2023-10-12 16:41:06 -07:00

133 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"from utils import *"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"selected_latent_space = valid_latent_spaces[\n",
" str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n",
"]\n",
"\n",
"selected_feature_model = valid_feature_models[\n",
" str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n",
"]\n",
"\n",
"k = int(input(\"Enter value of k: \"))\n",
"if k < 1:\n",
" raise ValueError(\"k should be a positive integer\")\n",
"\n",
"selected_dim_reduction_method = str(\n",
" input(\n",
" \"Enter dimensionality reduction method - one of \"\n",
" + str(list(valid_dim_reduction_methods.keys()))\n",
" )\n",
")\n",
"\n",
"label = int(input(\"Enter label: \"))\n",
"if label < 0 and label > 100:\n",
" raise ValueError(\"k should be between 0 and 100\")\n",
"\n",
"\n",
"match selected_latent_space:\n",
" case \"\":\n",
" if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
" data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
" else:\n",
" print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n",
" case \"cp\":\n",
" if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n",
" data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n",
" else:\n",
" \n",
" print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\" )\n",
" case _:\n",
" if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
" data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
" else:\n",
" print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(101, 10)\n",
"(10, 10)\n",
"(10, 101)\n"
]
}
],
"source": [
"match selected_latent_space:\n",
"\n",
" case \"label_sim\":\n",
"\n",
" extract_simila\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}