\t30\t-\tWeight\t0.17385975982344382\n",
"label\t25\t-\tWeight\t0.14655711054814133\n",
"label\t39\t-\tWeight\t0.13307896633493813\n",
"label\t68\t-\tWeight\t0.12851498788897622\n",
"label\t24\t-\tWeight\t0.12828250585375986\n",
"label\t0\t-\tWeight\t0.12500243174429157\n",
"label\t1\t-\tWeight\t0.12371257574727512\n",
"label\t77\t-\tWeight\t0.12370279647800499\n",
"label\t89\t-\tWeight\t0.12233344688386875\n",
"label\t83\t-\tWeight\t0.11445596984835589\n",
"Latent semantic no. 6\n",
"label\t17\t-\tWeight\t0.2335282879255542\n",
"label\t48\t-\tWeight\t0.19418795795666355\n",
"label\t21\t-\tWeight\t0.19013440200231033\n",
"label\t85\t-\tWeight\t0.17503295059460947\n",
"label\t11\t-\tWeight\t0.14933372636956993\n",
"label\t1\t-\tWeight\t0.1384254243377172\n",
"label\t0\t-\tWeight\t0.13078647401074162\n",
"label\t57\t-\tWeight\t0.11374248801163754\n",
"label\t10\t-\tWeight\t0.10468223841103744\n",
"label\t99\t-\tWeight\t0.10191451131216464\n",
"Latent semantic no. 7\n",
"label\t82\t-\tWeight\t0.23372455436757703\n",
"label\t95\t-\tWeight\t0.21795238756371887\n",
"label\t60\t-\tWeight\t0.18080422229063045\n",
"label\t16\t-\tWeight\t0.1806105172209771\n",
"label\t27\t-\tWeight\t0.17365150902149876\n",
"label\t59\t-\tWeight\t0.17250044548228938\n",
"label\t26\t-\tWeight\t0.1661853291143862\n",
"label\t13\t-\tWeight\t0.16331211225170805\n",
"label\t34\t-\tWeight\t0.1523080193090529\n",
"label\t67\t-\tWeight\t0.13577900574984025\n",
"Latent semantic no. 8\n",
"label\t53\t-\tWeight\t0.2259481751468642\n",
"label\t37\t-\tWeight\t0.21583443408756542\n",
"label\t76\t-\tWeight\t0.20483376297311964\n",
"label\t44\t-\tWeight\t0.1690198227623472\n",
"label\t68\t-\tWeight\t0.1650723880318989\n",
"label\t28\t-\tWeight\t0.15689929414378492\n",
"label\t14\t-\tWeight\t0.1564371673909956\n",
"label\t54\t-\tWeight\t0.1553627917623035\n",
"label\t51\t-\tWeight\t0.14380435363337046\n",
"label\t36\t-\tWeight\t0.13510425005259438\n",
"Latent semantic no. 9\n",
"label\t19\t-\tWeight\t0.11741024839079275\n",
"label\t40\t-\tWeight\t0.11107319334138463\n",
"label\t53\t-\tWeight\t0.11058750626248925\n",
"label\t51\t-\tWeight\t0.10794606425819818\n",
"label\t96\t-\tWeight\t0.10735468567860716\n",
"label\t55\t-\tWeight\t0.10731282010915796\n",
"label\t50\t-\tWeight\t0.10703093662670059\n",
"label\t1\t-\tWeight\t0.10651036503732043\n",
"label\t79\t-\tWeight\t0.10640855392103846\n",
"label\t47\t-\tWeight\t0.10594110421348357\n"
]
}
],
"source": [
"selected_feature_model = valid_feature_models[\n",
" str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n",
"]\n",
"\n",
"k = int(input(\"Enter value of k: \"))\n",
"if k < 1:\n",
" raise ValueError(\"k should be a positive integer\")\n",
"\n",
"selected_dim_reduction_method = str(\n",
" input(\n",
" \"Enter dimensionality reduction method - one of \"\n",
" + str(list(valid_dim_reduction_methods.keys()))\n",
" )\n",
")\n",
"\n",
"label_sim_matrix = find_label_label_similarity(fd_collection,selected_feature_model)\n",
"\n",
"extract_latent_semantics_from_sim_matrix(\n",
" label_sim_matrix,\n",
" selected_feature_model,\n",
" \"label\",\n",
" k,\n",
" selected_dim_reduction_method,\n",
" top_images=10,\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}