mirror of
https://github.com/20kaushik02/CSE515_MWDB_Project.git
synced 2025-12-06 09:24:07 +00:00
330 lines
11 KiB
Plaintext
330 lines
11 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 207,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"The autoreload extension is already loaded. To reload it, use:\n",
|
|
" %reload_ext autoreload\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 208,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"import os\n",
|
|
"import numpy as np\n",
|
|
"from utils import *\n",
|
|
"import math\n",
|
|
"import heapq"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 209,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n",
|
|
"all_images = fd_collection.find()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 210,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"cm_fd-cp-10-semantics.json loaded\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"selected_latent_space = valid_latent_spaces[\n",
|
|
" str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n",
|
|
"]\n",
|
|
"\n",
|
|
"selected_feature_model = valid_feature_models[\n",
|
|
" str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n",
|
|
"]\n",
|
|
"\n",
|
|
"k = int(input(\"Enter value of k: \"))\n",
|
|
"if k < 1:\n",
|
|
" raise ValueError(\"k should be a positive integer\")\n",
|
|
"\n",
|
|
"selected_dim_reduction_method = str(\n",
|
|
" input(\n",
|
|
" \"Enter dimensionality reduction method - one of \"\n",
|
|
" + str(list(valid_dim_reduction_methods.keys()))\n",
|
|
" )\n",
|
|
")\n",
|
|
"\n",
|
|
"label = int(input(\"Enter label: \"))\n",
|
|
"if label < 0 and label > 100:\n",
|
|
" raise ValueError(\"label should be between 0 and 100\")\n",
|
|
"\n",
|
|
"knum = int(input(\"Enter value of knum: \"))\n",
|
|
"if knum < 1:\n",
|
|
" raise ValueError(\"knum should be a positive integer\")\n",
|
|
"\n",
|
|
"label_rep = calculate_label_representatives(fd_collection, label, selected_feature_model)\n",
|
|
"\n",
|
|
"match selected_latent_space:\n",
|
|
" case \"\":\n",
|
|
" if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
|
|
" print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n",
|
|
" else:\n",
|
|
" print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n",
|
|
" case \"cp\":\n",
|
|
" if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n",
|
|
" print(f\"{selected_feature_model}-cp-{k}-semantics.json loaded\")\n",
|
|
" else: \n",
|
|
" print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\")\n",
|
|
" case _:\n",
|
|
" if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
|
|
" print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json loaded\")\n",
|
|
" else:\n",
|
|
" print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 211,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_similarities_ls1_ls4(latent_space, dim_reduction, data, label, label_rep):\n",
|
|
"\n",
|
|
" match dim_reduction:\n",
|
|
"\n",
|
|
" case 'svd':\n",
|
|
" U = np.array(data[\"image-semantic\"])\n",
|
|
" S = np.array(data[\"semantics-core\"])\n",
|
|
" if len(S.shape) == 1:\n",
|
|
" S = np.diag(S)\n",
|
|
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
|
|
"\n",
|
|
" if latent_space == \"image_sim\":\n",
|
|
" label_vectors = []\n",
|
|
" length = len(U)\n",
|
|
" for i in range(length):\n",
|
|
" if all_images[i][\"true_label\"] == label:\n",
|
|
" label_vectors.append(U[i])\n",
|
|
" label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n",
|
|
" \n",
|
|
" comparison_feature_space = np.matmul(U, S)\n",
|
|
"\n",
|
|
" if latent_space == \"image_sim\":\n",
|
|
" comparison_vector = np.matmul(label_rep, S)\n",
|
|
" else:\n",
|
|
" comparison_vector = np.matmul(np.matmul(label_rep, V), S)\n",
|
|
" \n",
|
|
" case \"nmf\":\n",
|
|
" H = np.array(data['semantic-feature'])\n",
|
|
" comparison_feature_space = W = np.array(data['image-semantic'])\n",
|
|
" if latent_space == \"image_sim\":\n",
|
|
" label_vectors = []\n",
|
|
" length = len(W)\n",
|
|
" for i in range(length):\n",
|
|
" if all_images[i][\"true_label\"] == label:\n",
|
|
" label_vectors.append(W[i])\n",
|
|
" label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n",
|
|
"\n",
|
|
" if latent_space == \"image_sim\":\n",
|
|
" comparison_vector = label_rep\n",
|
|
" else:\n",
|
|
" comparison_vector = np.matmul(label_rep, np.transpose(H))\n",
|
|
"\n",
|
|
" case \"kmeans\":\n",
|
|
" comparison_vector = []\n",
|
|
