mirror of
https://github.com/20kaushik02/CSE515_MWDB_Project.git
synced 2025-12-06 12:44:06 +00:00
Delete Phase 3/phase3_task0a.ipynb
This commit is contained in:
parent
ad4c00bba2
commit
40e5144d53
@ -1,124 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from utils import *\n",
|
||||
"warnings.filterwarnings('ignore')\n",
|
||||
"%matplotlib inline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fd_collection = getCollection(\"team_5_mwdb_phase_2\", \"fd_collection\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def pca_inherent_dimensionality(data, threshold):\n",
|
||||
"\n",
|
||||
" # Calculate the mean of the data\n",
|
||||
" mean = np.mean(data, axis=0)\n",
|
||||
" # Center the data by subtracting the mean\n",
|
||||
" centered_data = data - mean\n",
|
||||
" # Normalize the data\n",
|
||||
" normalized_data = centered_data / np.std(centered_data, axis=0)\n",
|
||||
"\n",
|
||||
" # Reshape the centered data to ensure compatible dimensions\n",
|
||||
" if(len(normalized_data.shape)==3):\n",
|
||||
" reshaped_normalized_data = normalized_data.reshape(normalized_data.shape[0], normalized_data.shape[2])\n",
|
||||
" else:\n",
|
||||
" reshaped_normalized_data=normalized_data\n",
|
||||
"\n",
|
||||
" # Calculate the covariance matrix\n",
|
||||
" #covariance_matrix = np.dot(reshaped_normalized_data.T, reshaped_normalized_data)\n",
|
||||
" covariance_matrix = np.dot(reshaped_normalized_data.T, reshaped_normalized_data) / (reshaped_normalized_data.shape[0] - 1) #to bring the values in the range of 0 to 1\n",
|
||||
"\n",
|
||||
" # Compute the eigenvalues and eigenvectors of the covariance matrix\n",
|
||||
" eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)\n",
|
||||
" # Sort the eigenvalues in descending order\n",
|
||||
" #sorted_indices = np.argsort(eigenvalues)[::-1]\n",
|
||||
" # Sort the eigenvectors accordingly\n",
|
||||
" #sorted_eigenvectors = eigenvectors[:, sorted_indices]\n",
|
||||
" #print(sorted_eigenvectors)\n",
|
||||
" #print(sorted_indices)\n",
|
||||
"\n",
|
||||
" # Calculate the mean of each subarray- the sorted_eigenvectors are in the form of subarrays, while computing the inherent dimensionality, each value is compared with \n",
|
||||
" #the threshold, hence mean of each subarray is computed and then it is compared with the threshold value (I am not sure if we can do this?)\n",
|
||||
" #means = np.mean(sorted_eigenvectors, axis=1)\n",
|
||||
" \n",
|
||||
" # Determine the number of eigenvalues greater than the threshold\n",
|
||||
" #inherent_dimensionality = np.sum(means>threshold)\n",
|
||||
" #inherent_dimensionality = len(significant_eigenvalues)\n",
|
||||
" significant_eigenvalues = eigenvalues[eigenvalues > threshold]\n",
|
||||
" inherent_dimensionality = len(significant_eigenvalues)\n",
|
||||
" #significant_eigenvalues = sorted_eigenvectors[sorted_indices][eigenvalues > threshold]\n",
|
||||
"\n",
|
||||
" return inherent_dimensionality"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Inherent dimensionality associated with the even numbered images: 260\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Retrieve all feature spaces from the database\n",
|
||||
"data = []\n",
|
||||
"for document in fd_collection.find():\n",
|
||||
" feature_space = document[\"fc_fd\"]\n",
|
||||
" data.append(feature_space)\n",
|
||||
"\n",
|
||||
"threshold=0.5\n",
|
||||
"print(\"Inherent dimensionality associated with the even numbered images: \", pca_inherent_dimensionality(data, threshold))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user