did not do part 2. but must complete even if of no use.

This commit is contained in:
2024-03-17 22:16:52 -07:00
parent 56c521ae2e
commit 582233502d
1273 changed files with 9072 additions and 0 deletions

View File

@@ -0,0 +1,39 @@
from facenet_pytorch import MTCNN, training
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, RandomSampler
from tqdm import tqdm
import time
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Running on device "{device}"')
mtcnn = MTCNN(device=device)
batch_size = 32
# Generate data loader
ds = datasets.ImageFolder(
root='data/test_images/',
transform=transforms.Resize((512, 512))
)
dl = DataLoader(
dataset=ds,
num_workers=4,
collate_fn=training.collate_pil,
batch_size=batch_size,
sampler=RandomSampler(ds, replacement=True, num_samples=960),
)
start = time.time()
faces = []
for x, _ in tqdm(dl):
faces.extend(mtcnn(x))
elapsed = time.time() - start
print(f'Elapsed: {elapsed} | EPS: {len(dl) * batch_size / elapsed}')
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,14 @@
numpy==1.16.2
requests==2.21.0
torch==1.3.1
torchvision==0.4.2
Pillow==6.1.0
opencv-python>=4.1.0
scipy==1.3.0
pandas==0.24.2
coverage==4.5.3
codecov==2.0.15
jupyter==1.0.0
tensorboard==1.14.0
future==0.17.1
./