" comparison_feature_space = np.array(data[\"image-semantic\"])\n",
|
|
" S = np.array(data[\"semantic-feature\"])\n",
|
|
"\n",
|
|
" if latent_space == \"image_sim\":\n",
|
|
" sim_matrix = np.array(data[\"sim-matrix\"])\n",
|
|
" label_vectors = []\n",
|
|
" length = len(sim_matrix)\n",
|
|
" for i in range(length):\n",
|
|
" if all_images[i][\"true_label\"] == label:\n",
|
|
" label_vectors.append(sim_matrix[i])\n",
|
|
" label_rep = [sum(col) / len(col) for col in zip(*label_vectors)]\n",
|
|
"\n",
|
|
"\n",
|
|
" for centroid in S:\n",
|
|
" comparison_vector.append(math.dist(label_rep, centroid))\n",
|
|
"\n",
|
|
" n = len(comparison_feature_space)\n",
|
|
"\n",
|
|
" distances = []\n",
|
|
" for i in range(n):\n",
|
|
" if all_images[i][\"true_label\"] != label:\n",
|
|
" distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"], \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
|
|
"\n",
|
|
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)\n",
|
|
"\n",
|
|
" similar_labels = []\n",
|
|
" unique_labels = set()\n",
|
|
"\n",
|
|
" for img in distances:\n",
|
|
" if img['label'] not in unique_labels:\n",
|
|
" similar_labels.append(img)\n",
|
|
" unique_labels.add(img[\"label\"])\n",
|
|
"\n",
|
|
" if len(similar_labels) == knum:\n",
|
|
" break\n",
|
|
"\n",
|
|
"\n",
|
|
" for x in similar_labels:\n",
|
|
" print(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 233,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_similarities_ls2(data, label):\n",
|
|
"\n",
|
|
" LS = np.array(data[\"label-semantic\"])\n",
|
|
" S = np.array(data[\"semantics-core\"])\n",
|
|
"\n",
|
|
" if len(S.shape) == 1:\n",
|
|
" S = np.diag(S)\n",
|
|
"\n",
|
|
" comparison_feature_space = np.matmul(LS, S)\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
"\n",
|
|
" distances = []\n",
|
|
"\n",
|
|
" n = len(comparison_feature_space)\n",
|
|
" for i in range(n):\n",
|
|
" if i != label:\n",
|
|
" distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
|
|
" \n",
|
|
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n",
|
|
"\n",
|
|
" for x in distances:\n",
|
|
" print(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 234,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_similarities_ls3(dim_reduction, data, label):\n",
|
|
"\n",
|
|
" match dim_reduction:\n",
|
|
"\n",
|
|
" case 'svd':\n",
|
|
" U = np.array(data[\"image-semantic\"])\n",
|
|
" S = np.array(data[\"semantics-core\"])\n",
|
|
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
|
|
"\n",
|
|
" comparison_feature_space = np.matmul(U, S)\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
" \n",
|
|
" case \"nmf\":\n",
|
|
" comparison_feature_space = np.array(data['image-semantic'])\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
"\n",
|
|
" case \"kmeans\":\n",
|
|
" comparison_feature_space = np.array(data[\"image-semantic\"])\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
"\n",
|
|
" n = len(comparison_feature_space)\n",
|
|
" distances = []\n",
|
|
" for i in range(n):\n",
|
|
" if i != label:\n",
|
|
" distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
|
|
"\n",
|
|
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n",
|
|
"\n",
|
|
" for x in distances:\n",
|
|
" print(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 235,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{'label': 2, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 4, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 6, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 7, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 8, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 9, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 10, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 11, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 13, 'distance': 0.9999999999999999}\n",
|
|
"{'label': 14, 'distance': 0.9999999999999999}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"match selected_latent_space:\n",
|
|
"\n",
|
|
" case \"\" | \"image_sim\":\n",
|
|
" \n",
|
|
" extract_similarities_ls1_ls4(selected_latent_space, selected_dim_reduction_method, data, label, label_rep)\n",
|
|
"\n",
|
|
" case \"label_sim\":\n",
|
|
"\n",
|
|
" extract_similarities_ls3(selected_dim_reduction_method, data, label)\n",
|
|
"\n",
|
|
" case \"cp\":\n",
|
|
"\n",
|
|
" extract_similarities_ls2(data, label)\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|