proj-2-part-1 done

This commit is contained in:
Kaushik Narayan R 2024-04-05 19:09:03 -07:00
parent 6223ff41d3
commit e13411fc0d
10 changed files with 541 additions and 0 deletions

View File

@ -0,0 +1,54 @@
#__copyright__ = "Copyright 2024, VISA Lab"
#__license__ = "MIT"
# Define global args
ARG FUNCTION_DIR="/home/app/"
ARG RUNTIME_VERSION="3.8"
ARG DISTRO_VERSION="3.12"
FROM alpine:latest
FROM python:${RUNTIME_VERSION} AS python-alpine
RUN python${RUNTIME_VERSION} -m pip install --upgrade pip
FROM python-alpine AS build-image
# Include global args in this stage of the build
ARG FUNCTION_DIR
ARG RUNTIME_VERSION
# Create function directory
RUN mkdir -p ${FUNCTION_DIR}
# Install Lambda Runtime Interface Client for Python
RUN python${RUNTIME_VERSION} -m pip install awslambdaric --target ${FUNCTION_DIR}
# Stage 3 - final runtime image
# Grab a fresh copy of the Python image
FROM python-alpine
# Include global arg in this stage of the build
ARG FUNCTION_DIR
# Set working directory to function root directory
WORKDIR ${FUNCTION_DIR}
# Copy in the built dependencies
COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR}
# (Optional) Add Lambda Runtime Interface Emulator and use a script in the ENTRYPOINT for simpler local runs
ADD https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie /usr/bin/aws-lambda-rie
RUN chmod 755 /usr/bin/aws-lambda-rie
# Install ffmpeg
RUN apt-get update
RUN apt-get install -y ffmpeg
# Copy handler function
COPY requirements.txt ${FUNCTION_DIR}
RUN python${RUNTIME_VERSION} -m pip install -r requirements.txt --target ${FUNCTION_DIR}
COPY entry.sh /
# Copy function code
COPY handler.py ${FUNCTION_DIR}
RUN chmod 777 /entry.sh
# Set the CMD to your handler (could also be done as a parameter override outside of the Dockerfile)
ENTRYPOINT [ "/entry.sh" ]
CMD [ "handler.handler" ]

View File

@ -0,0 +1,5 @@
# Part-1: Video-splitting stage - S3-triggered Lambda
- `handler.py` gets the uploaded video file, splits 10 frames using `ffmpeg`, uploads the output folder of frames to another bucket
- `lambda_s3_policy.json` defines the permission policy needed for the lambda function's IAM role
- `dummy_s3_trigger_event.json` is a sample S3 PUT event

View File

@ -0,0 +1,38 @@
{
"Records":[
{
"eventVersion":"2.0",
"eventSource":"aws:s3",
"awsRegion":"us-east-1",
"eventTime":"1970-01-01T00:00:00.000Z",
"eventName":"ObjectCreated:Put",
"userIdentity":{
"principalId":"EXAMPLE"
},
"requestParameters":{
"sourceIPAddress":"127.0.0.1"
},
"responseElements":{
"x-amz-request-id":"EXAMPLE123456789",
"x-amz-id-2":"EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH"
},
"s3":{
"s3SchemaVersion":"1.0",
"configurationId":"testConfigRule",
"bucket":{
"name":"1229569564-input",
"ownerIdentity":{
"principalId":"EXAMPLE"
},
"arn":"arn:aws:s3:::1229569564-input"
},
"object":{
"key":"jellyfish jam.mp4",
"size":1024,
"eTag":"0123456789abcdef0123456789abcdef",
"sequencer":"0A1B2C3D4E5F678901"
}
}
}
]
}

View File

@ -0,0 +1,6 @@
#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" ]; then
exec /usr/bin/aws-lambda-rie /usr/local/bin/python -m awslambdaric $1
else
exec /usr/local/bin/python -m awslambdaric $1
fi

