mirror of
https://github.com/20kaushik02/CSE515_MWDB_Project.git
synced 2025-12-06 08:04:06 +00:00
297 lines
10 KiB
Plaintext
297 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 62,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"The autoreload extension is already loaded. To reload it, use:\n",
|
|
" %reload_ext autoreload\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 63,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"import os\n",
|
|
"import numpy as np\n",
|
|
"from utils import *\n",
|
|
"import math\n",
|
|
"import heapq"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 64,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")\n",
|
|
"all_images = fd_collection.find()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 65,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"selected_latent_space = valid_latent_spaces[\n",
|
|
" str(input(\"Enter latent space - one of \" + str(list(valid_latent_spaces.keys()))))\n",
|
|
"]\n",
|
|
"\n",
|
|
"selected_feature_model = valid_feature_models[\n",
|
|
" str(input(\"Enter feature model - one of \" + str(list(valid_feature_models.keys()))))\n",
|
|
"]\n",
|
|
"\n",
|
|
"k = int(input(\"Enter value of k: \"))\n",
|
|
"if k < 1:\n",
|
|
" raise ValueError(\"k should be a positive integer\")\n",
|
|
"\n",
|
|
"selected_dim_reduction_method = str(\n",
|
|
" input(\n",
|
|
" \"Enter dimensionality reduction method - one of \"\n",
|
|
" + str(list(valid_dim_reduction_methods.keys()))\n",
|
|
" )\n",
|
|
")\n",
|
|
"\n",
|
|
"label = int(input(\"Enter label: \"))\n",
|
|
"if label < 0 and label > 100:\n",
|
|
" raise ValueError(\"k should be between 0 and 100\")\n",
|
|
"\n",
|
|
"knum = int(input(\"Enter value of knum: \"))\n",
|
|
"if knum < 1:\n",
|
|
" raise ValueError(\"knum should be a positive integer\")\n",
|
|
"\n",
|
|
"label_rep = calculate_label_representatives(fd_collection, label, selected_feature_model)\n",
|
|
"\n",
|
|
"match selected_latent_space:\n",
|
|
" case \"\":\n",
|
|
" if os.path.exists(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
|
|
" else:\n",
|
|
" print(f\"{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n",
|
|
" case \"cp\":\n",
|
|
" if os.path.exists(f\"{selected_feature_model}-cp-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_feature_model}-cp-{k}-semantics.json\"))\n",
|
|
" else:\n",
|
|
" \n",
|
|
" print(f\"{selected_feature_model}-cp-{k}-semantics.json does not exist\" )\n",
|
|
" case _:\n",
|
|
" if os.path.exists(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"):\n",
|
|
" data = json.load(open(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json\"))\n",
|
|
" else:\n",
|
|
" print(f\"{selected_latent_space}-{selected_feature_model}-{selected_dim_reduction_method}-{k}-semantics.json does not exist\" )\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 66,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_similarities_ls1(dim_reduction, data, label, label_rep):\n",
|
|
"\n",
|
|
" match dim_reduction:\n",
|
|
"\n",
|
|
" case 'svd':\n",
|
|
" U = np.array(data[\"image-semantic\"])\n",
|
|
" S = np.array(data[\"semantics-core\"])\n",
|
|
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
|
|
"\n",
|
|
" comparison_feature_space = np.matmul(U, S)\n",
|
|
" comparison_vector = np.matmul(np.matmul(label_rep, V), S)\n",
|
|
" \n",
|
|
" case \"nmf\":\n",
|
|
" H = np.array(data['semantic-feature'])\n",
|
|
" comparison_feature_space = np.array(data['image-semantic'])\n",
|
|
" comparison_vector = np.matmul(label_rep, np.transpose(H))\n",
|
|
"\n",
|
|
" case \"\"\n",
|
|
"\n",
|
|
" print(comparison_feature_space.shape)\n",
|
|
" n = len(comparison_feature_space)\n",
|
|
" \n",
|
|
" distances = []\n",
|
|
" for i in range(n):\n",
|
|
" if i != label:\n",
|
|
" distances.append({\"image_id\": i, \"label\": all_images[i][\"true_label\"],\"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
|
|
"\n",
|
|
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)\n",
|
|
"\n",
|
|
" similar_labels = []\n",
|
|
" unique_labels = set()\n",
|
|
"\n",
|
|
" for img in distances:\n",
|
|
" if img['label'] not in unique_labels:\n",
|
|
" similar_labels.append(img)\n",
|
|
" unique_labels.add(img[\"label\"])\n",
|
|
"\n",
|
|
" if len(similar_labels) == knum:\n",
|
|
" break\n",
|
|
"\n",
|
|
"\n",
|
|
