mirror of
https://github.com/20kaushik02/CSE515_MWDB_Project.git
synced 2025-12-06 13:04:07 +00:00
changed latent semantic storage, LDA is latent dirichlet allocation and image-weight arrangement is reversed
143 lines
4.7 KiB
Plaintext
143 lines
4.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"from pymongo import MongoClient\n",
|
|
"from task0a import *\n",
|
|
"import scipy\n",
|
|
"import numpy as np\n",
|
|
"from sklearn.decomposition import NMF\n",
|
|
"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n",
|
|
"from sklearn.cluster import KMeans\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"client = MongoClient()\n",
|
|
"client = MongoClient(host=\"localhost\", port=27017)\n",
|
|
"\n",
|
|
"# Select the database\n",
|
|
"db = client.Multimedia_Web_DBs\n",
|
|
"\n",
|
|
"# Fetch all documents from the collection and then sort them by \"_id\"\n",
|
|
"feature_descriptors = list(db.Caltech101_Feature_Descriptors.find({}))\n",
|
|
"feature_descriptors = sorted(list(db.Caltech101_Feature_Descriptors.find({})), key=lambda x: x[\"_id\"], reverse=False)\n",
|
|
"\n",
|
|
"num_labels = 101"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extractKLatentSemantics(k, feature_model, dim_reduction):\n",
|
|
"\n",
|
|
" feature_vectors = [x[feature_model] for x in feature_descriptors if x[\"_id\"] % 2 == 0]\n",
|
|
" feature_labels = [x[\"label\"] for x in feature_descriptors if x[\"_id\"] % 2 == 0]\n",
|
|
" feature_ids = [x[\"_id\"] for x in feature_descriptors if x[\"_id\"] % 2 == 0]\n",
|
|
"\n",
|
|
" filename = ''\n",
|
|
"\n",
|
|
"\n",
|
|
" match dim_reduction:\n",
|
|
"\n",
|
|
" case 1:\n",
|
|
" filename = f'{feature_model}-svd-semantics.json'\n",
|
|
" U, S, Vh = scipy.sparse.linalg.svds(np.array(feature_vectors), k=k)\n",
|
|
" k_latent_semantics = sorted(list(zip(feature_ids, U.tolist())), key = lambda x: x[1][0], reverse = True)\n",
|
|
"\n",
|
|
" case 2:\n",
|
|
" filename = f'{feature_model}-nnmf-semantics.json'\n",
|
|
" model = NMF(n_components = k, init = 'random', solver = 'cd', alpha_H = 0.01, alpha_W = 0.01, max_iter = 10000)\n",
|
|
" min_value = np.min(feature_vectors)\n",
|
|
" feature_vectors_shifted = feature_vectors - min_value\n",
|
|
" U = model.fit_transform(np.array(feature_vectors_shifted))\n",
|
|
" k_latent_semantics = sorted(list(zip(feature_ids, U.tolist())), key = lambda x: x[1][0], reverse = True)\n",
|
|
"\n",
|
|
" case 3:\n",
|
|
" filename = f'{feature_model}-lda-semantics.json'\n",
|
|
" U = LinearDiscriminantAnalysis(n_components = k).fit_transform(feature_vectors, feature_labels)\n",
|
|
" k_latent_semantics = sorted(list(zip(feature_ids, U.tolist())), key = lambda x: x[1][0], reverse = True)\n",
|
|
"\n",
|
|
" case 4:\n",
|
|
" filename = f'{feature_model}-kmeans-semantics.json'\n",
|
|
" kmeans = KMeans(n_clusters = k)\n",
|
|
" kmeans.fit(feature_vectors)\n",
|
|
" U = kmeans.transform(feature_vectors)\n",
|
|
" k_latent_semantics = sorted(list(zip(feature_ids, U.tolist())), key = lambda x: x[1][0], reverse = True)\n",
|
|
" \n",
|
|
" k_latent_semantics = [{\"_id\": item[0], \"semantics\": item[1]} for item in k_latent_semantics]\n",
|
|
" with open(filename, 'w', encoding='utf-8') as f:\n",
|
|
" json.dump(k_latent_semantics, f, ensure_ascii = False)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def main():\n",
|
|
"\n",
|
|
" # Load dataset\n",
|
|
"\n",
|
|
" # User input for Image ID\n",
|
|
" k = int(input(\"Enter k: \"))\n",
|
|
"\n",
|
|
" features = ['color_moments', 'hog', 'layer3', 'avgpool', 'fc']\n",
|
|
"\n",
|
|
" # User input for feature model to extract\n",
|
|
" print(\"\\n1: Color moments\")\n",
|
|
" print(\"2: HOG\")\n",
|
|
" print(\"3: Resnet50 Avgpool layer\")\n",
|
|
" print(\"4: Resnet50 Layer 3\")\n",
|
|
" print(\"5: Resnet50 FC layer\")\n",
|
|
" feature_model = features[int(input(\"Select the feature model: \")) - 1]\n",
|
|
"\n",
|
|
" print(\"\\n1. SVD\")\n",
|
|
" print(\"2. NNMF\")\n",
|
|
" print(\"3. LDA\")\n",
|
|
" print(\"4. k-means\")\n",
|
|
" dim_reduction = int(input(\"Select the dimensionality reduction technique: \"))\n",
|
|
"\n",
|
|
" extractKLatentSemantics(k, feature_model, dim_reduction)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"if __name__ == \"__main__\":\n",
|
|
" main()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"language_info": {
|
|
"name": "python"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|