View File

@ -0,0 +1,270 @@
__copyright__ = "Copyright 2024, VISA Lab"
__license__ = "MIT"
import pdb
import time
import botocore
import argparse
import textwrap
import boto3
from boto3 import client as boto3_client
from botocore.exceptions import ClientError
from datetime import datetime,timezone,timedelta
class aws_grader():
def __init__(self, access_key, secret_key, input_bucket, output_bucket, lambda_name, region):
self.access_key = access_key
self.secret_key = secret_key
self.region = region
self.s3 = boto3_client('s3', aws_access_key_id=self.access_key,
aws_secret_access_key=self.secret_key, region_name=region)
self.cloudwatch = boto3_client('cloudwatch', aws_access_key_id=self.access_key,
aws_secret_access_key=self.secret_key, region_name=region)
self.iam_session = boto3.Session(aws_access_key_id=self.access_key,
aws_secret_access_key=self.secret_key)
self.s3_resources = self.iam_session.resource('s3', region)
self.lambda_function = boto3_client('lambda', aws_access_key_id=self.access_key,
aws_secret_access_key=self.secret_key, region_name=region)
self.in_bucket_name = input_bucket
self.out_bucket_name = output_bucket
self.lambda_name = lambda_name
self.test_result = {}
def validate_lambda_exists(self, TC_num):
try:
response = self.lambda_function.get_function(
FunctionName=self.lambda_name
)
print(f"Lambda function {self.lambda_name} HTTPStatusCode {response['ResponseMetadata']['HTTPStatusCode']}")
self.test_result[TC_num] = "PASS"
except self.lambda_function.exceptions.ResourceNotFoundException as e:
print(f"Error {e}")
self.test_result[TC_num] = "FAIL"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
def validate_s3_subfolders(self, TC_num):
in_objects = self.s3.list_objects_v2(Bucket=self.in_bucket_name)
if in_objects['KeyCount']==0:
self.test_result[TC_num] = "FAIL"
print(f"Empty bucket {self.in_bucket_name}")
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
return
self.test_result[TC_num] = "PASS"
for obj in in_objects['Contents']:
folder_name = obj['Key'].rsplit('.',1)[0]
out_objects = self.s3.list_objects_v2(Bucket=self.out_bucket_name, Prefix=folder_name, Delimiter='/')
if out_objects['KeyCount'] == 1 or out_objects['KeyCount'] == 11:
folder_name = out_objects['CommonPrefixes'][0]['Prefix'].rsplit("/")[0]
prefix_name = out_objects['Prefix']
if folder_name == prefix_name:
print(f"{prefix_name} matches with {folder_name}")
else:
prefix_name = out_objects['Prefix']
self.test_result[TC_num] = "FAIL"
print(f"NO folder named {prefix_name}")
print(out_objects)
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
def validate_s3_output_objects(self, TC_num):
bucket = self.s3_resources.Bucket(self.out_bucket_name)
in_bucket = self.s3_resources.Bucket(self.in_bucket_name)
try:
objects = list(bucket.objects.all())
print(f"Got {len(objects)} objects {[o.key for o in objects]} from bucket {bucket.name}")
in_objects = list(in_bucket.objects.all())
self.test_result[TC_num] = "PASS"
for i,folder_n in enumerate(in_objects):
if len(in_objects) * 10 == len(objects) or len(in_objects) * 11 == len(objects):
print(f"Number of objects matches for given input {folder_n}")
self.test_result[TC_num] = "PASS"
else:
self.test_result[TC_num] = "FAIL"
break
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
except ClientError:
print(f"Couldn't get objects for bucket {bucket.name}")
raise
else:
return
# You have to make sure to run the workload generator and it executes within 15 mins
# of polling for cloudwatch metrics.
def check_lambda_duration(self, TC_num):
response = self.cloudwatch.get_metric_data(
MetricDataQueries=[
{
'Id': 'testDuration',
'MetricStat': {
'Metric': {
'Namespace': 'AWS/Lambda',
'MetricName': 'Duration'
},
'Period': 600,
'Stat': 'Average'
},
'ReturnData': True,
},
],
StartTime=datetime.now().utcnow() - timedelta(minutes=15),
EndTime=datetime.now().utcnow(),
ScanBy='TimestampAscending'
)
print(response['MetricDataResults'][0]['Values'])
values = response['MetricDataResults'][0]['Values']
if not values:
self.test_result[TC_num] = "FAIL"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
return
if max(values) > 10000:
self.test_result[TC_num] = "FAIL"
else:
self.test_result[TC_num] = "PASS"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
def check_lambda_concurrency(self,TC_num):
response = self.cloudwatch.get_metric_data(
MetricDataQueries=[
{
'Id': 'testConcurrency',
'MetricStat': {
'Metric': {
'Namespace': 'AWS/Lambda',
'MetricName': 'ConcurrentExecutions'
},
'Period': 600,
'Stat': 'Maximum'
},