" for x in similar_labels:\n",
|
|
" print(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 67,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_similarities_ls3(dim_reduction, data, label):\n",
|
|
"\n",
|
|
" match dim_reduction:\n",
|
|
"\n",
|
|
" case 'svd':\n",
|
|
" U = np.array(data[\"image-semantic\"])\n",
|
|
" S = np.array(data[\"semantics-core\"])\n",
|
|
" V = np.transpose(np.array(data[\"semantic-feature\"]))\n",
|
|
"\n",
|
|
" comparison_feature_space = np.matmul(U, S)\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
" \n",
|
|
" case \"nmf\":\n",
|
|
" comparison_feature_space = np.array(data['image-semantic'])\n",
|
|
" comparison_vector = comparison_feature_space[label]\n",
|
|
"\n",
|
|
" n = len(comparison_feature_space)\n",
|
|
" distances = []\n",
|
|
" for i in range(n):\n",
|
|
" if i != label:\n",
|
|
" distances.append({\"label\": i, \"distance\": math.dist(comparison_vector, comparison_feature_space[i])})\n",
|
|
"\n",
|
|
" distances = sorted(distances, key=lambda x: x[\"distance\"], reverse=False)[:knum]\n",
|
|
"\n",
|
|
" for x in distances:\n",
|
|
" print(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 68,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{'label': 4, 'distance': 0.9931105104385977}\n",
|
|
"{'label': 92, 'distance': 1.1209182190288185}\n",
|
|
"{'label': 65, 'distance': 1.2107732156271573}\n",
|
|
"{'label': 21, 'distance': 1.5053484881391492}\n",
|
|
"{'label': 2, 'distance': 1.698430977110922}\n",
|
|
"{'label': 100, 'distance': 1.8636096001573115}\n",
|
|
"{'label': 95, 'distance': 2.003755992104511}\n",
|
|
"{'label': 11, 'distance': 2.069066281581252}\n",
|
|
"{'label': 60, 'distance': 2.070894540798742}\n",
|
|
"{'label': 88, 'distance': 2.0925931256031}\n",
|
|
"{'label': 43, 'distance': 2.1056747598887218}\n",
|
|
"{'label': 33, 'distance': 2.165431005806523}\n",
|
|
"{'label': 90, 'distance': 2.174626607979455}\n",
|
|
"{'label': 83, 'distance': 2.188609736988739}\n",
|
|
"{'label': 68, 'distance': 2.209562202827548}\n",
|
|
"{'label': 59, 'distance': 2.27130902508622}\n",
|
|
"{'label': 35, 'distance': 2.276916489521396}\n",
|
|
"{'label': 70, 'distance': 2.283111150497479}\n",
|
|
"{'label': 53, 'distance': 2.2871296343421075}\n",
|
|
"{'label': 42, 'distance': 2.2943393449254192}\n",
|
|
"{'label': 1, 'distance': 2.299515307388396}\n",
|
|
"{'label': 89, 'distance': 2.300444335700286}\n",
|
|
"{'label': 64, 'distance': 2.3105619552648906}\n",
|
|
"{'label': 47, 'distance': 2.3258018764464126}\n",
|
|
"{'label': 28, 'distance': 2.33793138436563}\n",
|
|
"{'label': 91, 'distance': 2.348432279582375}\n",
|
|
"{'label': 66, 'distance': 2.378823252101462}\n",
|
|
"{'label': 52, 'distance': 2.3845656934663344}\n",
|
|
"{'label': 17, 'distance': 2.3851103284430946}\n",
|
|
"{'label': 29, 'distance': 2.392106657184808}\n",
|
|
"{'label': 46, 'distance': 2.4059349825734024}\n",
|
|
"{'label': 98, 'distance': 2.425981349727766}\n",
|
|
"{'label': 12, 'distance': 2.4320238781945878}\n",
|
|
"{'label': 5, 'distance': 2.433658250868235}\n",
|
|
"{'label': 72, 'distance': 2.4438014606638965}\n",
|
|
"{'label': 96, 'distance': 2.446857205149324}\n",
|
|
"{'label': 18, 'distance': 2.4473786634019508}\n",
|
|
"{'label': 0, 'distance': 2.4482053195868017}\n",
|
|
"{'label': 49, 'distance': 2.451590137889849}\n",
|
|
"{'label': 14, 'distance': 2.4717097207497414}\n",
|
|
"{'label': 85, 'distance': 2.473715190942228}\n",
|
|
"{'label': 19, 'distance': 2.4754273396104534}\n",
|
|
"{'label': 51, 'distance': 2.4810475345400316}\n",
|
|
"{'label': 75, 'distance': 2.4850838216864224}\n",
|
|
"{'label': 93, 'distance': 2.4867224184341175}\n",
|
|
"{'label': 44, 'distance': 2.498509815319209}\n",
|
|
"{'label': 82, 'distance': 2.501339416798757}\n",
|
|
"{'label': 54, 'distance': 2.506342353975533}\n",
|
|
"{'label': 9, 'distance': 2.5065630929096394}\n",
|
|
"{'label': 41, 'distance': 2.51345667730748}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"match selected_latent_space:\n",
|
|
"\n",
|
|
" case \"\":\n",
|
|
" \n",
|
|
" extract_similarities_ls1(selected_dim_reduction_method, data, label, label_rep)\n",
|
|
"\n",
|
|
" case \"label_sim\":\n",
|
|
"\n",
|
|
" extract_similarities_ls3(selected_dim_reduction_method, data, label)\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|