View File

@@ -0,0 +1,230 @@
"""
The following code is intended to be run only by travis for continuius intengration and testing
purposes. For implementation examples see notebooks in the examples folder.
"""
from PIL import Image, ImageDraw
import torch
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
import numpy as np
import pandas as pd
from time import time
import sys, os
import glob
from models.mtcnn import MTCNN, fixed_image_standardization
from models.inception_resnet_v1 import InceptionResnetV1, get_torch_home
#### CLEAR ALL OUTPUT FILES ####
checkpoints = glob.glob(os.path.join(get_torch_home(), 'checkpoints/*'))
for c in checkpoints:
print('Removing {}'.format(c))
os.remove(c)
crop_files = glob.glob('data/test_images_aligned/**/*.png')
for c in crop_files:
print('Removing {}'.format(c))
os.remove(c)
#### TEST EXAMPLE IPYNB'S ####
os.system('jupyter nbconvert --to script --stdout examples/infer.ipynb examples/finetune.ipynb > examples/tmptest.py')
os.chdir('examples')
try:
import examples.tmptest
except:
import tmptest
os.chdir('..')
#### TEST MTCNN ####
def get_image(path, trans):
img = Image.open(path)
img = trans(img)
return img
trans = transforms.Compose([
transforms.Resize(512)
])
trans_cropped = transforms.Compose([
np.float32,
transforms.ToTensor(),
fixed_image_standardization
])
dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}
mtcnn_pt = MTCNN(device=torch.device('cpu'))
names = []
aligned = []
aligned_fromfile = []
for img, idx in dataset:
name = dataset.idx_to_class[idx]
start = time()
img_align = mtcnn_pt(img, save_path='data/test_images_aligned/{}/1.png'.format(name))
print('MTCNN time: {:6f} seconds'.format(time() - start))
# Comparison between types
img_box = mtcnn_pt.detect(img)[0]
assert (img_box - mtcnn_pt.detect(np.array(img))[0]).sum() < 1e-2
assert (img_box - mtcnn_pt.detect(torch.as_tensor(np.array(img)))[0]).sum() < 1e-2
# Batching test
assert (img_box - mtcnn_pt.detect([img, img])[0]).sum() < 1e-2
assert (img_box - mtcnn_pt.detect(np.array([np.array(img), np.array(img)]))[0]).sum() < 1e-2
assert (img_box - mtcnn_pt.detect(torch.as_tensor([np.array(img), np.array(img)]))[0]).sum() < 1e-2
# Box selection
mtcnn_pt.selection_method = 'probability'
print('\nprobability - ', mtcnn_pt.detect(img))
mtcnn_pt.selection_method = 'largest'
print('largest - ', mtcnn_pt.detect(img))
mtcnn_pt.selection_method = 'largest_over_theshold'
print('largest_over_theshold - ', mtcnn_pt.detect(img))
mtcnn_pt.selection_method = 'center_weighted_size'
print('center_weighted_size - ', mtcnn_pt.detect(img))
if img_align is not None:
names.append(name)
aligned.append(img_align)
aligned_fromfile.append(get_image('data/test_images_aligned/{}/1.png'.format(name), trans_cropped))
aligned = torch.stack(aligned)
aligned_fromfile = torch.stack(aligned_fromfile)
#### TEST EMBEDDINGS ####
expected = [
[
[0.000000, 1.482895, 0.886342, 1.438450, 1.437583],
[1.482895, 0.000000, 1.345686, 1.029880, 1.061939],
[0.886342, 1.345686, 0.000000, 1.363125, 1.338803],
[1.438450, 1.029880, 1.363125, 0.000000, 1.066040],
[1.437583, 1.061939, 1.338803, 1.066040, 0.000000]
],
[
[0.000000, 1.430769, 0.992931, 1.414197, 1.329544],
[1.430769, 0.000000, 1.253911, 1.144899, 1.079755],
[0.992931, 1.253911, 0.000000, 1.358875, 1.337322],
[1.414197, 1.144899, 1.358875, 0.000000, 1.204118],
[1.329544, 1.079755, 1.337322, 1.204118, 0.000000]
]
]
for i, ds in enumerate(['vggface2', 'casia-webface']):
resnet_pt = InceptionResnetV1(pretrained=ds).eval()
start = time()
embs = resnet_pt(aligned)
print('\nResnet time: {:6f} seconds\n'.format(time() - start))
embs_fromfile = resnet_pt(aligned_fromfile)
dists = [[(emb - e).norm().item() for e in embs] for emb in embs]
dists_fromfile = [[(emb - e).norm().item() for e in embs_fromfile] for emb in embs_fromfile]
print('\nOutput:')
print(pd.DataFrame(dists, columns=names, index=names))
print('\nOutput (from file):')
print(pd.DataFrame(dists_fromfile, columns=names, index=names))
print('\nExpected:')
print(pd.DataFrame(expected[i], columns=names, index=names))
total_error = (torch.tensor(dists) - torch.tensor(expected[i])).norm()
total_error_fromfile = (torch.tensor(dists_fromfile) - torch.tensor(expected[i])).norm()
print('\nTotal error: {}, {}'.format(total_error, total_error_fromfile))
if sys.platform != 'win32':
assert total_error < 1e-4
assert total_error_fromfile < 1e-4
#### TEST CLASSIFICATION ####
resnet_pt = InceptionResnetV1(pretrained=ds, classify=True).eval()
prob = resnet_pt(aligned)
#### MULTI-FACE TEST ####
mtcnn = MTCNN(keep_all=True)
img = Image.open('data/multiface.jpg')
boxes, probs = mtcnn.detect(img)
draw = ImageDraw.Draw(img)
for i, box in enumerate(boxes):
draw.rectangle(box.tolist())
mtcnn(img, save_path='data/tmp.png')
#### MTCNN TYPES TEST ####
img = Image.open('data/multiface.jpg')
mtcnn = MTCNN(keep_all=True)
boxes_ref, _ = mtcnn.detect(img)
_ = mtcnn(img)
mtcnn = MTCNN(keep_all=True).double()
boxes_test, _ = mtcnn.detect(img)
_ = mtcnn(img)
box_diff = boxes_ref[np.argsort(boxes_ref[:,1])] - boxes_test[np.argsort(boxes_test[:,1])]
total_error = np.sum(np.abs(box_diff))
print('\nfp64 Total box error: {}'.format(total_error))
assert total_error < 1e-2
# half is not supported on CPUs, only GPUs
if torch.cuda.is_available():
mtcnn = MTCNN(keep_all=True, device='cuda').half()
boxes_test, _ = mtcnn.detect(img)
_ = mtcnn(img)
box_diff = boxes_ref[np.argsort(boxes_ref[:,1])] - boxes_test[np.argsort(boxes_test[:,1])]
print('fp16 Total box error: {}'.format(np.sum(np.abs(box_diff))))
# test new automatic multi precision to compare
if hasattr(torch.cuda, 'amp'):
with torch.cuda.amp.autocast():
mtcnn = MTCNN(keep_all=True, device='cuda')
boxes_test, _ = mtcnn.detect(img)
_ = mtcnn(img)
box_diff = boxes_ref[np.argsort(boxes_ref[:,1])] - boxes_test[np.argsort(boxes_test[:,1])]
print('AMP total box error: {}'.format(np.sum(np.abs(box_diff))))
#### MULTI-IMAGE TEST ####
mtcnn = MTCNN(keep_all=True)
img = [
Image.open('data/multiface.jpg'),
Image.open('data/multiface.jpg')
]
batch_boxes, batch_probs = mtcnn.detect(img)
mtcnn(img, save_path=['data/tmp1.png', 'data/tmp1.png'])
tmp_files = glob.glob('data/tmp*')
for f in tmp_files:
os.remove(f)
#### NO-FACE TEST ####
img = Image.new('RGB', (512, 512))
mtcnn(img)
mtcnn(img, return_prob=True)