'ReturnData': True,
},
],
StartTime=datetime.now().utcnow() - timedelta(minutes=15),
EndTime=datetime.now().utcnow(),
ScanBy='TimestampAscending'
)
print(response['MetricDataResults'][0]['Values'])
values = response['MetricDataResults'][0]['Values']
if not values:
self.test_result[TC_num] = "FAIL"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
return
if max(values) < 5:
self.test_result[TC_num] = "FAIL"
else:
self.test_result[TC_num] = "PASS"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
def check_bucket_exist(self, bucket):
if not bucket:
print(f"Bucket name is empty!")
return False
try:
self.s3.head_bucket(Bucket=bucket)
print(f"Bucket {bucket} Exists!")
return True
except botocore.exceptions.ClientError as e:
# If a client error is thrown, then check that it was a 404 error.
# If it was a 404 error, then the bucket does not exist.
error_code = int(e.response['Error']['Code'])
if error_code == 403:
print("Private Bucket. Forbidden Access!")
return True
elif error_code == 404:
print(f"Bucket {bucket} does Not Exist!")
return False
def empty_s3_bucket(self, bucket_name):
bucket = self.s3_resources.Bucket(bucket_name)
bucket.objects.all().delete()
print(f"{bucket_name} S3 Bucket is now EMPTY !!")
def count_bucket_objects(self, bucket_name):
bucket = self.s3_resources.Bucket(bucket_name)
count = 0
for index in bucket.objects.all():
count += 1
#print(f"{bucket_name} S3 Bucket has {count} objects !!")
return count
def validate_s3_buckets_initial(self, TC_num):
print(" - Run this BEFORE the workload generator client starts. Press Ctrl^C to exit.")
print(" - WARN: If there are objects in the S3 buckets; they will be deleted")
print(" ---------------------------------------------------------")
in_isExist = self.check_bucket_exist(self.in_bucket_name)
out_isExist = self.check_bucket_exist(self.out_bucket_name)
if in_isExist:
ip_obj_count = self.count_bucket_objects(self.in_bucket_name)
print(f"S3 Input Bucket:{self.in_bucket_name} has {ip_obj_count} object(s)")
if out_isExist:
op_obj_count = self.count_bucket_objects(self.out_bucket_name)
print(f"S3 Output Bucket:{self.out_bucket_name} has {op_obj_count} object(s)")
if in_isExist and out_isExist and ip_obj_count==0 and op_obj_count==0:
self.test_result[TC_num] = "PASS"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
else:
self.test_result[TC_num] = "FAIL"
print(f"Test status of {TC_num} : {self.test_result[TC_num]}")
def display_menu(self):
print("\n")
print("=============================================================================")
print("======== Welcome to CSE546 Cloud Computing AWS Console ======================")
print("=============================================================================")
print(f"IAM ACESS KEY ID: {self.access_key}")
print(f"IAM SECRET ACCESS KEY: {self.secret_key}")
print("=============================================================================")
print("1 - Validate 1 Lambda function")
print("2 - Validate S3 Buckets names and initial states")
print("3 - Validate S3 output bucket subfolders")
print("4 - Validate S3 output objects")
print("5 - Check lambda average duration")
print("6 - Check lambda concurrency")
print("0 - Exit")
print("Enter a choice:")
choice = input()
return choice
def main(self):
while(1):
choice = self.display_menu()
if int(choice) == 1:
self.validate_lambda_exists('Test_1')
elif int(choice) == 2:
self.validate_s3_buckets_initial('Test_2')
elif int(choice) == 3:
self.validate_s3_subfolders('Test_3')
elif int(choice) == 4:
self.validate_s3_output_objects('Test_4')
elif int(choice) == 5:
self.check_lambda_duration('Test_5')
elif int(choice) == 6:
self.check_lambda_concurrency('Test_6')
elif int(choice) == 0:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Grading Script')
parser.add_argument('--access_key', type=str, help='ACCCESS KEY ID of the grading IAM user')
parser.add_argument('--secret_key', type=str, help='SECRET KEY of the grading IAM user')
parser.add_argument('--input_bucket', type=str, help='Name of the S3 Input Bucket')
parser.add_argument('--output_bucket', type=str, help='Name of the S3 Output Bucket')
parser.add_argument('--lambda_name', type=str, help="Name of the Lambda function")
args = parser.parse_args()
access_key = args.access_key
secret_key = args.secret_key
input_bucket = args.input_bucket
output_bucket = args.output_bucket
lambda_name = args.lambda_name
region = 'us-east-1'
aws_obj = aws_grader(access_key, secret_key, input_bucket, output_bucket, lambda_name,region)
aws_obj.main()

View File

@ -0,0 +1,66 @@
import os
import subprocess
import json
import urllib.parse
import boto3
print("Loading function")
# attach execution policies and IAM roles in deployment lambda
sesh = boto3.Session()
s3 = sesh.client("s3", region_name="us-east-1")
def video_splitting_cmdline(video_filename):
filename = os.path.basename(video_filename)
outdir = os.path.splitext(filename)[0]
outdir = os.path.join("/tmp", outdir)
if not os.path.exists(outdir):
os.makedirs(outdir)
split_cmd = (
"ffmpeg -ss 0 -r 1 -i "
+ video_filename
+ " -vf fps=1/1 -start_number 0 -vframes 10 "
+ outdir
+ "/"
+ "output-%02d.jpg -y"
)
try:
subprocess.check_call(split_cmd, shell=True)
except subprocess.CalledProcessError as e:
print(e.returncode)
print(e.output)
return outdir
def handler(event, context):
for record in event["Records"]:
# get uploaded object
in_bucket = record["s3"]["bucket"]["name"]
if in_bucket != "1229569564-input":
continue
key = urllib.parse.unquote_plus(record["s3"]["object"]["key"], encoding="utf-8")
tmpkey = key.replace("/", "")
download_path = "/tmp/{}".format(tmpkey)
s3.download_file(in_bucket, key, download_path)
# process it
out_dir = video_splitting_cmdline(download_path)
# upload output objects
for frame in os.listdir(out_dir):
s3.upload_file(
os.path.join(out_dir, frame),
"1229569564-stage-1",
os.path.splitext(tmpkey)[0] + "/" + frame,
)
if __name__ == "__main__":
with open("dummy_s3_trigger_event.json", "r") as dummy_event:
event = json.loads(dummy_event.read())
handler(event, None)

View File

@ -0,0 +1,28 @@
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:PutLogEvents",
"logs:CreateLogGroup",
"logs:CreateLogStream"
],
"Resource": "arn:aws:logs:*:*:*"
},
{
"Effect": "Allow",
"Action": [
"s3:GetObject"
],
"Resource": "arn:aws:s3:::*/*"
},
{
"Effect": "Allow",
"Action": [
"s3:PutObject"
],
"Resource": "arn:aws:s3:::*/*"
}
]
}

View File

@ -0,0 +1 @@
boto3

View File

@ -0,0 +1,73 @@
#__copyright__ = "Copyright 2024, VISA Lab"
#__license__ = "MIT"
from boto3 import client as boto3_client
import os
import argparse
import time
input_bucket = "546proj2"
output_bucket = "546proj2output"
test_cases = "test_cases/"
start_time = time.time()
parser = argparse.ArgumentParser(description='Upload videos to input S3')
# parser.add_argument('--num_request', type=int, help='one video per request')
parser.add_argument('--access_key', type=str, help='ACCCESS KEY of the grading IAM user')
parser.add_argument('--secret_key', type=str, help='SECRET KEY of the grading IAM user')
parser.add_argument('--input_bucket', type=str, help='Name of the input bucket, e.g. 1234567890-input')
parser.add_argument('--output_bucket', type=str, help='Name of the output bucket, e.g. 1234567890-stage-1')
parser.add_argument('--testcase_folder', type=str, help='the path of the folder where videos are saved, e.g. test_cases/test_case_1/')
args = parser.parse_args()
access_key = args.access_key
secret_key = args.secret_key
input_bucket = args.input_bucket
output_bucket = args.output_bucket
test_cases = args.testcase_folder
region = 'us-east-1'
s3 = boto3_client('s3', aws_access_key_id = access_key,
aws_secret_access_key = secret_key, region_name=region)
def clear_input_bucket(input_bucket):
global s3
list_obj = s3.list_objects_v2(Bucket=input_bucket)
try:
for item in list_obj["Contents"]:
key = item["Key"]
s3.delete_object(Bucket=input_bucket, Key=key)
except:
print("Nothing to clear in input bucket")
def clear_output_bucket(output_bucket):
global s3
list_obj = s3.list_objects_v2(Bucket=output_bucket)
try:
for item in list_obj["Contents"]:
key = item["Key"]
s3.delete_object(Bucket=output_bucket, Key=key)
except:
print("Nothing to clear in output bucket")
def upload_to_input_bucket_s3(input_bucket, path, name):
global s3
s3.upload_file(path + name, input_bucket, name)
def upload_files(input_bucket, test_dir):
for filename in os.listdir(test_dir):
if filename.endswith(".mp4") or filename.endswith(".MP4"):
print("Uploading to input bucket.. name: " + str(filename))
upload_to_input_bucket_s3(input_bucket, test_dir, filename)
clear_input_bucket(input_bucket)
clear_input_bucket(output_bucket)
upload_files(input_bucket,test_cases)
end_time = time.time()
print("Time to run = ", end_time-start_time, "(seconds)")
print(f"Timestamps: start {start_time}, end {end_time}")